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Abstract

Small RNAs (sRNAs) can operate as regulatory agents to control protein expression by interaction with the 59 untranslated
region of the mRNA. We have developed a physicochemical framework, relying on base pair interaction energies, to design
multi-state sRNA devices by solving an optimization problem with an objective function accounting for the stability of the
transition and final intermolecular states. Contrary to the analysis of the reaction kinetics of an ensemble of sRNAs, we solve
the inverse problem of finding sequences satisfying targeted reactions. We show here that our objective function correlates
well with measured riboregulatory activity of a set of mutants. This has enabled the application of the methodology for an
extended design of RNA devices with specified behavior, assuming different molecular interaction models based on
Watson-Crick interaction. We designed several YES, NOT, AND, and OR logic gates, including the design of combinatorial
riboregulators. In sum, our de novo approach provides a new paradigm in synthetic biology to design molecular interaction
mechanisms facilitating future high-throughput functional sRNA design.
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Introduction

Small non-coding RNA (sRNA) has raised a big interest because

of the predictability and modularity of its binding with a large

variety of molecules and macromolecules [1]. Given this functional

potential, the use of sRNAs to control protein expression has

triggered a new way to engineer integrated regulatory networks

[2]. Although rational techniques have been successfully applied to

redesign natural systems [3,4], engineer synthetic ones [2,5–7] and

assemble modular structures [8–10], de novo sequence design still

remains difficult because of the size and complexity of multi-state

systems. To overcome this, we propose an evolutionary compu-

tation design strategy [11], where all design specifications are

automatically assembled to yield an optimal solution.

In this work, we demonstrate a full design automation of RNA

sequences that implement diverse riboregulatory mechanisms, able

to produce several sRNA-based logic gates that are functional in

living cells. We generalize our previous work [11] on the design of

riboregulators for activating protein expression, which could be

considered as YES gates, to derive objective functions to design

riboregulators implementing several logic gates. Furthermore, we

experimentally validate our objective function by considering

mutants of natural and synthetic riboregulators [11,4], and this

allows assessing the generality of the methodology.

By generalizing the positive riboregulation paradigm, where an

sRNA interacts through Watson-Crick pairing with a target

mRNA to trigger a conformational change enabling ribosome

docking, we can extend the methodology to design arbitrary logic

gates, accounting for new regulatory mechanisms, such as anti-

termination, and implementing constrained design strategies

(Fig. 1). For that, we exploit antisense and allosteric RNA

[12,13], two conserved mechanisms based on precise secondary

structures, and whose major role has been reported over the last

years in bacteria [14], but also in humans [15] and plants [16].

Our method starts from random sequences to proceed with

successive rounds of a mutation operator, followed by selection

using an objective function that accounts for the free energies of all

possible reactions and the secondary structures of all species.

Previous work on full design automation of nucleic acids was

focused on in vitro annealing of small DNAs [17–20], hammerhead

ribozymes [21], or ribosome binding sites (RBSs) [22].

In the following, we will start by formulating the RNA design

problem as an inverse problem to program gene expression. This is

based on an optimization method that minimizes an ab initio objective

function, which contrasts with other approaches [4]. We will evaluate

such an objective function by engineering and characterizing our own

mutant library of synthetic riboregulators activating gene expression.

Afterwards, we will show and exemplify how to design sRNA-based

logic gates, including complex gates involving synergistic interactions

of different sRNAs as inputs. Finally, we will discuss the results

stressing the limitations of our methodology.

PLOS Computational Biology | www.ploscompbiol.org 1 August 2013 | Volume 9 | Issue 8 | e1003172



Results

Formulation of an inverse problem
Riboregulation is based on conformational changes, after

interaction, in the structures of RNA molecules, which allow

controlling protein expression. To design such regulatory RNAs,

we optimize the potential energy curve defined in the transition

state theory [23], minimizing the free energies of the transition and

hybridization states. We assume that the individual folding state is

formed before intermolecular RNA-RNA interaction, because its

time scale is of milliseconds whereas hybridization takes seconds or

even minutes [24,25]. The interaction mechanism is guided by

means of the seed region (nucleation site; the first nucleotides that

get paired) to form an intermediate complex at the transition state

[3,11]. Then, both RNAs are destabilized to form a complex with

a new structure and minimal energy.

