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Abstract

Background: Transcription factors (TFs) regulate downstream genes in response to environmental stresses in
plants. Identification of TF target genes can provide insight on molecular mechanisms of stress response systems,
which can lead to practical applications such as engineering crops that thrive in challenging environments. Despite
various computational techniques that have been developed for identifying TF targets, it remains a challenge to
make best use of available experimental data, especially from time-series transcriptome profiling data, for
improving TF target identification.

Results: In this study, we used a novel approach that combined kinetic modelling of gene expression with a
statistical meta-analysis to predict targets of 757 TFs using expression data of 14,905 genes in Arabidopsis exposed
to different durations and types of abiotic stresses. Using a kinetic model for the time delay between the
expression of a TF gene and its potential targets, we shifted a TF’s expression profile to make an interacting pair
coherent. We found that partitioning the expression data by tissue and developmental stage improved correlation
between TFs and their targets. We identified consensus pairs of correlated profiles between a TF and all other
genes among partitioned datasets. We applied this approach to predict novel targets of known TFs. Some of these
putative targets were validated from the literature, for E2F’s targets in particular, while others provide explicit genes
as hypotheses for future studies.

Conclusion: Our method provides a general framework for TF target prediction with consideration of the time lag
between initiation of a TF and activation of its targets. The framework helps make significant inferences by
reducing the effects of independent noises in different experiments and by identifying recurring regulatory
relationships under various biological conditions. Our TF target predictions may shed some light on common
regulatory networks in abiotic stress responses.

Background
Plants often respond and adapt to different environmen-
tal stresses, such as drought, cold and chemicals through
various transcriptional regulatory systems [1]. Identifica-
tion of these regulations not only enhances our knowl-
edge of biological processes in plants, but also helps a

great deal in developing bio-engineered crops that can
better sustain challenging environments [2]. Typically, a
handful of key transcription factors (TFs) control var-
ious biological pathways by regulating downstream tar-
get genes. In many cases, these target genes share
functions or pathways. While basic ideas of these TFs
and their target genes’ general functions may be known,
lack of knowing explicit target genes often limits the
experimental design for validating intuitive hypotheses
or developing new crop traits. A comprehensive list of
putative targets of a TF could be used to provide more
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insight of a key TF through functional enrichment ana-
lysis or mapping these target genes into different biolo-
gical pathways.
High-throughput expression profiling experiments [3]

have generated large amounts of data that make it possi-
ble to develop computational approaches for predicting
regulatory relations. Public repositories like NCBI Gene
Expression Omnibus (GEO) [4,5], SMD (Stanford Micro-
array Database) [6], TAIR [7], etc. contain extensive
microarray data from time series, developmental stages,
genetic interventions or manipulative treatments for Ara-
bidopsis thaliana, a model organism for plants [8,9].
These data as well as ChIP-chip data have been used to
study interactions of TFs to their downstream genes
[10-13]. However, mining microarray data for discovering
complicated regulatory relationships is still challenging
partially due to the fact that these data are often incom-
plete, noisy, and contain misleading outliers, all of which
likely produce false positives in biological inferences.
Many computational approaches for predicting gen-

ome-wide targets of a TF are based on finding co-occur-
rence of TFs and their targets. These include Standard
Pearson correlation technique to measure statistical sig-
nificance of synchronous co-regulation of genes and
order of regulation [14]. However, correlation coefficient
is a weak criterion for measuring dependence and can
lead to many false positives in predicting TF targets
[15]. Another approach is Graphical Gaussian Model
(GGM) based on the concept of partial correlation for
learning high-dimensional dependency networks from
genomic data [16,17], which is valid when number of
genes is comparable to number of samples in the micro-
array data [18,19]. One way to avoid this limitation is to
use GGM with regularization and moderation, which is
implemented as an R package GeneNet [20,21]. This
method has been used to infer genome-scale regulatory
network for A. thaliana transcriptome [22]. Some other
methods are based on probabilistic models, such as the
Bayesian network [23] and regression tree method [24].
Such methods cannot be directly applied to many time
series expression profiling data, because the apparent
time lag between initiation of a TF and activation of its
targets is not accounted in these models. For example, a
study suggests a clear time lag between the mRNA
levels of a TF, CBF and its known targets [25]. In part,
the time lag is used to translate the mRNAs of a TF
into proteins before the proteins can act on activating/
repressing TF’s targets. To address this issue, it is
important to adjust time-series transcription profiling
data for detection of TF-target relationship [26].
Another group of methods to identify TF-target genes

