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tic Monte Carlo for simulating
delocalisation-enhanced charge and exciton
transport in disordered materials

Daniel Balzer, a Thijs J. A. M. Smolders, ab David Blyth,c Samantha N. Hood c

and Ivan Kassal *a

Charge transport is well understood in both highly orderedmaterials (band conduction) or highly disordered

ones (hopping conduction). In moderately disordered materials—including many organic

semiconductors—the approximations valid in either extreme break down, making it difficult to accurately

model the conduction. In particular, describing wavefunction delocalisation requires a quantum

treatment, which is difficult in disordered materials that lack periodicity. Here, we present the first three-

dimensional model of partially delocalised charge and exciton transport in materials in the intermediate

disorder regime. Our approach is based on polaron-transformed Redfield theory, but overcomes several

computational roadblocks by mapping the quantum-mechanical techniques onto kinetic Monte Carlo.

Our theory, delocalised kinetic Monte Carlo (dKMC), shows that the fundamental physics of transport in

moderately disordered materials is that of charges hopping between partially delocalised electronic

states. Our results reveal why standard kinetic Monte Carlo can dramatically underestimate mobilities

even in disordered organic semiconductors, where even a little delocalisation can substantially enhance

mobilities, as well as showing that three-dimensional calculations capture important delocalisation

effects neglected in lower-dimensional approximations.
Charge and exciton transport is fundamental to materials
science, particularly in applications for energy storage and
conversion, including photovoltaics, batteries, light harvesting
systems, lighting and electrocatalysts. However, many next-
generation materials that promise signicant functional
improvements are disordered and noisy, making them difficult
to treat mathematically and improve computationally. The
clearest example of disordered electronic materials are organic
semiconductors (OSCs),1 but we expect that much of what we
say here also applies to materials such as hybrid perovskites,
conductive metal–organic frameworks and quantum dots.

The difficulty with disordered materials is that they sit in the
intermediate regime between the well-understood extremes of
band conduction and hopping conduction (Fig. 1a).1,2 In
perfectly ordered crystals, charges move through Bloch waves,
wavefunctions that are delocalised over innitely many sites
(individual atoms or molecules). By contrast, in extremely
disordered materials (including some OSCs), electronic wave-
functions are localised to one molecule and charges move by
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thermally assisted hops to neighbouring sites. A theory of the
intermediate transport regime must bridge these two qualita-
tively different extremes.

In disordered materials, two mechanisms localise electronic
states away from innite Bloch waves (Fig. 1c). The rst is
Anderson localisation, which is caused by static disorder.3 The
second is the formation of polarons due to a carrier's interac-
tion with the environment.4–6 Either mechanism, if strong
enough, can localise states onto individual sites (giving so-
called small polarons), but in the intermediate regime the
localisation is not complete, and polaron states can be delo-
calised over multiple sites.

Many OSCs fall into the intermediate regime, which can be
most clearly seen from failures of conventional simulations.
Transport in most small-molecule OSCs (apart from organic
crystals, where the importance of delocalisation has long been
recognised6) is usually modelled as fully localised hopping,
typically through a Gaussian density of states.7 The simplest
hopping-rate expression is the Miller–Abrahams equation,8

which neglects polaron formation, while Marcus theory
accommodates both disorder and polaron formation.9–12 These
microscopic theories can be connected to measurable mobil-
ities using kinetic Monte Carlo (KMC) simulations, a probabi-
listic approach based on averaging stochastic trajectories.12

KMC oen signicantly underestimates mobilities, requiring
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) While the extreme regimes of transport, coherent band conduction through extended states and incoherent hopping between
localised states, are well understood, materials such as organic semiconductors lie in the poorly understood intermediate regime. In this regime,
charges hop between partially delocalised electronic states, where the rate of hopping depends on the overlap between the states. (b) We study
a system that is a regular lattice of sites, with disordered energies (different colours), that are coupled to neighbours with an electronic coupling J
and to an environment (motion lines). (c) Delocalisation of the electronic states is found by diagonalising the system's Hamiltonian. Electronic
couplings tend to delocalise the states, while disorder and environmental noise localise them. The resulting delocalisation of the electronic states
can be quantified by the inverse participation ratio (IPR) (eqn (24)) or the delocalisation length (ldeloc) (eqn (23)), which are included here for
a material with J ¼ 75 meV and s ¼ 150 meV. When the formation of polarons is accounted for, the states become less delocalised.
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unphysically fast hopping rates (faster than molecular vibra-
tions) to reproduce experimental results. This underestimation
occurs because the assumption of completely localised states
fails if inter-molecular couplings are comparable to the disorder
or to the system-environment coupling, allowing polarons to
delocalise across multiple sites.13–18 An accurate description of
intermediate-regime transport in OSCs is particularly important
for understanding organic photovoltaics, where delocalisation
has been proposed as the key explanation for how charges
overcome their Coulomb attraction to achieve rapid and effi-
cient charge separation.19–29