Here, we consider the structures of all individual species as design

specifications. To address the computational design, we firstly have

to find sequences folding into predefined structures and, second,

find sequences able to interact specifically among them to form

complexes displaying the correct behavior. The structural con-

straints are exploited to considerably reduce the combinatorial

space and accelerate the design of nucleic acid sequences. Our

computational procedure optimizes at the same time all RNA

sequences of the circuit. During the optimization, we do not impose

constraints in nucleotide sequence, such as stems with high GC-

content or loops with YUNR motifs, which have been found in

natural systems [12]. Importantly, our designs are just based on

basic physicochemical principles and not on additional fitting,

allowing the solution of the full design problem.

But, is the proposed objective function predictive enough to allow

the designability of multi-state RNA devices? To illustrate this

question, we constructed here a library of mutants of one of our

previously designed circuits (the device RAJ11 [11], implementing a

YES logic gate as shown in Fig. 1B). Then, we represented the

experimental values of the measured activation fold against the

objective function calculated for those mutants (Fig. 2A). To give

further support to our objective function, we evaluated it for a set of

mutational variants of the IS10 antisense RNA system [4],

implementing a NOT logic gate (Fig. 1A), and then we represented

those values against the experimental repression folds reported

(Fig. 2B). This natural system constitutes an independent validation.

The objective function here (Eq. 13) accounted for the free energy of

formation and the length of the seed in the sRNA-mRNA

interaction. Fig. 2 shows a good correlation (without any fitting)

for our objective function and experimental data, which supports

the designability of those devices.

Design of simple sRNA-based logic gates
We first applied our design methodology to obtain sRNA-based

repression and activation. Many known riboregulators impart a

repressive action on their targets by promoting accelerated

degradation through endoribonucleases, which initiate turnover

of both RNAs [26]. Instead, we here account for sRNAs that bind

specifically to a segment of its target mRNA in order to inhibit

translation (NOT logic function) [4]. The most intuitive mecha-

nism consists in blocking the Shine-Dalgarno sequence, which is

generally located about eight base pairs upstream of the start

codon (AUG), for preventing ribosome docking (Fig. 1A). For

instance, in E. coli plasmid F, sRNA FinP directly binds to the 59

untranslated region (UTR) of protein TraJ [12]. We constructed

the following objective functions (definitions of DGkin and DGstr in

section Methods) to solve the optimization problem

In Out

min
DGstr 5’UTR,RBSfreeð Þ

DGkin sRNA,5’UTRð ÞzDGstr sRNA : 5’UTR,RBSpaired

� �
(

0 1:

1 0

ð1Þ

These functions are associated to each entry of the truth Table,

and then the solution of this problem will yield NOT logic gates.

In Fig. 3, we show several computational designs of this logic

device. We applied our methodology with different natural

occurring structures involving one, two or three hairpins for the

trans-repressing sRNAs. In our designs, we used the Shine-

Dalgarno sequence AGGAGA.

Although the majority of sRNA-mediated regulation in E. coli

consists in repression, an sRNA can also operate as an activator

(YES logic function) [2]. In this case, the sRNA trans-activates a cis-

repressed gene by its 59 UTR. After interaction, the conforma-

tional change in the 59 UTR releases the Shine-Dalgarno

sequence and allows translation (Fig. 1B). For instance, in E. coli,

sRNA DsrA is responsible of activating the expression of sigma

factor RpoS, which modulates the stress response [13]. Hence, we

constructed the following objective functions

In Out

min
DGstr 5’UTR,RBSpaired

� �
DGkin sRNA,5’UTRð ÞzDGstr sRNA : 5’UTR,RBSfreeð Þ

(
0 0

1 1
:
ð2Þ

The solution of this problem will produce the intended function

specified in the truth Table. This problem is much complex that

the previous one because here the two RNA species have

structure. In Fig. 4, we show several computational designs of

YES logic gates based on conformational changes in the 59 UTRs

of the target genes. We applied our methodology with different

structures for the trans-activating sRNAs, while maintaining a

common structure for the 59 UTR. We also attempted the

computational design of a synthetic RNA able to interact with the

RpoS 59 UTR, and then enhance the translation rate. Fig. S2

shows the sequences and structures obtained.

In addition, we exploited our methodology to design NOT logic

gates based on structured 59 UTRs. Here, the trans-activating

sRNA interacts with the 59 UTR to induce a conformational

Author Summary

Is our current knowledge of in vivo RNA-RNA interactions
and thermodynamics enough to perform the unsupervised
computational design of fully synthetic sequences encod-
ing functional RNAs in living cells? Recent work gave a
positive answer for the challenging problem of designing
activating riboregulators. This was done by integrating
theory and computation to develop a physicochemical
framework for the design of regulatory RNA systems, using
Watson-Crick interactions and optimization algorithms.
Still, the objective function was not directly validated,
preventing using with confidence the methodology for
other systems. We here validate experimentally an
objective function relying on free energies of RNA complex
activation and formation, which allows extending the
framework to produce logic devices that can be imple-
mented to program gene expression. We demonstrate that
it is possible to design increasingly sophisticated and
modular functions, pointing our results out that energy-
based optimization methods can perform the large
combinatorial search required for RNA design.