are specifically designed for time-series expression pro-
filing data, including a method based on Needleman-
Wunsch algorithm [27] and a dynamic probabilistic

model based on chemical kinetics and linear differential
equations [28]. The dynamic probabilistic model, intro-
duced by Friedman et al. [23], is able to learn the kinetic
parameters of TFs binding to their target promoters and
the structure of gene regulation network simultaneously.
However, it requires estimation of a large number of
parameters, and it does not provide an explicit way of
identifying TFs’ targets from predicted active regulator’s
protein profiles. The linear differential equation model
in Ref. [28] describes the production and degradation of
all mRNAs and their corresponding proteins with equa-
tions of chemical kinetics. While it is an interesting and
promising theoretical approach, it tends to be very com-
plex and requires concentration measurements of both
mRNA and protein, at least at the initial state.
Many existing studies for retrieving regulatory infor-

mation use a large collection of microarray data. A
potential problem in using microarray data this way is
ignoring the heterogeneity in topology of regulatory net-
work due to biological/experimental factors, which
could be different tissues, developmental stages or artifi-
cial treatments.
A specific tissue type often has its own set of genes

expressed to keep its identity. This may lead to different
sets of target genes regulated by the same TF. In our
approach, we addressed these issues by performing tis-
sue-wide meta-analysis of expression pattern in at least
certain number of tissue types out of all tissue types as
shown in Figure 1. In particular, we first perform statis-
tical analysis on microarray datasets of each tissue type
and then combine the statistics of multiple microarray
datasets for predicting TF targets. Such an approach
allows us to identify recurring and stable regulatory rela-
tionships under multiple biological conditions while
reducing the effects of noises in gene expression data.
To avoid the risk of biasing towards housekeeping
genes, which are expressed in all tissues all the times,
we consider only those genes whose expression profiles
are differentially expressed in at least one tissue. The
novelty of this approach lies in combining the meta-ana-
lysis technique to find consensus regulatory interactions
with the kinetic model to estimate the time lag between
a TF and its associated targets. The scope of our work
is smaller than general regulatory network construction,
as we are only interested in recurring targets of known
TFs. The reduced scope is practically useful and makes
the problem more tractable. We chose the model plant
Arabidopsis Thaliana for this work given its rich avail-
ability of biological data and knowledge.

Results and discussion
We used a kinetic model combined with statistical
meta-analysis to identify TF targets and reconstructed
an Arabidopsis global regulatory network using large-
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scale expression profiles of 14,905 genes. We then evalu-
ated our strategy by comparative and functional analysis
of predicted E2F target genes and by comparing our
method with other existing methods. Finally, we ana-
lyzed the reconstructed network to infer some novel fea-
tures from the network.

• Network construction
In order to conduct meta-analysis, we partitioned the
datasets based on different attributes including tissue,
experiment type and developmental stage. The tissue-
specific partition of the microarray datasets produced
totally 8 tissue types that have sample size of at least 9.
We combined the rest of the samples into one group as
combined tissues as shown in Table 1.

We defined the significance level of TF-target pair as
number of tissues in which the TF-target pair is signifi-
cantly co-expressed (p-value < 0.01) after time lag correc-
tions using the kinetic model. We built three networks of
~2K, ~12K and ~59K edges, which correspond to signifi-
cance levels of more than 9, 8 and 7, respectively. For
further analysis, we used the network of ~12K edges to
balance the size of network and tolerance of experimental
errors in each tissue. This network consists of 12,300 reg-
ulatory interactions amongst 4,968 genes, in which 757
genes act as TFs (Figure 2). It is interesting to note that
the distribution of the network is highly uneven. In some
cases (e.g., lower right), a handful of TFs regulate many
putative targets, while in other cases (e.g., left edge) many
TFs form clusters among themselves.

• E2F Network evaluation
In order to assess our TF target prediction with
known regulatory mechanisms from the literature, we
investigated Arabidopsis E2F family transcription fac-
tor “At2g36010”, which represents a group of proteins
that play a crucial role in the control of cell cycle pro-
gression and regulate expression of genes required for
the G1/S transition. These include enzymes involved
in nucleotide synthesis and DNA replication proteins
[29-31]. Though it is clear that E2F is highly critical
and conserved amongst high eukaryotes, only a few
genes induced by E2F are experimentally verified in

Figure 1 Network construction using meta-analysis of tissue-specific microarray data.

Table 1 List of all tissue groups used for meta-analysis.