Nevertheless, describing intermediate-regime transport has
proven difficult, particularly in statically disordered systems.2

The challenge is that accounting for delocalisation requires
a quantum-mechanical treatment, whose computational cost
can balloon when disorder prevents periodic boundary condi-
tions being used and forces large simulation boxes instead. In
addition, mobility in disordered systems is oen governed by
deep traps, and long simulation times can be required to reach
converged mobilities.30

Existing methods can be broadly divided into atomistic ones
and those based on effective Hamiltonians. Atomistic calcula-
tions track the dynamics of both the nuclear degrees of freedom
© 2021 The Author(s). Published by the Royal Society of Chemistry
(usually using molecular mechanics) and the electronic ones
(using quantum equations of motion).31–37 Atomistic simula-
tions do not have adjustable parameters, but they suffer from
the considerable cost of tracking the atomic motion. As a result,
taking OSCs as an example, the best atomistic simulations of
charge transport are limited to about a thousand molecules,
tracked for around 1 ps.34–37 These capabilities enable remark-
able simulations of layered organic crystals, which admit a two-
dimensional simulation and are ordered enough that mobilities
converge rapidly. However, the same approach cannot be
applied to a three-dimensional disordered material that may
require a nanosecond-long simulation. By contrast, effective-
Hamiltonian models track fewer degrees of freedom,17,38–43

allowing for larger and longer simulations. These approaches
parametrise model Hamiltonians, which then govern the time
evolution. Even if the parametrisation is accomplished using
atomistic simulations, the important distinction is that an
effective-Hamiltonian approach no longer tracks information
about the individual atoms aer the parametrisation. The
weakness of these approaches is that they can neglect important
phenomena if they are not included in the model Hamiltonian.
For example, effective Hamiltonians designed to treat ordered
organic crystals cannot treat disordered materials.
Chem. Sci., 2021, 12, 2276–2285 | 2277
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Several effective-Hamiltonian theories incorporate the three
ingredients critical to describing the intermediate regime:
delocalisation, disorder, and polaron formation.22,29,43,44 Most of
these approaches describe polarons using the polaron trans-
formation, which reduces the otherwise strong system-
environment coupling, enabling a perturbative treatment of the
remaining interactions. The differences between the approaches
are in the details of the effective Hamiltonian and of the per-
turbative corrections, which give them strengths and weaknesses
in different regimes. The Bittner–Silva theory22 is similar to what
we do below, except that they study a bath of extended, shared
phonons, an assumption that may not be appropriate in molec-
ular systems where phonons are better described as local
molecular vibrations.45 The Jankovíc–Vukmirovíc approach29

uses modied Redeld theory as its perturbation theory, making
it valid when off-diagonal system-environment couplings are
small. However, this condition is not guaranteed in some mate-
rials that interest us, including some OSCs; furthermore,
disorder is the only localising feature in modied Redeld
theory, meaning that the method cannot describe ordered
systems where strong system-environment coupling results in
small polarons.46 The approach of Varvelo et al.43 differs from
those above in that it uses a non-perturbative treatment of the
system-environment couplings based on the hierarchy equations
of motion. In principle, this technique is more accurate in the
intermediate regime, but it is computationally more expensive
and has so far only been used for one-dimensional chains.