ð1Þ

ð2Þ
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change that blocks the Shine-Dalgarno sequence (Fig. 1C). The

objective functions to solve the corresponding problem read

In Out

min
DGstr 5’UTR,RBSfreeð Þ

DGkin sRNA,5’UTRð ÞzDGstr sRNA : 5’UTR,RBSpaired intramol

� �
(

0 1

1 0
,
ð3Þ

where the difference with Eqs. (1) relies on the imposition that the

RBS must be paired at the intramolecular level. Fig. 5A shows a

computational design implementing this regulatory mechanism. We

also designed riboregulators with activation activity based on a

mechanism of anti-termination [27]. This design relies on a trans-

regulating sRNA able to destabilize the structure of a terminator,

which is here the cis-regulating element, resulting in a complex that

allows the progression of the RNA polymerase (Fig. 1D). This

mechanism can also entail kinetic effects [3], where the interaction

has to occur before RNA polymerase reads through the terminator.

This may impose a narrow time window for operation, which we

speculate surmountable provided a given free energy threshold and

a high ratio sRNA/mRNA. In this case, the objective functions were

In Out

min
DGstr 5’UTR,Hairpin with poly(U)ð Þ

DGkin sRNA,5’UTRð ÞzDGstr sRNA : 5’UTR, Not hairpinð Þ

(
0 0

1 1
,
ð4Þ

where the 59 UTR encodes for a terminator that is formed in

absence of the sRNA. The solution of this problem will also satisfy

the truth Table for YES. Fig. 5B shows a computational design of a

YES logic gate based on this mechanism. In the final structure of the

complex, the terminator hairpin is destabilized and the poly(U) tail

does not have any effect.

Figure 1. Schemes of different sRNA-based mechanisms to control protein expression. Riboregulation is based on conformational
changes in the secondary structures of RNA molecules that allow controlling protein expression. The annealing mechanism between two sRNAs starts
by the nucleotides in the seed to form an intermediate complex and then follows to reach the structure of minimal energy. (A) Scheme of a NOT logic
gate, which consists in an sRNA able to bind to the RBS sequence to block translation. (B) Scheme of a YES logic gate, where the sRNA is designed to
release the RBS that is cis-repressed. (C) Scheme of a further NOT logic gate, where the sRNA is able to induce cis-repression (exploiting the
mechanism shown in B). (D) Scheme of a further YES logic gate, where the sRNA interacts with a transcription terminator placed upstream of the RBS,
allowing or preventing the formation of the mRNA. (E) Scheme of an AND logic gate, where two sRNAs are designed to interact among them and
form a complex that can release the RBS.
doi:10.1371/journal.pcbi.1003172.g001

ð3Þ

ð4Þ
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Design of combinatorial sRNA-based logic gates
We then applied our methodology for the design of higher-order

riboregulatory devices. Taking the NOT logic gate shown in Fig. 5A

as a reference, we performed the design of a new 59 UTR for cis-

repression and that was able to respond to the same riboregulator, in

this case working as an activator. The optimization problem read

In Out

min
DGstr 5’UTR, RBSpaired

� �
DGkin sRNA, 5’UTRð ÞzDGstr sRNA : 5’UTR, RBSfreeð ÞjsRNA const

(
0 0

1 1
,
ð5Þ

where the difference with Eqs. (2) relies on the imposition that the

sRNA sequence is constant. Likewise, the same sRNA will have the

ability to both repress and activate protein expression (coupled

YES/NOT logic gate). Exploiting further this modularity, we

carried out the design of an OR logic gate using the 59 UTR

sequence just designed. We now enforced the design of a new sRNA

that had also the ability of releasing the RBS, maintaining constant

the 59 UTR sequence. The optimization problem had then only one

instance, given by

In Out

min DGkin sRNA,5’UTRð ÞzDGstr sRNA : 5’UTR,RBSfreeð ÞD50UTR const 1 1 :
ð6Þ

Thus, the resulting system will integrate two sRNAs capable of

activating the release of the RBS contained in a single 59 UTR.

Subsequently, we verified there was no interference between the two

sRNAs, although this could have also been incorporated into the

design process. Fig. 6 shows the integrative circuit (multi-input,

multi-output) that we finally obtained with this strategy based on

serial design of constrained YES gates.