Tissue Group Number of Samples Number of Experiments

1 Seedling 180 9

2 Root 95 14

3 Shoot 68 10

4 Leaf 45 5

5 Flower 33 5

6 Seed 11 3

7 Shoot-apex 10 1

8 Protoplast 9 1

9 Combined rest 46 5
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plants. Vandepoele et al. [31] combined microarray
and promoter motif analyses to identify E2F-targets in
plants. To do this, promoter regions of genes that
were induced at the transcriptional level in Arabidop-
sis seedlings were searched for the presence of E2F-
binding sites. In another study, Ramirez-Parra et al.
[30] identified potential E2F-responsive genes by a
genome-wide search of chromosomal sites containing
E2F-binding sites. Using meta-analysis of tissue- speci-
fic microarray data, we identified 178 putative E2F-
target genes (see Additional file 1). Some of these
were also predicted by either Vandepoele et al. [31] or
Ramirez- Parra et al. [30] as shown in Table 2. As the
two other studies used different analytical approaches
to identify targets, the overlapping genes among all
three methods have more confidence to be true E2F
target genes.
We also conducted functional enrichment analysis for
the 178 E2F-target genes identified using meta-analysis.
We applied the AmiGO’s Term Enrichment tool, which
is based on GO-TermFinder [32]. We used all the anno-
tated genes in TAIR [33] as the background set. We
selected enriched gene groups with a p-value cutoff of
0.01 and the minimum number of gene products of 2.
Our result (Table 3) supports the previous findings that
the E2F pathway plays critical roles in cell cycle regula-
tion, DNA replication, and chromatin dynamics. In
addition, we identified other novel genes, which are
involved in DNA methylation on cytosine, DNA repair,
ribosome biogenesis, etc.

• Network evaluation and comparative analysis
In order to compare performance of meta-analysis with
other methods for identifying TF targets, we prepared a
benchmark dataset of TF-target pairs in Arabidopsis,
which were obtained from the AGRIS database and
AtRegNet [34]. The benchmark set has 348 pairs in
total. Some of the well-known methods to identify TF
target and build regulatory network, including causal
regression method, standard Pearson correlation
method, and Graphical Gaussian model were used for
comparative analysis. To make direct comparison of var-
ious methods, we used the exactly same microarray
datasets as input to these methods and also exactly the
same benchmark data. While using Pearson correlation
method, Graphical Gaussian model and regression
method, we did not partition the data rather we fol-
lowed the procedure as previously done in the literature.
In case of microarray data partition and meta-analysis,

we used three different ways to partition the microarray
data, i.e., tissue based partition, experiment type based
partition, and developmental stage based partition. For
each type of partition, we identified genome-wide targets
for the given set of TFs. While using other methods
(Pearson correlation coefficient, causal regression and
graphical Gaussian model), we input the microarray
data as a single large dataset without partition and iden-
tified targets for the same list of TFs. Using these pre-
dicted TF-target pairs from each of the methods, we
reconstructed two networks of different sizes that is,
less than 40,000 edges and less than 70,000 edges. All
the same category networks from different methods
were then checked against the standard set to count the
number of confirmed edges in these networks as shown
in Table 4.
The results show that our method with partitioning

microarray data into tissue- specific datasets and then
performing tissue-wide meta-analysis contains the most
confirmed edges. Particularly, the network of less than
40,000 edges obtained using tissue-wide meta-analysis is
1/3 in size compared to other networks in the same
category, but with more confirmed edges than any other
network. The comparison clearly demonstrates that tis-
sue-wide partition performs much better than experi-
ment- wide or development-based partition. This
indicates that the gene expression is driven more by tis-
sue types than by development stages and experimental
conditions, at least in Arabidopsis. It also shows that the
tissue-wide meta-analysis could greatly improve network
constructions over other methods. Interestingly, a sim-
ple method using Pearson correlation cutoff of 0.70,
although not as good as meta-analysis, outperformed
sophisticated methods of causal linear regression model
and graphical Gaussian model. This may be because
microarray data are often noisy and sophisticated

Figure 2 Global regulatory network with 4968 nodes (genes)
and 12,300 edges for Arabidopsis. Blue (larger) nodes correspond
to TFs and red (smaller) nodes correspond to genes that are
regulated by TFs. All the edges are marked by green.
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methods could amplify noises to give incorrect predic-
tions in gene regulatory relationships.