We follow and extend the secular polaron-transformed
Redeld equation (sPTRE),44 which has several key advan-
tages. Most importantly, sPTRE is entirely in the polaron frame,
which changes as a function of the system-environment
coupling, allowing sPTRE to characterise intermediate-regime
transport as well as exactly reproducing both the band-
conduction and hopping-conduction extremes.44,47–52 The up-
front use of the polaron transformation also reduces the
delocalisation of the electronic states18 (Fig. 1c), making
mobility calculations easier. Its main limitation has been its
computational cost, with sPTRE only ever applied to one-
dimensional systems.44

Here, we overcome computational roadblocks that have
limited sPTRE to one-dimensional systems to present the rst
three-dimensional description of partially delocalised
carriers—whether charges or excitons—in intermediately
disordered materials, over times as long as nanoseconds. Our
results reproduce sPTRE in one dimension and hopping
transport in the low-coupling limit, before showing that even
small amounts of delocalisation can dramatically increase
mobilities in two and, especially, three dimensions. We also
show that these quantum-mechanical enhancements increase
at low temperatures due to increasing polaron delocalisation.
I Secular polaron-transformed
Redfield equation

Our approach is based on sPTRE,44 which we review in this
section.
2278 | Chem. Sci., 2021, 12, 2276–2285
Hamiltonian

We wish to describe an open quantum system, whose total
Hamiltonian

Htot ¼ HS + HB + HSB (1)

consists of components describing the system (HS), the bath
(HB) and the interaction between them (HSB). All of the param-
eters introduced below that enter into Htot could, in principle,
be computed using atomistic simulations that combine
molecular mechanics and quantum chemistry.1,12,23,29,45

Our system is a tight-binding model of a d-dimensional
cubic lattice of Nd sites, such as molecules or parts of molecules
(Fig. 1b). To represent disorder, the energy En of each site n is
independently drawn from the Gaussian distribution

gðEÞ ¼ expð�ðE � E0Þ2=2s2Þ=
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p
; whose standard deviation

s is the disorder of the material. The energetic disorder could
arise from static variations in the orientation and spacing of
molecules, producing a unique local environment around each
molecule. The sites are assumed to be electronically coupled to
nearest neighbours with coupling J, which enables delocalisa-
tion. We assume a constant nearest-neighbour coupling,
although this assumption could easily be relaxed to allow off-
diagonal disorder. Overall, the system Hamiltonian is therefore

HS ¼
X
n

En|nihn|þ
X
msn

Jmn|mihn|; (2)

where |ni represents the charge or exciton localised on site n.
We treat the environment as an independent, identical bath

on every site, consisting of a series of harmonic oscillators,
which can be thought of as vibrations of bonds in the mole-
cules. The bath Hamiltonian is, therefore,

HB ¼
X
n;k

unkb
†
nkbnk; (3)

where the kth bath mode attached to the nth site has frequency
unk, with creation and annihilation operators bnk and b†nk.
Assuming a local bath is common in describing disordered
molecular materials;1,45 in crystalline systems, extended phonons
that can couple different sites would be more appropriate.

The interaction between the system and the environment is
treated by coupling every site to its bath with couplings gnk, so that

HSB ¼
X
n;k

gnk |nihn|
�
b
†
nk þ bnk

�
: (4)

This linear coupling model is a standard approximation, based
on keeping the leading term in the Taylor expansion of a general
system-bath interaction.
Polaron transformation

Many materials have electronic (J) or system-bath couplings (gk)
that are too large to be treated as small perturbations. The
polaron transformation reduces the system-environment
coupling by absorbing it into the polaron itself, permitting the
model to be treated using Redeld theory. Polaron formation is
described using the state-dependent displacement operator6
© 2021 The Author(s). Published by the Royal Society of Chemistry
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eS ¼ e

P
n;k

gnk
unk

jnihnjðb†nk�bnkÞ
: (5)

Applying it to the Hamiltonian incorporates lattice distortions
into the system by displacing the environmental modes; the
polaron-transformed Hamiltonian, indicated by tildes, is then

~H tot ¼ eSHtote
�S ¼ ~HS + ~HB + ~HSB. (6)

Here, the system Hamiltonian becomes

~HS ¼
X
n

~En |nihn|þ
X
msn

Jmnkmn|mihn|; (7)

where ~En ¼ En �
P
k
|gnk|

2=uk and the coupling between sites is

renormalised by the factor kmn,

kmn ¼ e
�1
2

P
k

h
gmk

2

umk
2 coth

�
bumk

2

�þ gnk
2

unk
2 coth

�
bunk

2

�i
: (8)

The bath Hamiltonian remains unchanged, ~HB ¼ HB, while the
system-bath Hamiltonian becomes