Motivated by the previous results, we carried out the design of

cooperative riboregulations. The regulatory function of multiple-

sRNA complexes has not been reported in prokaryotes (all natural

systems for riboregulation involve two RNA species, at most

interacting with proteins such as RNA chaperones or endoribo-

nucleases [28]), which further encourages the exploration by

means of computational methods. To illustrate the power of our

approach, we focused on the design of synergistic activation (AND

logic function), where two trans-regulating sRNAs first interact

among them to form a complex that will then activate translation

(Fig. 1E). To solve the optimization problem, we constructed the

following objective functions

In1 In2 Out

min

DGstr 5’UTR, RBSpaired

� �
{DGkin sRNA1, 5’UTRð Þ

{DGkin sRNA2, 5’UTRð Þ
DGkin sRNA1, sRNA2ð ÞzDGkin sRNA1 : sRNA2, 5’UTRð Þz

DGstr sRNA1 : sRNA2 : 5’UTR, RBSfreeð Þ

8>>>>>>>><
>>>>>>>>:

0 0 0

1 0 0

0 1 0

1 1 1

: ð7Þ

As in the previous cases, these functions are associated to each entry

of the truth Table, and hence the solution of this problem will yield

AND logic gates. In Fig. 7, we show two different designs of this

logic, combinatorial device. By themselves, the trans-regulating

sRNAs cannot release the RBS. However, the dimer they form has a

distinct structure that allows interplaying with the 59 UTR.

Discussion

In conclusion, we have followed a bottom-up approach to design

RNA devices with YES, NOT, AND, and OR logic functions, based

on first physical principles. These logic gates implement multi-state

sRNA devices for which there was no design method before, and that

can be interconnected to create more complex logic programs.

Although we could solve intermolecular inverse folding problems

[29], it was not possible the systematic design of multiple RNA species

implementing arbitrary logic gates. For their design, each entry of the

truth Table imposes a structural specification. Here, we accounted for

the free energies of all possible reactions (thermodynamic potential) to

solve this multi-objective inverse problem by optimization. Because

our methodology does not require natural sequences (with the

Figure 2. Experimental validation of the objective function. (A)
Representation of the log of the experimental activation folds for a set
of RNA devices constructed in this work (mutational variants of the
RAJ11 system [11]) versus DGkin (Eq. 13). This system implements a YES
logic gate, which was designed with the algorithm presented here (see
also Table S4). (B) Representation of the log of the experimental
repression folds recently reported for a set of mutational variants of the
IS10 antisense RNA system [4] versus DGkin. This system implements a
NOT logic gate, and it serves to test the predictability of the method
against independent experimental data (see also Table S2). Here, we do
not consider DGstr as we are only analyzing the interaction ability. The
lines correspond to linear regressions, and the coefficients R2 are
shown, assuming a model where the fold change scales exponentially
with the free energy.
doi:10.1371/journal.pcbi.1003172.g002

ð5Þ

ð6Þ

ð7Þ
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exception of key motifs such as the Shine-Dalgarno sequence), we

have solved the full design problem of regulatory RNA for

implementing logic programs in living cells.

Our approach has, however, some limitations, which prospect

further research in the field. One of them is the use of the secondary

structure to model riboregulation. This type of regulation could

involve pseudoknot interactions and even non-canonical base

pairing, for which three-dimensional models could better capture

the interaction features [30]. In addition, our model does not

account for RNA chaperons (e.g., Hfq) [31], nor co-factors such as

Mg2+ or Zn2+, nor kinetic binding effects, which might have an

impact on the designs. Another restraint of the current method is the

enforcement of a given structure for all single species in the circuit

(although not for the complex ones), because this constrains the

sequence space of possible solutions [11]. By leaving unconstrained

those structures, we could perform additions and/or deletions (not

only replacements) of nucleotides during the optimization, and we

would need to include into the function DGstr a new term for the

stability (e.g., based on free energy). Finally, the convergence of the

algorithm is highly reduced when evolving systems with multiple

species, making necessary to reduce the sequence space by reusing

functional modules to obtain more sophisticated systems.

Despite these limitations, we have demonstrated the power of

computational design (through heuristic optimization) to overcome

the complexity in obtaining fully synthetic riboregulation, explor-

ing the vast combinatorial space of sequences. The proposed

objective function was shown predictive enough to allow the

designability of multi-state RNA devices, as DGkin explained

differences in experimental repression fold for a set of mutational

variants of the IS10 antisense RNA system (Fig. 2) [4]. Moreover,

we recently validated experimentally some designs of YES logic

gates in bacteria, encouraging further work [11]. Even though, the

design problem does not require a perfect prediction, and similar

or even lower correlations can be sufficient to tackle this problem,

such as in the case of automated RBS design [22]. Of course, more

sophisticated objective functions will be developed in the coming

years to improve the design of functional RNAs.