• Network feature analysis
Using Cytoscape [35], we identified a few major hubs
(nodes with many connections) from the medium sized
network (~12K) using tissue-wide meta-analysis. In par-
ticular, we found regions of significant local density
using the MCODE plugin [36] from Cytoscape. Figure 3
shows an example of a major hub cluster, which repre-
sents 12 TFs including SCL13, ZAT6, AtERF-1 and
anac062 each targeting many genes as found in Table 5
from further analysis.
Beside network feature analysis using Cytoscape, we

analyzed TFs that target significantly more genes than

other TFs across different tissues as shown in Table 5.
Not surprisingly, most of these TFs are annotated
with response to different stimulus in Arabidopsis,
such as response to chitin and external stress, given
that the microarray data we used were measured in
response of Arabidopsis exposed to different abiotic
stresses. Some of well-connected TFs are also present
in hubs as recognized by the MCODE plugin from
Cytoscape and are known to work together for gene
regulation. For example, Zat6, Zat10, and Zat12 in the
hub of Fig. 3 are activated together in cold and osmo-
tic stresses [37]. WRKY33 and WRKY40 in Table 5
both function as activators of jasmonic acid-dependent
defence pathways and repressors of salicylic acid sig-
nalling [38].

Table 2 Predicted E2F-target genes from ~12K-size network that overlaps with previous studies by Ramirz-Parra et al.
[30] and Vandepoele et al. [31]

Locus ID Symbol Annotation [30] [31]

1 At1g08130 ATLIG1 DNA recombination / DNA repair / DNA replication - √

2 At1g07370 PCNA1 Regulation of DNA replication and cell cycle - √

3 At1g67630 POLA2 DNA synthesis and replication √ √

4 At2g07690 - DNA synthesis and replication √ -

5 At5g66750 CHR1 Transcriptional control/chromatin modification √ -

6 At1g78650 POLD3 DNA or RNA metabolism/ transferase activity √ √

7 At4g14700 ORC1A Cell cycle, Replication control, DNA synthesis √ -

8 At1g09450 - N-terminal protein myristoylation/ protein amino acidPhosphorylation √ -

9 At2g40550 ETG1 DNA replication √ √

10 At1g67320 - DNA replication, synthesis of RNA primer - √

11 At1g44900 - DNA synthesis and replication, cell cycle control √ √

12 At1g69770 CMT3 Chromatin silencing / DNA methylation - √

13 At2g21790 RNR1 DNA synthesis and replication √ √

14 At2g16440 - DNA replication initiation - √

15 At5g38110 ASF1B Transcriptional control √ √

16 At5g52950 ATIM Putative protein √ -

17 At5g18620 CHR17 Transcriptional control, chromatin modification √ √

18 At5g52910 ATIM Regulation of circadian rhythm √ √

19 At2g24490 RPA2 Replication protein A-like - √

20 At2g29570 PCNA2 Error-prone postreplication DNA repair / replication - √

21 At2g31270 CDT1A Chloroplast organization / DNA replication - √

22 At3g02820 - Response to DNA damage stimulus / cell cycle - √

23 At3g18630 - DNA repair - √

24 At3g25100 CDC45 Cell division control protein - √

25 At5g49010 SLD5 DNA replication initiation / GINS complex - √

26 At5g49160 MET1 DNA or RNA metabolism / other cellular processes - √

27 At5g62410 SMC2 Cell organization / DNA or RNA metabolism - √

28 At5g63960 - DNA or RNA metabolism / nucleobase, nucleoside, nucleotide and nucleic acid metabolic process - √

29 At5g67100 ICU2 Negative regulation of flower development / leaf morphogenesis - √

30 At1g35530 - helicase activity/ hydrolase activity / DNA binding - √

31 At3g02920 - nucleic acid binding - √

32 At3g27640 - nucleotide binding - √

33 At5g06590 - Unknown - √

34 At5g63920 - DNA metabolic process / DNA unwinding duringReplication - √
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Table 3 GO term enrichment analysis of 178 predicted E2F-target genes