~HSB ¼
X
nsm

Jmn |mihn|Vmn; (9)

with the new operator

Vmn ¼ e

P
k

gmk

umk
ðb†mk

�bmkÞ
e
�
P
k

gnk
unk

ðb†nk�bnkÞ � kmn: (10)

Summing many discrete vibrational modes is computation-
ally costly, so we make two standard simplications. First,
we assume that system-bath couplings are identical at all sites,
gnk ¼ gk. Second, we assume that the spectral density
JðuÞ ¼ P

k
gk2dðu� ukÞ is a continuous function.45 The renorm-

alisation factor then becomes

kmn ¼ k ¼ e
�
ÐN

0

du
p

JðuÞ
u2 cothðbu=2Þ

: (11)

Because k < 1, the polaron transformation has two computa-
tional advantages: rst, it reduces the electronic coupling J,
making Redeld theory applicable, and second, it reduces the
delocalisation of the electronic states obtained from ~HS by
diagonalisation18 (Fig. 1c). Here, for concreteness, we adopt the
widely used super-ohmic spectral density

JðuÞ ¼ l

2
ðu=ucÞ3 expð�u=ucÞ; where l is the reorganisation

energy and uc is the cutoff frequency.53–56 Unless specied
otherwise, we use l ¼ 100 meV, uc ¼ 62 meV (ref. 44) and T ¼
300 K. More generally, the equations above could be used for the
more structured spectral densities of organic molecules.

Secular Redeld theory

The polaron transformation reduces the system-bath coupling,
allowing ~HSB to be treated as a perturbation to the system.44

Redeld theory is a second-order perturbative approach that,
when applied in the polaron frame, results in the polaron-
transformed Redeld equation (PTRE). It describes the evolu-
tion of the polaron-transformed reduced density matrix ~r in the
basis |mi of polaron states found by diagonalising ~HS:
© 2021 The Author(s). Published by the Royal Society of Chemistry
d~rmnðtÞ
dt

¼ �iumn~rmnðtÞ þ
X
m
0
;n
0
Rmn;m

0
n
0~rm0n0 ðtÞ; (12)

where umn ¼ Em � En. The Redeld tensor

Rmn;m
0
n
0 ¼ Gn

0
n;mm

0 þ G*
m0m;nn0 � dnn0

X
k

Gmk;km
0 � dnn0

X
k

G*
nk;kn0 (13)

describes the bath-induced relaxation in terms of damping
rates

Gmn;m
0
n
0 ¼

X
m;n;m

0
;n
0
JmnJm0

n
0 hm|mihn|ni�m0

|m
0��

n
0
|n
0�
Kmn;m

0
n
0
�
un

0
m
0
�
;

(14)

where

Kmn;m
0
n
0 ðuÞ ¼

ðN
0

eius
�
V̂mnðsÞV̂m

0
n
0 ð0Þ�

HB
ds (15)

is the half-Fourier transform of the bath correlation function54

�
VmnðsÞVm

0
n
0 ð0Þ�

HB
¼ k2

�
elmn;m0n0fðsÞ � 1

�
; (16)

where lmn,m0n0 ¼ dmm0 � dmn0 + dnn0 � dnm0 and

fðsÞ ¼
ðN
0

du

p

JðuÞ
u2

	
cosðusÞcoth



bu

2

�
� i sinðusÞ

�
: (17)

The PTRE of eqn (12) can be further simplied using the
secular approximation to give the secular PTRE (sPTRE). The
polaron-transformed density matrix consists of diagonal
populations and off-diagonal coherences. The evolution of
~rmn is controlled by the Redeld tensor, containing terms that
transfer populations, dephase coherences, transfer coher-
ences, and mix populations and coherences. In the interac-
tion picture, these terms oscillate with a combined frequency
of unm � un0m0. If this frequency is much greater than the
inverse of the time frame Dt over which the PTRE is solved,
the oscillations are so rapid that the inuence of these terms
averages out to zero.45 The only terms that survive are those
for which unm � un0m0 � Dt�1. This condition is met for pop-
ulation transfers and coherence dephasing, and the secular
approximation is the assumption that only those terms
survive. The result is sPTRE, in which populations and
coherences are decoupled.