The combination of DGkin and DGstr, for every possible

conformational state (intra- or intermolecular) of a given genotype,

results in an effective free energy that defines a fitness landscape.

In case of riboregulation, the total search space can be about 1040

sequences [11], and typical optimizations that lead to sufficiently

good solutions consist of 106–107 iterations. Indeed, the general-

ized problem of finding the nucleotide sequences of multi-species

ensembles that will fold into specified conformations has an

exponentially large number of solutions. It remains however a

question how to distinguish several optimized sequences (assuming

equal energetic features). For instance, differences in intracellular

stability of the species will affect the ratio sRNA/mRNA, and then

be key for the regulatory activity. Additionally, the kinetics of RNA

folding, binding, and turnover will have significant impact on the

performance of designed RNA circuits [3,10]. All these criteria,

either from first principles or from experimental feedback, will be

exploited to enhance the design methodology.

Figure 3. Designs of sRNA-based NOT logic gates. We show four designs (A to D) using different structures for the trans-repressing sRNAs
(mechanism shown in Fig. 1A). (A.1) Detail of a design, showing the RBS in blue, start codon in green, and seed region in red. The secondary
structures of the intramolecular and intermolecular folding states are presented. (A.2, B.1, C.1 and D.1) Helical plot of the complex, where the RBS is
blocked. DG, DGkin and DGstr are in Kcal/mol. Z is the partition function. (A.3, B.2, C.2 and D.2) Base pairing probability matrix, encircling the pairs of
intermolecular interaction with high probability. RNA sequences shown in Table S1. Secondary structures imposed for all species shown in Fig. S1.
doi:10.1371/journal.pcbi.1003172.g003
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Our present methodology is general and could be applied to obtain

designsbasedon furthermechanisms. Inaddition, insteadofattempting

full designs, it permits reusing complete known sequences (natural or

synthetic) to constrain the design of new logic systems. This capacity

enables the creation of a large variety of combinatorial sRNA systems,

increasing sophistication at a reduced computational cost. Moreover,

our approach can be used to analyze potential RNA sequences for a

given functional circuit as a reverse engineering tool. The designed

sRNA-based logic gates can be combined with transcription regulation

to generate more complex functions [32], and also be integrated into

libraries of models for the computational design of more complex

networks involving transcription and post-transcription regulation [33].

Yet, our full design automation approach together with high-

throughput screening techniques will propel the construction of

modular and orthogonal devices for synthetic biology [34].

Methods

Thermodynamic model
We considered riboregulation (RNA-RNA interaction) in terms

of thermodynamics [29,35,36], assuming that the system reaches an

equilibrium state. We first applied an inverse folding strategy over

the structures of all individual species. Then, neutral mutations in

structure were evaluated with an objective function intended to

optimize the intermolecular folding states. To obtain an intermo-

lecular folding satisfying the release or blockage of the RBS, in

principle, we needed to maximize the partition function (Z) of the

whole system. Using the reaction coordinate of the system (r),

defined as the number of intermolecular Watson-Crick interactions

(i.e., r = 0 represents individual folding) [11], Z can be written as

Z~
X

r

exp {
G rð Þ
RT

� �
, ð8Þ

where G(r) is the effective free energy of the state with reaction

coordinate r (where G(0) represents the free energy of the no-

interaction state, with G = 0 for the unfolded state), R the gas

constant, and T the temperature. Here, we are interested in G(r) at the

reaction coordinates for the transition, G(rtrans), and final intermolec-

ular (hybridization) states, G(rhyb), to define our functions DG, the free

energy of formation, and DG{, the free energy of activation, by

DG~G rhyb

� �
{G 0ð Þ

DG
z
z~G rtransð Þ{G 0ð Þ:

ð9Þ

To compute the free energy and secondary structure of all

species (single and complexes) of a system, we used the

ViennaRNA [37] and MultiRNAFold [38] (when having more

than two RNA species) software. We only considered the

Figure 4. Designs of sRNA-based YES logic gates. We show four designs (A to D) using different structures for the trans-activating sRNAs
(mechanism shown in Fig. 1B). (A.1) Detail of a design, showing the RBS in blue, start codon in green, and seed region in red. The secondary
structures of the intramolecular and intermolecular folding states are presented. (A.2, B.1, C.1 and D.1) Helical plot of the complex, where the RBS is
released. DG, DGkin and DGstr are in Kcal/mol. Z is the partition function. (A.3, B.2, C.2 and D.2) Base pairing probability matrix, encircling the pairs of
intermolecular interaction with high probability. RNA sequences shown in Table S1. Secondary structures imposed for all species shown in Fig. S1.
doi:10.1371/journal.pcbi.1003172.g004