GO Term Description P-value Number of Genes

GO:0006260 DNA replication 4.53E-29 23

GO:0006259 DNA metabolic process 1.97E-26 29

GO:0006261 DNA-dependent DNA replication 1.40E-13 12

GO:0006270 DNA replication initiation 6.44E-11 7

GO:0034645 Cellular macromolecule biosynthetic process 2.81E-10 47

GO:0009059 Macromolecule biosynthetic process 3.61E-10 47

GO:0034961 Cellular biopolymer biosynthetic process 7.72E-10 46

GO:0043284 Biopolymer biosynthetic process 9.65E-10 46

GO:0044260 Cellular macromolecule metabolic process 2.13E-09 60

GO:0043170 Macromolecule metabolic process 2.33E-09 61

GO:0034960 Cellular biopolymer metabolic process 3.61E-09 59

GO:0043283 Biopolymer metabolic process 4.82E-09 59

GO:0044249 Cellular biosynthetic process 8.07E-08 50

GO:0044238 Primary metabolic process 1.91E-07 65

GO:0009058 Biosynthetic process 4.48E-07 50

GO:0006139 Nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 6.32E-07 35

GO:0007049 Cell cycle 2.29E-06 12

GO:0044237 Cellular metabolic process 2.88E-06 65

GO:0009987 Cellular process 3.99E-06 77

GO:0008152 Metabolic process 1.64E-05 67

GO:0051052 Regulation of DNA metabolic process 2.18E-04 5

GO:0032776 DNA methylation on cytosine 1.04E-03 3

GO:0006412 Translation 1.80E-03 21

GO:0022402 Cell cycle process 1.98E-03 7

GO:0006281 DNA repair 4.07E-03 7

GO:0034984 Cellular response to DNA damage stimulus 4.29E-03 7

GO:0044267 Cellular protein metabolic process 4.83E-03 31

GO:0019538 Protein metabolic process 5.15E-03 31

GO:0042254 Ribosome biogenesis 5.18E-03 8

GO:0006974 Response to DNA damage stimulus 5.81E-03 7

GO:0022613 Ribonucleoprotein complex biogenesis 5.83E-03 8

GO:0044085 Cellular component biogenesis 8.30E-03 11

Table 4 Performance comparison of various methods with Arabidopsis networks of less than 40,000 edges (the
numbers before “/”) and less than 70,000 edges (the numbers after “/”)

Applied Method Network Size Confirmed Edges Ratio

Pearson Correlation (Cutoff=0.70) 35,253/71,417 25/36 7.09e-4/5.04e-4

Causal Linear Regression Model 30,000/59,557 5/16 1.66e-4/2.68e-4

Graphical Gaussian Model GeneNet: Static method 30,000/68,624 9/10 3.00e-4/1.46e-4

GeneNet: Dynamic Method 30,000/68,658 9/10 3.00e-4/1.45e-4

Meta-analysis (Microarray data partition) Tissue-wide partition 12,300/59,676 35/57 28.5e-4/9.55e-4

Experiment-wide partition 37,850/56,775 14/18 3.96e-4/3.17e-4

Development-based partition 37,850/57,339 18/22 4.75e-4/3.84e-4
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Figure 3 A cluster with hub genes identified using MCODE. This sub-network contains 35 nodes and 362 edges. Black nodes indicate TFs
and red nodes indicate target genes.

Table 5 Global regulators from medium size network having most target genes. A complete list of putative targets for
each TF is available in Additional file 2

Locus ID Symbol Annotation Target

1 AT2G38470 WRKY33 Response to drought, heat, chitin, osmotic stress, salt, cold etc., defense response to fungus, bacterium 216

2 AT1G80840 WRKY40 Response to wounding, salicylic acid, chitin, defense response to bacterium, fungus etc 102

3 AT3G49530 anac062 Response to chitin 130

4 AT3G57150 NAP57 Pseudouridine synthesis 322

5 AT4G37490 CYCB1 Response to gamma radiation, regulation of cell growth 168

6 AT3G22780 TSO1 Regulation of meristem organization 134

7 AT4G17500 AtERF-1 Response to chitin, regulation of transcription, DNA- dependent 120

8 AT4G30930 NFD1 Embryo sac & pollen development, karyogamy, double fertilization forming a zygote and endosperm 518

9 AT5G59820 RHL41 Response to chitin, heat, UV-B, wounding, oxidative stress, cold, photosynthesis, hyperosmatic salinity response 122

10 AT4G17230 SCL13 Response to chitin 121

11 AT5G04340 ZAT6 Nucleic acid & zinc ion binding, transcription factor activity 139

12 AT1G27730 STZ Response to abscisic acid, drought, light, cold, chitin, salt etc 128
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Conclusion
In this paper, we proposed a meta-analysis method for
identifying TF targets. The novelty of the proposed
method lies in combining two models that is (1) adjust-
ing time lag between a TF and its target and (2) finding
consensus regulatory interactions from different experi-
mental sources/conditions including tissue types, devel-
opmental stages and experimental settings. Our study
shows that tissue-wide partition performs much better
than experiment-wide or development-based partition
for predicting TF targets. The method successfully iden-
tified more known TF-target pairs in Arabidopsis than
other methods.
There are some limitations of this study. Like other