Furthermore, only populations are relevant for charge
transport,44 and they are invariant under the polaron trans-
formation, rs(t) ¼ ~rs(t), leaving

drnnðtÞ
dt

¼
X
n
0
Rnn

0rn0n0 ðtÞ; (18)

where the Redeld tensor is now only two dimensional, con-
taining only population transfer terms

Rnn
0 ¼ 2Re

h
Gn

0
n;nn

0
i
� dnn0

X
k

2Re
h
Gnk;kn

0
i
: (19)

The secular approximation reduces computational cost by
reducing the number of density-matrix elements from N2d to Nd

and the number of Redeld-tensor elements from N4d to N2d.
Chem. Sci., 2021, 12, 2276–2285 | 2279
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The secular approximation does not signicantly reduce the
accuracy for the disordered systems we are studying, for two
reasons. First, for parameters typical of the ones we survey,
sPTRE agrees well44 with a time-convolutionless second-order
polaron master equation57 that does not use the secular or
Markov approximations. Second, any inaccuracies will be
minimal for long-time and long-range mobility calculations; at
long times, the rate-limiting step in carrier diffusion is the
thermal de-trapping from traps that have large energy differ-
ences from their neighbours.
Calculating mobilities

The full time evolution of polaron-state populations is given by
sPTRE (eqn (18)). Fig. 2a illustrates sPTRE evolution, where the
charge density can spread to all other eigenstates in continuous
time and in proportion to the corresponding Redeld rate. Eqn
(18) has the solution

r(t) ¼ exp(Rt)r(0), (20)

which can be used to calculate the expectation value of the
mean-squared displacement of the charge, hr2(t)i ¼ tr(r2r(t)), at
any time.

To calculate the mobility, hr2(t)i is averaged over many real-
isations of disorder (niters), i.e., disordered energy landscapes
generated using the same microscopic parameters. The result-
ing average hr2ðtÞi determines the diffusion constant
Fig. 2 The four approximations underlying dKMC. (a) Full sPTRE master
polaron states. This approach is too expensive in more than one dimen
discrete, sequential hops, and are eventually averaged. (c) Hopping radius
close enough. (d) Overlap radius rove: only sites (grid points) that are close
the hopping rate. (e) Diagonalising on the fly: instead of the whole Ham
charge moves too close to the boundary, a new Hamiltonian is re-diago

2280 | Chem. Sci., 2021, 12, 2276–2285
D ¼ lim
t/N

d

dt


 hr2ðtÞi
2d

�
: (21)

Finally, for a carrier of charge q, the mobility is given by the
Einstein relation

m ¼ qD

kBT
: (22)
II Delocalised kinetic Monte Carlo

sPTRE has only been applied to one-dimensional systems,44

because of three computational hurdles. First, generating
the polaron states by diagonalising the Nd ~HS scales as
O(N3d), where N is the number of sites along each of the
d dimensions. Second, tracking the population transfer
between all pairs of polaron states involves calculating the
full Redeld tensor Rnn0 (eqn (19)), which has N2d elements.
Lastly, each population transfer rate depends on the
damping rates G (eqn (14)), calculating which involves a sum
over N4d sites to account for the spatial overlap of the
polaron states. Therefore, sPTRE scales as O(N3d) + O(N6d)
overall, which, for reasonably sized lattices, is manageable
only for d ¼ 1.
equation: the charge density can spread continuously throughout
sion. (b) Kinetic Monte Carlo: individual trajectories are formed fro
rhop: hops are only calculated for states whose centres (black dots) a
to both the initial and final polaron states are considered in calculati
iltonian, only a subsystem of size Nd

box is diagonalised at a time. As t
nalised centred at the new location of the charge.

© 2021 The Author(s). Published by the Royal Society of Chemist
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Our approach, dKMC, overcomes these limitations using four
approximations (Fig. 2):
(1) Kinetic Monte Carlo

We reduce the number of Redeld rates that need to be calculated
by mapping sPTRE onto kinetic Monte Carlo (KMC). Rather than
tracking the time-dependent populations of all polaron states, we
track stochastic trajectories through the polaron states (Fig. 2b),
followed by averaging. This approach mirrors standard KMC,
which also probabilistically integrates a large master equation.
Individual trajectories are found by hopping to another polaron
state with probability proportional to the corresponding Redeld
rate for population transfer. Hopping continues until a pre-
determined end time tend. Therefore, instead of calculating Red-
eld rates for every pair of polaron states, as in sPTRE, KMC
requires only calculating outgoing rates at each step. This reduces
the number of Redeld rates that need to be calculated fromN2d to
Ndnhopntraj, where nhop is the number of hops, which depends on
tend, and ntraj is the number of trajectories, which controls the nal
averaging error.