Regulatory RNA Design

PLOS Computational Biology | www.ploscompbiol.org 6 August 2013 | Volume 9 | Issue 8 | e1003172



minimum free energy state discarding the suboptimal ones. Here,

we did not consider pseudoknots. Afterwards, the designed

sequences were analyzed with the Nupack software [29], which

is able to compute ensemble properties such as Z. In this work, we

used the Mfold 3.0 RNA energy parameters [39], and always

considered T = 37uC (which gives RT = 0.61 Kcal/mol).

Deriving a generic objective function for in vivo RNA-RNA
interactions

In an RNA-RNA interaction between species A and B, an

intermediate complex at the transition state ([A:B]{) is formed

mediated by the seed. Then, a fast reaction inducing a

conformational change occurs. Denoting kon and koff the forward

and reverse constants, respectively, to form [A:B]{, and khyb the

hybridization constant to form the final complex (A:B), the mass

action kinetic model reads

d A : B½ �
z
z

dt
~konAB{koff A : B½ �

z
z{khyb A : B½ �

z
z{d1 A : B½ �

z
z

dA : B

dt
~khyb A : B½ �

z
z{d2A : B,

ð10Þ

where d1 and d2 are the degradation constants. Assuming that koff +
khyb is much greater than d1 (sRNA degradation takes several

minutes [13]), we can obtain in steady state [A:B]{ = AB/KM, where

KM = (koff + khyb)/kon is the Michaelis constant. Hence, A:B (and also

the translation rate) will be in steady state proportional to khyb/KM,

assuming there is no saturation.

The constant kon can be obtained by fitting in vitro DNA

hybridization data, where only the length of the seed (a), irrespective

to the sequence, determines the kinetic constant following a

Boltzmann factor [25]. Moreover, we can say that the constant

khyb is determined by DG (the free energy of formation between A + B

and A:B) also with a Boltzmann factor. This allows us to write

kon!exp {
aGp

RT

� �

khyb!exp {
DG

RT

� �: ð11Þ

Therefore, the resulting model reads

khyb

KM

~
khybkon

koff zkhyb

!
1

koff zkhyb

exp {
DGzaGp

RT

� �
, ð12Þ

where Gp is a fitted parameter to account for the average energetic

contribution of one nucleotide. Gp = 21.28 Kcal/mol [25]. Finally,

we proposed DG + aGp as the objective function to optimize RNA-

RNA interactions. This formulation is in part equivalent to

maximize Z, because from the Arrhenius equation [23] DG{ and

a should have a linear relationship.

Optimization algorithm
Our evolutionary algorithm consists in a Monte Carlo

Simulated Annealing [40], which can be parallelized to evolve a

Figure 5. Further designs of sRNA-based NOT and YES logic gates. We show two designs (A and B) using the mechanisms shown in Figs. 1C
and 1D. For the NOT gate, helical plots showing (A.1) the RBS exposed, and (A.2) the RBS blocked after sRNA interaction. For the YES gate, helical
plots showing (B.1) a transcription terminator, and (B.2) that the hairpin before the poly(U) tail is destabilized after sRNA interaction. DG is in Kcal/mol.
Z is the partition function. (A.3 and B.3) Base pairing probability matrix, encircling the pairs of intermolecular interaction with high probability. RNA
sequences shown in Table S1. Secondary structures imposed for all species shown in Fig. S1.
doi:10.1371/journal.pcbi.1003172.g005
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population of sequences. Our approach consists in optimizing an

objective function accounting for the interaction and structure of

the RNAs that lead to the target behavior.

The design specifications comprise the secondary structures of

all single RNAs, critical subsequences of nucleotides (e.g., RBS),

the reaction free energies, and the structure of the output

complex. The algorithm starts from pure random sequences

satisfying the structural and subsequence constraints, although it

can also be specified an initial sequence. If the subsequence

constraints do not allow satisfying the structures, the algorithm

stops. Eventually, we can introduce a relaxation in the structural

constraints (through an harmonic constraint) allowing having

species with dissimilar structures to their targets. Subsequently,

an iterative process of mutation and selection is implemented (see

scheme of the algorithm in Fig. S3). The mutation operator

consists in either random or directed nucleotide replacements.