approaches, our method has both false positives and
false negatives in predictions. Without performing a
large-scale experimental validation, there is no reliable
way to assess the prediction accuracies of the methods
like ours. Hence, the value of our study is mainly to
provide hypotheses for experimentalists to explore speci-
fic gene regulations of their interest, especially as most
of the predicted TF targets with high confidence were
not reported or predicted previously. Furthermore, our
method may not be able to distinguish TF targets from
other co-expressed non-target genes, although meta-
analysis across multiple tissues reduces such a possibi-
lity. From the meta-analysis point of view, tissue-wide
meta- analysis does not consider specific regulatory rela-
tions in particular tissue types. In plant, some regula-
tions are specific to different tissue types or
developmental stages. Since such relations do not exhi-
bit significant correlation across different microarray
data, meta-analysis may ignore them. Nevertheless,
meta-analysis is more robust to find correlations that
are consistent across different tissues. Typically, global
regulations are those that are fundamental for the exis-
tence of all tissues in general.
In the context of our study, we only applied gene

expression data of Arabidopsis exposed to different
abiotic stresses. It is known that there are common reg-
ulatory mechanisms for abiotic stresses. For example,
certain heat-shock proteins are commonly elicited in
response to various stress conditions in multiple plants
[39]. Conserved regulatory mechanisms among
responses to drought, salinity, and extreme temperature
in Arabidopsis were identified, such as the DREB tran-
scription factors [40]. Characterizing common gene
expression patterns under various abiotic stress condi-
tions in plants can help elucidate these conserved regu-
latory mechanisms [41]. Hence, the meta-analysis that
we provided on gene expression data under different
abiotic stress treatments may shed some light on com-
mon regulatory networks in abiotic stress responses.

In our future studies, we will explore more into meta-
analysis of microarray data by applying different
statistics like meta correlation instead of chi- square
statistics. Another dimension of improvement is to
include inferences from other types of data such as
promoter motif analysis.

Materials and methods
•Data preparation
We used publically available microarray data of A. thali-
ana from NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/)
and TAIR (http://www.arabidopsis.org/). The microarray
gene expression data were normalized and preprocessed
in the databases. We removed genes with missing expres-
sion measurement in any tissue type and averaged the
replicated expression data. Consequently, we applied our
method on 497 arrays in total measuring whole-genome
response of Arabidopsis exposed to different durations
and types of abiotic stresses. Some 14,905 genes from
Arabidopsis genome including 757 TFs were chosen for
the analysis as each of these genes was differentially
expressed in at least one of the stress conditions. The
datasets consist of 27 different microarray experiments,
out of which 10 experiments are time series (see Addi-
tional file 3).

•Chemical kinetics models to identify regulator-target
relationships
In eukaryotic cells, the effect of a regulator is usually
achieved in multiple steps, including transcription of the
regulator genes, transportation of the regulator mRNA
(s) out of the nucleus, translation of the transcript(s),
transportation of the regulator protein back to the
nucleus, and the binding of the regulator protein to the
promoter regions of its target genes to achieve tran-
scriptional regulation. Noticeable timing difference exists
among changes in concentrations of the regulator
mRNA, the regulator protein, and the mRNAs of its tar-
gets. A chemical kinetics model naturally fits this con-
text by taking into account of the time lags among these
events (Figure 4).
Because the active level of the regulator protein is not

measured directly in microarray experiments, the regu-
lator protein concentration is treated as a hidden vari-
able in our model to serve as the link between the
measurable mRNA concentrations of a regulator and its
target(s). More specifically, the regulator protein con-
centration can be modelled by the following chemical
kinetic equation without considering post-translational
regulation:

dR

dt
K R K Rp

tran m p p= − (1)

Srivastava et al. BMC Systems Biology 2010, 4(Suppl 2):S2
http://www.biomedcentral.com/1752-0509/4?issue=S2/S2

Page 8 of 12

http://www.ncbi.nlm.nih.gov/geo/
http://www.arabidopsis.org/


where RP is the regulator protein concentration, Rm is
the regulator mRNA concentration, Ktram is the appar-
ent rate of mRNA translation, and KP is the turnover
rate of the regulator protein. Accordingly, the time
course of the target mRNA concentration can be mod-
elled with the following equation

dT

dt
B f R K Tm

t p t m= + ( ) − (2)

where Tm is the concentration of the target mRNA; Bt is
the basal transcription rate of the target gene; and Kt is
the turnover rate of the target mRNA; f (RP) measures the
regulated transcription rate, which is different for activa-
tors and repressors. For activators, it has the following
Taylor first order approximation when RP is small [28].