To calculate hr2(t)i for eqn (22), we assume the charge
occupying a particular polaron state (at a particular time) is
located at its centre, dened as the expectation value of the
position, Cn ¼ hn|r|ni; hr2(t)i is then the average of the square of
this displacement over all the trajectories.
(2) Hopping cutoff radius

We reduce the number of Redeld rates to be calculated by
introducing a hopping cutoff radius, rhop. For polaron states
Fig. 3 The delocalised kinetic Monte Carlo algorithm.

© 2021 The Author(s). Published by the Royal Society of Chemistry
that are far away from the current state, the spatial overlaps, and
therefore Redeld rates, are very small compared to polaron
states that are close by. Therefore, we only calculate rates to
polaron states whose centre Cn lies within rhop of the centre of
the current state (Fig. 2c). The error in this approximation is
tunable, because rhop can be arbitrarily increased depending on
the desired accuracy. We choose our rhop by gradually
increasing it by one lattice spacing until the total sum of
outgoing rates to states with centres within rhop converges, not
changing by more than a target factor ahop between increments.
The hopping cutoff radius reduces the number of Redeld rates
to be calculated at each hop from Nd to O(rdhop), thus reducing
the total number of rates that need to be calculated in each
random energetic landscape to rdhopnhopntraj.
(3) Overlap cutoff radius

We reduce the cost of calculating individual Redeld rates by
introducing an overlap cutoff radius, rove. While eigenstates do,
in principle, spread across the entire lattice, Anderson local-
isation predicts that their amplitude decreases exponentially
with distance from their centre. Therefore, in calculating
damping rates (eqn (14)), we only sum over sites that are
simultaneously within a distance of rove from the centres of both
polaron states (Fig. 2d). Again, the error in this approximation is
tunable, and can be decreased arbitrarily by increasing rove. We
choose our rove by gradually increasing it by one lattice spacing
until the sum of outgoing Redeld rates calculated by only
including sites within rove of both the initial and nal states
converges, not changing by more than a target factor aove
Chem. Sci., 2021, 12, 2276–2285 | 2281
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between increments. The overlap cutoff radius reduces the
number of sites summed over in each damping rate from N4d to
O(r4dove).

In practice, we calculate rhop and rove simultaneously, as
outlined in Fig. 3, by progressively increasing both until the
total sum of the outgoing Redeld rates converges onto
a desired accuracy. For simplicity, we choose the two target
accuracies to be equal, adKMC ¼ ahop ¼ aove.
Fig. 4 (a) Mobilities (m) in one dimension at 100 ps predicted by both
sPTRE and dKMC, with disorder s ¼ 150 meV and shown as a function
of the electronic coupling J. dKMC can be made arbitrarily accurate by
increasing the accuracy parameter adKMC (adKMC ¼ 0.99 is used else-
where in this paper). (b) Throughout this paper, mobilities—which are
time-dependent30—are calculated at 100 ps. The mobility enhance-
ment due to delocalisation (mdKMC/mKMC) increases with the time (here
shown for one dimension), meaning that longer-time delocalisation
enhancements would always be at least as large as reported here.
(4) Diagonalising on the y

We reduce the time required to calculate the polaron states by
diagonalising the Hamiltonian on the y. Rather than diag-
onalise the entire lattice, we only diagonalise a subset of the
Hamiltonian of size Nd

box centred at the location of the charge
(Fig. 2e). The charge moves within the box until it gets too
close to the edge, which we set to be within rhop + rove of the
edge. This buffer ensures we can accurately describe the next
hop, which requires a distance of rhop to contain the centres
of all relevant polaron states, as well as a further distance of
rove to ensure the entirety of polaron states at the edge of rhop
are well dened. In three dimensions, diagonalisation is
usually the computational bottleneck, so we make the box as
small as possible, Nbox ¼ 2(rhop + rove). Once the charge leaves
the buffer, the Hamiltonian corresponding to a new box of
size Nd

box centred at the new location of the charge is re-
diagonalised. The landscape continues to be updated as the
charge hops through the material, ultimately reducing the
cost of calculating the polaron states from O(N3d) to
O(N3d

boxnhop).
Overall, the four approximations above transform sPTRE to

dKMC and make it possible to model three-dimensional charge
transport in disordered, noisy materials. The detailed steps
involved in the algorithm are shown in Fig. 3. Overall, the
scaling of the technique has been reduced from sPTRE's O(N3d)
+ O(N6d) to O(N3d

boxnhop) + O(r4dover
d
hopnhopntraj) for dKMC. For

example, for a disordered 3D system with J/s¼ 0.1 and N¼ 100,
the scaling is reduced by at least 25 orders of magnitude.
III Results and discussion
Accuracy