We do not consider additions or deletions, so the length of the

RNAs is maintained constant. To speed up the convergence, we

generated a mutation operator that only created useful mutations,

e.g., mutations that are always guaranteed to contribute for an

interaction among RNA species. We do this by taking a word

(i.e., set of consecutive nucleotides) from one sequence, making

its reverse complementary, and randomly inserting it into

another sequence. Initially, the length of this word is three,

and it is reduced to one (i.e., single point mutation) during the

optimization process. Those mutations speed up the in silico

evolution. If a nucleotide that has to be mutated belongs to a

stem, its pair in the stem is also mutated with the corresponding

nucleotide with the aim of preventing the disruption of the

secondary structure and improving the convergence. We avoid

sequences having consecutive repeats of four or more identical

nucleotides.

The objective function is a weighted sum of two terms to be

minimized. The first term (DGkin) accounts for the reaction kinetics

of the system. For that, we compute the DG and a of all possible

reactions, having between species A and B

DGkin A,Bð Þ~DGzaGp: ð13Þ

Notice that DGkin is a negative-valued variable. We will minimize

or maximize DGkin if the reaction must occur or not (in order to

obtain the specified behavior). Maximizing DGkin is equivalent to

minimize 2DGkin. During the optimization we exclude sequences

forming homodimers. In addition, we considered DGsat = 215 K-

cal/mol and asat = 6 as arbitrary saturation levels (i.e., levels from

which there is no need for further minimization). These values can

be enlarged to get designs with lower DGkin, although at a cost of

altering the convergence. The second term (DGstr) accounts for the

structural change of the output RNA. For that, we use a Hamming

distance (d) between the current and target structures, being

DGstr A, Strð Þ~{d A, Strð ÞGp: ð14Þ

This indicates that species A (which can be single or complex) is

evolved to display the target structure, or substructure, Str (e.g.,

RBS paired, then repressing protein translation). Gp is used to

rescale the distance in terms of free energy. We note that DGstr is a

positive-valued variable, which we will minimize.

Figure 6. Design of a multi-input, multi-output sRNA-based logic circuit. We show a design of a circuit that assembles different
riboregulators. Here, sRNA tR13 is able to both repress and activate the expression of two different cis-repressed genes, by cR31 and cR19 respectively,
resulting in a coupled YES/NOT logic gate. In addition, sRNA tR19 is able to activate cR19, implementing together with tR13 an OR logic gate. RNA
sequences shown in Table S1. Secondary structures imposed for all species shown in Fig. S1.
doi:10.1371/journal.pcbi.1003172.g006
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Experimental library of RNA devices
100 ng of plasmid pRAJ11 coding for the riboregulatory device

RAJ11 were subjected to 30 cycles of PCR amplification with

divergent primers I (59-CCGCGAAGACCGGCACGGNNNGG-

TTGATTGTGTGAGTCTGTC-39, N is A, C, G or T; BpiI

recognition and cleavage sites underlined) and II (59-GGCGGAA-

GACGCGTGCTCAGTATCTCTATCACTG-39, BpiI recogni-

tion and cleavage sites underlined) in a volume of 20 mL with

0.4 U of the high fidelity Phusion DNA polymerase (Thermo

Fisher Scientific) in the presence of HF buffer (Thermo Fisher

Scientific), 3% dimethyl sulfoxide, 0.2 mM each dNTP and

0.5 mM each primer. Reactions consisted of an initial denaturation

of 30 s at 98uC followed by 30 cycles of 10 s at 98uC, 30 s at 55uC
and 1:15 min at 72uC, with a final incubation of 10 min at 72uC.

After PCR, 10 U of DpnI (Thermo Fisher Scientific) were added

to each sample to digest the template plasmid and incubated for

1 h at 37uC. Reaction products were electrophoresed in a 1%

agarose gel in TAE buffer (40 mM Tris, 20 mM sodium acetate,

1 mM EDTA, pH 7.2) and the gel stained with ethidium bromide.

The 4460-bp long DNA product corresponding to the full-length

plasmid was eluted from the gel, digested with BpiI for 1 h at 37uC
(Thermo Fisher Scientific) and finally subjected to self-circulari-

zation with 5 U of T4 DNA ligase (Thermo Fisher Scientific) for

1 h at 22uC. Reaction products were purified by chromatography

with silica gel spin columns (DNA Clean and Concentrator, Zymo

Research) and electroporated in E. coli DH5a. Recombinant

bacteria were selected in plates with 50 mg/mL ampicillin.