f R f R
d f R

dR
Rp p

p

p
Rp p( ) = =( ) +

(( )
=0 0 . (3)

f (Rp= 0) is equal to zero, assuming target gene transcrip-
tion should not be activated when there is no regulator

protein.
d f R

dR

p

p
Rp

(( )
= 0 is the activation rate of regulator

protein on the target gene. If it is replaced by parameter
Kact for simplicity, f (RP) takes the following form:

f (Rp) = KactRp. (4)

The basal level target transcription rate should satisfy
the following condition:

Bt + f (Rpbasal) — KtTmbasal = 0 (5)

where Rpbasal and Tmbasal are the basal concentrations
of the regulator protein and target mRNA, respectively.
Usually, what is reported in transcription profiling

experiment is not the absolute concentration of mRNA,
but rather a fold change compared to basal transcription
level of that gene. Thus, we define relative changes of
Rm and Tm as Rm’ and Tm’

Rm’ = Rm ⁄ Rmbasal — 1; (6)
Tm’ = Tm ⁄ Tmbasal — 1. (7)

Combining Equations (1), (2), (4), (5), (6) and (7), and
considering the fact that KtranRmbasel - KpRpbaseal = 0,
lead to the following second order ordinary differential
equation:

d T

dt
K K

d T

dt
K K T Rm

t p
m

t p m m

2

2

’( ) + +( ) ( ) + =
’

’ ’ (8)

where g = KactKtranRmbasal ⁄ Tmbasel.
Given all the model parameters, the relationship

between the relative mRNA levels of the regulator and
its target, Rm’ and Tm’, is defined by Equation (8). In
other words, for a target gene of a regulator, its relative
mRNA level Tm’ has to satisfy Equation (8), given the
model parameters and the relative regulator mRNA

Figure 4 Schematics of transcriptional regulation process. A. Steps of chemical reactions considered in the kinetics model. B. Schematics of
the temporal curves of regulator protein and target mRNA in response to the regulator mRNA changes.
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level Rm’. It is interesting to note that the regulator pro-
tein concentration, a key variable in the original model
equations, is not involved explicitly in the final equation
relating the relative mRNA levels of regulator and tar-
get. To predict the target of a specific regulator, we can
solve Equation (8) to obtain the theoretical target beha-
viour curve, and then find the genes with mRNA levels
similar to the theoretical curve, which will be identified
as the potential targets of that regulator.
In the case of transcript expression profiling experi-

ments under stress conditions, the initial conditions
should be the following:

Tm t’ = =0 0 ; (9)

d T

dt
m

t
’( ) == 0 0 . (10)

Because the target gene mRNA and the regulator pro-
tein should be at their basal levels at the onset of stress
condition (t=0). It is apparent from Equations (2) and
(5) that initial condition (10) should be true.
To approximate Rm , a stepwise linear model can be

fit as follows:

Rm’I (t) = ai + bitti ≤ t ≤ti + 1

i = 0, ··· ,n-1 (11)

where ti is i
th time point; and ai and bi are the para-

meters of stepwise linear function in each time interval,
which are determined by the measured regulator mRNA
levels at the two adjacent time points. Equation (8) has
analytic solution

Tm t A e B e C D t t t t i ni i
K t

i
K t

i i i i
t p( ) = + + + ≤ ≤ = … −− −

+’ 1 0 1, , , (12)

Where Di = big/KpKt and Ci = [aig – (Kp + Kt)Di]/
KpKt.
The contiguous restrictions on Tm’ are stated in the

following equations:

Tmi’ (t) = Tmi + 1’ (t), where t = ti i = 1,…, n - 1. (13)

d Tm t

dt

d Tm t

dt
when t t i ni i

i
’ ’( )( )

=
( )( )

= = … −+1
1 1, , , . (14)

After substituting Equation (12) into Equations (9),
(10), (13) and (14), Ai and Bi can be obtained by solving
sets of linear algebra equations, and are functions of ai,
ßi, g, Kt and KP.
Learning model parameters and transforming the time
series profiles of transcription factors.
For each regulator-target pair, there are three para-
meters involved in Equation (8), the target mRNA turn-
over rate Kt , the active regulator turnover rate KP, and