All of the approximations in dKMC are controllable, meaning
that the error can be arbitrarily reduced given additional
computational resources. This accuracy can be demonstrated by
comparing dKMCmobilities to those predicted by sPTRE in one
dimension, and Fig. 4a shows the agreement increasing with
the accuracy parameter adKMC. The agreement between sPTRE
and dKMC at adKMC ¼ 0.99 leads us to adopt that value
throughout this paper. Cutoff radii always lead to an underes-
timation of delocalisation effects, meaning that the substantial
delocalisation enhancements reported below are strictly lower
limits.

It is also necessary to choose the time cutoff tend, because
mobilities in disordered materials are time dependent (or
dispersive), and it can take a long time to converge on a steady-
state mobility.30 The ultimate choice will depend on particular
2282 | Chem. Sci., 2021, 12, 2276–2285
applications; we report mobilities at tend ¼ 100 ps, which
corresponds to charge transit times on typical length scales in
OSCs (tens of nanometres). For our purposes, the important fact
is that mobility enhancements due to delocalisation at longer
times are always at least as large as at tend (Fig. 4b). At longer
times, charges are increasingly likely to get stuck in deeper
traps, causing themobility to decrease with time. Delocalisation
allows the wavefunction to leak onto neighbouring sites,
helping the detrapping and giving larger enhancements at
longer times.
Importance of 3D effects

dKMC captures effects missing in lower-dimensional approxi-
mations, in particular the extent of delocalisation of the polaron
states. We dene the delocalisation length

ldeloc ¼
ffiffiffiffiffiffiffiffiffiffiffi
IPRn

d

q
; (23)

where we average the inverse participation ratios of the polaron
states,
© 2021 The Author(s). Published by the Royal Society of Chemistry
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IPRn ¼ 1P
n

|hn|ni|4 ; (24)

which indicates the number of sites n that a state n extends
over.58 Therefore, ldeloc describes the size of a state along each
dimension, and is a way of comparing the extent of delocali-
sation across different dimensions.

Fig. 5a shows that ldeloc increases as a function of J in all
three dimensions, as expected. More interestingly, ldeloc is
signicantly larger in three dimensions than in one or two, with
the difference becoming larger with increasing J. Therefore,
including all three dimensions is essential for modelling
intermediately delocalised charge transport, and lower-
dimensional models may signicantly underestimate delocali-
sation effects.
Delocalisation enhances mobility

Our most important nding is that even modest delocalisation
dramatically enhances mobilities, meaning that delocalisation
Fig. 5 (a) Delocalisation length (ldeloc) in each dimension as a function
of the electronic coupling (J), for disorder s ¼ 150 meV. All else being
equal, the delocalisation length is considerably greater in three
dimensions than in lower dimensions. (b) Mobilities (m) at 100 ps
calculated by dKMC and standard KMC as a function of J, with s ¼ 150
meV. We only include KMC in three dimensions for legibility, because
KMC mobilities in the lower dimensions are similar in magnitude. KMC
and dKMC agree in the low-coupling limit when states are localised,
but as the electronic coupling and delocalisation increase, so too do
the mobilities predicted by dKMC compared to those predicted by
KMC.

© 2021 The Author(s). Published by the Royal Society of Chemistry
is critical for explaining transport in the intermediate regime.
As J increases, the increase in delocalisation increases overlaps
between states and, therefore, the Redeld transfer rates and
the ultimate mobilities (Fig. 5b). For values of J and s that are
reasonable for OSCs, including delocalisation using dKMC can
increase mobilities by close to an order of magnitude above the
localised-hopping of standard KMC, which helps explain why
mobilities predicted by KMC are usually too low compared to
experiment. Furthermore, these enhancements require only
a small amount of delocalisation, less than 2 sites in each
direction in 2D.