Plasmids were purified from liquid cultures of selected clones

Figure 7. Designs of sRNA-based AND logic gates. We show two designs (A and B) using different structures for the trans-activating sRNAs
(mechanism shown in Fig. 1E). (A.1) Detail of a design, showing the RBS in blue, start codon in green, and seed regions in red and magenta. The
secondary structures of the intramolecular and intermolecular folding states are presented. (A.2 and B.1) Helical plot of the complex, where the RBS is
released. DG, DGkin and DGstr are in Kcal/mol. Z is the partition function. (A.3 and B.2) Base pairing probability matrix, encircling the pairs of
intermolecular interactions with high probability. RNA sequences shown in Table S1. Secondary structures imposed for all species shown in Fig. S1.
doi:10.1371/journal.pcbi.1003172.g007
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(Wizard Plus SV Miniprep DNA Purification System, Promega)

and analyzed by electrophoresis in 1% agarose gels in TAE buffer,

followed by ethidium bromide staining. Forty-five plasmids whose

electrophoretic mobility matched that of parental pRAJ11 were

subjected to sequence analysis with primer III (59-

GAATTCGCGGCCGCTTCTAGAGC-39) to find out the par-

ticular sequence in the randomized trinucleotide position intro-

duced by primer I. Eleven mutant clones (see Table S3) were

selected for further analysis, as well as the wild-type sRNA RAJ11

and the null system RAJ11m (Fig. S5).

Characterization of RNA devices by fluorometry
Cultures (2 mL) inoculated from single colonies (three biological

replicates) were grown overnight in LB medium at 37uC and

220 rpm. Cultures were then diluted 1:100 (in 2 mL of LB), and

were grown for 3 h in the same conditions (to reach an OD600 about

0.5). Ampicillin was used as antibiotic at 50 mg/mL. Then, 500 mL

of each culture were centrifuged for 2 min at 13,000 rpm, and

resuspended in the same volume of water. Subsequently, we loaded

the multiwell plate with 200 mL for each sample, which was assayed

in a Victor X5 (Perkin Elmer) to measure absorbance (600 nm

absorbance filter) and fluorescence (485/14 nm excitation filter,

535/25 nm emission filter, for GFP). Background values of

absorbance and fluorescence, which corresponded to water, were

subtracted to correct the signals, and the normalized fluorescence

was calculated as the ratio of fluorescence and absorbance (Fig. S4).

Hence, we calculated the fold changes of activation (relative changes

in GFP protein expression in absence or presence of sRNA).

Supporting Information

Figure S1 RNA secondary structures imposed for the
different species in the designs. The final structures may

vary up to three base pairs.

(TIFF)

Figure S2 Regulation of a natural gene. Design of a

synthetic sRNA (an analog of DsrA) able to interact with and

release the RBS of the natural RpoS 59 UTR. (A) Detail of the

RpoS 59 UTR, showing the RBS in blue and the start codon in

green, together with the synthetic sRNA. (B) Detail of the

intermolecular species.

(TIFF)

Figure S3 Scheme of the algorithm to design riboregu-
lation.

(TIFF)

Figure S4 Characterization results of our library of
devices. We present the fluorescence values for cells transformed

with different plasmids: pRAJ11 and its derived mutants (mX),

pRAJ11m, and pBS (pBlueScript, Stratagene) as a control. Error

bars represent SE (standard errors).

(TIFF)

Figure S5 Plasmid maps. They correspond to the native

RAJ11 device, which was previously engineered (Addgene refs.

39244 and 39245) [11].

(TIFF)

Table S1 RNA sequences for the designs shown in the
Figures. On the 59 UTRs, we highlight the RBS sequence (blue)

and the start codon (red), and the poly(U) tail (yellow) when

appropriate.

(DOC)

Table S2 Properties of experimental systems for inde-
pendent validation. These RNA systems (selected from ref. [4]

to cover a wide range of repression folds) are employed to validate

the objective function used in this work. The regulatory data

correspond to mutants of the natural system IS10. The systems

were also expressed from plasmids in E. coli. Reported repression

folds (changes in percentage of protein expression in absence or

presence of sRNA) were measured by fluorometry.

(DOC)

Table S3 RNA sequences of the library of devices
constructed in this work. These are mutants of the system

RAJ11 (from ref. [11]). On the 59 UTR, we highlight the RBS

sequence (blue) and the start codon (red). Mutations on the sRNA

highlighted in yellow.

(DOC)

Table S4 Properties of our library of devices. These RNA

systems are employed to validate the objective function used in this

work.

(DOC)
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