g, which is equal to KactKtranRmbasl / Tmbasal . Kact

represents the strength of regulator protein effect on the
target gene; Ktram is the translation rate of regulator
mRNA. They lump together with the ratio of basal
mRNA concentrations of regulator and target to form
parameter g, which determines the magnitude of the
relative target mRNA level but not its shape. It is the
parameters Kt and KP that determine the shape of the
relative target mRNA level, such as how fast the target
gene responds to the regulator. For gene expression
experiments under stress conditions in plants, the
kinetics model can be trained with known regulator-tar-
get pair reported in the literature (e.g., CBF and RD17
in Arabidopsis under cold stress) with a non-linear
regression model [42]. When the normalized expression
profile of a target gene with its maximal response is
considered, there is no need to keep g as a free model
parameter (g1 = ng2 leads to Tm1’= nTm2’ when other
parameters are kept the same in Equations (8), (9) and
(10)). Therefore, only two parameters Kt and KP are esti-
mated from the non-linear regression model, and are
used to predict other regulators and their targets in
plant stress response.
The theoretical TF-target mRNA expression profiles

are calculated for all the genes annotated as TFs and are
substituted in place of TFs’ profiles during further com-
putation for co-expression calculation. The theoretical
target profile of any TF in terms of relative expression
levels among different time points is independent of
actual targets of that TF as it is solely calculated based
on the kinetic model. According to the model, the theo-
retical target profile of a TF should match the profile of
its actual targets in the trend of expression although not
in the absolute abundance. With this assumption, we
can use Pearson correlation coefficient to find similarity
of co-expression between the theoretical/shifted profile
of a TF and rest of the genes to find potential targets of
this TF.

• Co-expression statistics
We used a statistical meta-analysis technique [43] to
identify highly correlated expression profiles from mul-
tiple microarray datasets. Using this technique, we
evaluated the statistical significance (right-tailed
p-value) of a Pearson correlation coefficient r for two
expression profiles in a single dataset based on the
standard t- statistics:

p value P T t
r n

r
− = >( ) =

−

−
ˆ , ˆwhere t

2

1 2
(15)

where T is a t–random variable with n-2 degree of
freedom and n is the number of conditions of the gene
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expression profiles. Since we assume that the datasets
are obtained independently, we apply the inverse chi-
square method and obtain the meta chi-square statistics:

2
1 22 2 2= − ( ) − ( ) −…− ( )⎡⎣ ⎤⎦log log logP P Pn (16)

where Pi is the p-value obtained from the i th data set
for a given gene pair defined in Equation (15). When
there is no linear correlation between a gene pair in any
of the multiple datasets, the above chi-square statistics
2 follows a central chi-square distribution with
degrees of freedom 2n and hence the p-value for meta-
analysis can be obtained by

meta p value P n− = >( ) 2
2 2ˆ (17)

where 2
2
n is a chi-square random variable with 2n

degrees of freedom. We calculate significance level of
the gene pair from multiple datasets. The significance
level of gene pair represents the count of datasets in
which that gene pair has significant correlation (p-value
< 0.01) based on Equation (15). We used meta p-value
statistics (Equation (17)) combined with significance
level to rank potential targets for a TF [43].

• Regulatory network reconstruction
The meta p-value combined with significance level and
the Pearson correlation coefficient were used as co-
expression statistics for finding putative targets for a TF.
For a single dataset (without partitioning of microarray
data), we ranked all the potential targets of a TF based
on Pearson correlation coefficient and select targets
such that TF-target correlation > 0.75 (medium size net-
work) or 0.70 (large size network). For multiple datasets,
we ranked all TF-target pairs based on the number of
individual p-values that are smaller than 0.01 across
multiple datasets; for pairs that have the same number
of significant p-values, they were ranked by the corre-
sponding meta chi-square statistics defined in Equation
(16). Here we used meta chi-square instead of meta p-
value since the meta p-value for many gene pairs are
very close to zero and hard to distinguish computation-
ally; both meta chi-square and meta p-value should
result in the same order when the degrees of freedom
for each gene pair is same. In the end, a fixed number
of TF-target pairs were selected based on ranking.
In case of meta-analysis, number of target genes for a

TF was determined in two methods, i.e., (1) selecting
fixed number of targets from top (50 or 75) or (2)
choosing targets form top-ranked genes that shows sig-
nificance correlation as TF-target pair in at least certain
number of microarray datasets used for meta-analysis.
For example, we used significance cutoff 9 (out of 9

datasets) for small network and cutoff 8 (out of 9) for
medium network and cutoff 7 (out of 9) for large net-
work. The second method worked better in general.

Additional file 1: A list of identified 178 putative E2F-target genes.

Additional file 2: A complete list of putative targets for each TF.

Additional file 3: A list of 27 different microarray experiments, out of
which 10 experiments are time series.
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