Larger enhancements at lower temperatures

Finally, the delocalisation mobility enhancement is tempera-
ture dependent, with larger enhancements at low temperatures
(Fig. 6). The higher mobilities at lower temperatures are caused
by the increased delocalisation of the polaron states. Applying
the polaron transformation reduces J by multiplying by a factor
of k (eqn (8)), where k < 1. k increases as T is lowered and,
therefore, J is reduced less at low T than at higher T, allowing
the polaron states to delocalise further and assisting their
mobility.

Outlook

The most immediate area for future work is the application of
the newly developed theory and the important trends identied
in this paper to the prediction of experimental mobilities in
concrete disordered materials. As we have shown, standard
KMC approaches underestimatemobilities; therefore, we expect
that including delocalisation will improve experimental agree-
ment. However, connecting dKMC to experimental mobilities
still faces some challenges, especially the difficulty of obtaining
good estimates of disorder, whether experimentally59 or using
ab initio calculations.

The main limitation of dKMC remains computational cost; in
particular, in Fig. 5b, 3D dKMC is limited to modest values of J.
As the states become larger, the Hamiltonian box needs to be
Fig. 6 The mobility enhancement (mdKMC/mKMC), shown here in two
dimensions for J ¼ 45 meV and s ¼ 150 meV, increases as the
temperature is reduced, due to the increase in delocalisation of the
polaron states (ldeloc).
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increased to accurately capture the states and allow them tomove
around. The large box is expensive to diagonalise, and it requires
the calculation of more rates, with more sites contributing to the
overlap calculations in each rate. Nevertheless, there is a clear
trend, and we expect the importance of delocalisation to be even
more pronounced at high J in 3D. In the future, itmay be possible
to reduce the computational cost further, either through addi-
tional approximations, or by identifying robust trends in the
numerical results that can then be extrapolated.

dKMC is also limited by the approximations made in sPTRE,
some of which could be relaxed using other master equations.
sPTRE makes the Markov and secular approximations, and it
can be inaccurate for systems that are weakly coupled to slow
environments.44,47,53 The parameter regimes we studied fall
within the range of validity of sPTRE established in previous
work.44 However, extending dKMC to weakly coupled slow baths
would require modications to the underlying sPTRE, for
example by incorporating a variational polaron trans-
formation53,57,60 instead of the fully displaced version used in
sPTRE. The variational treatment would also enable the treat-
ment of ohmic and sub-ohmic baths, unlike the super-ohmic
ones assumed in sPTRE.

Furthermore, we expect that it will be possible to extend
dKMC to other commonly encountered situations. The most
straightforward extensions would include the prediction of
mobilities at high charge densities, in the presence of external
electric elds, on irregular or anisotropic lattices, or in spatially
constrained domains. It may also be possible to extend dKMC to
describe the more difficult problem of charge separation of
excitons in organic photovoltaics. Because charge separation is
a two-body problem involving the correlated motion of an
electron and a hole, the computational difficulty is roughly the
square of the single-body mobility calculation, meaning that
a fully quantum-mechanical treatment has so far proved
intractable in three dimensions.23 We expect that dKMC will
make this problem computationally accessible, allowing the
rst simulation of the full dynamics (and, therefore, efficiency)
of charge separation in the presence of disorder, delocalisation,
and noise. A complete kinetic model would help settle the
debate about the main drivers of charge separation, and unite
the proposed mechanisms including delocalisation,20

entropy61,62 and energy gradients.63

IV Conclusions

dKMC is the rst approach able to describe charge transport in
intermediately disordered materials in three dimensions. It
keeps the benets of sPTRE—fully quantum dynamics, accurate
treatment of polarons, and the ability to reproduce both
extremes of transport—while overcoming computational
obstacles that have prevented sPTRE from being used in more
than one dimension. We have used dKMC to capture the effects
of delocalisation and show that carrier mobilities are signi-
cantly higher than those predicted by standard KMC. Indeed,
even small amounts of delocalisation—less than two sites—can
increase mobilities by an order of magnitude. All of these
mobility enhancements are greater at lower temperatures, due
2284 | Chem. Sci., 2021, 12, 2276–2285
to the increased delocalisation of polaron states. In the future,
we expect that dKMC can be extended to a wider range of
systems, shedding even more insight into fundamental charge-
and exciton–transport processes.
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