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Abstract: Volatile composition is an important feature that determines flavor, which actively af-
fects the overall evaluation of chrysanthemum tea. In this study, HS-GC-IMS (headspace-gas
chromatography-ion mobility spectrometry) was performed to characterize the volatile profiles
of different chrysanthemum tea subtypes. Forty-seven volatiles of diverse chemical nature were
identified and quantified. Partial least squares discriminant analysis (PLS-DA) revealed that four
chrysanthemum teas were distinct from each other based on their volatile compounds. Further-
more, this work provides reference methods for detecting novel volatile organic compounds in
chrysanthemum tea plants and products.
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1. Introduction

Chrysanthemum, which is a plant native to China, is one of the top ten traditional
flowers in China. It is well known for its various ornamental, medicinal, and edible proper-
ties [1–3]. For many years, this flower has been cultivated for consumption as food [4–7].
Globally, tea is one of the most preferred beverages [8], and in Asia, chrysanthemum tea
is popular because of its unique flavor [9]. Volatile composition is an important feature
contributing to flavor, and it directly influences the overall assessment of chrysanthemum
tea and its preference by consumers [10]. Much research has focused on the qualita-
tive aspects of chrysanthemum tea’s function [6,11–15], whereas its volatility remains
generally understudied.

As a flower-based tea, chrysanthemum is well liked because of its health benefits,
appealing taste, and unique smell, as determined by volatility [10]. Chrysanthemum
tea’s volatility and nutritional content are important factors determining its commercial
quality [16–18]. The common varieties of commercially available chrysanthemum tea
are mainly ‘Hangju’ and chamomile. There have been a large number of studies that
have analyzed the nutritional components in chrysanthemum tea, such as flavonoids [19];
chlorogenic acid is also a key nutrient in chrysanthemum tea [20]. Nevertheless, volatility
is a noteworthy feature of chrysanthemum tea, and it constitutes another direct sensory
feature that attracts certain consumers [21,22].

In chrysanthemum cultivars and their wild relatives, the primary volatile compounds
are monoterpenoids and oxygenated monoterpenoids, including camphor, α-pinene, chrysan-
thenone, safranal, myrcene, eucalyptol, 2,4,5,6,7,7ab-hexahydro-1H-indene, verbenone,
β-phellandrene, and camphene [23]. The primary components in Chrysanthemum morifolium
volatile oil are monoterpene and sesquiterpene compounds, including hydrocarbons, esters, and
organic acids, and the most abundant volatile component is α-curcumene [24]. In C. morifolium
‘Boju’, the main volatiles are eucalyptol, fifolone, chrysanthenone, and cis-chrysanthenol
acetate, among others [25]. In various types of chamomiles, although the main compounds
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identified are monoterpenoids, sesquiterpenoids, and esters [26], the composition and
content of these volatiles are quite different from those in chrysanthemum.

Chrysanthemum tea’s volatility is crucial to consumer choice, and therefore, the de-
tection of volatile organic compounds (VOCs) with volatile components is significant.
Recently, there has been increased use of gas chromatography–ion mobility spectrometry
(GC-IMS), a new technology capable of detecting VOCs [27]. Specifically, GC-IMS is a rapid
detection technique for VOCs in samples, whereby gas chromatography is combined with
ion mobility spectroscopy [28]. This technology is based on the separation of complex com-
pounds by a gas chromatography column, where ionized compounds in a specific electric
field move through a fixed distance (drift tube) that requires differing drift times to achieve
the separation of distinct compounds [29]. Building on that, HS-GC-IMS is a technique
that combines GC-IMS with headspace sampling [30] to quickly detect and analyze the
VOCs in certain samples; the technique has a low detection limit but high selectivity [31].
HS-GC-IMS has been applied to analyze volatile compounds in grain [32,33], essential
oil [31], Chinese medicine [34], wines [35,36], and tea [37].

Herein, we investigated a new chrysanthemum variety, ‘Xiaokuixiang’, with a fruity
taste suitable for tea. The main purpose of this study was to compare and analyze the
volatile components and contents of ‘Xiaokuixiang’ vis-à-vis ‘Hangju’, ‘Huangju’, and
chamomile tea (Figure 1) by GC-IMS and establish their flavor fingerprints. Partial least
squares discriminant analysis (PLS-DA) was performed to compare the similarity in volatil-
ity between the four chrysanthemum teas. Our results mainly demonstrate that the four
chrysanthemum teas were completely separated based on their different volatile substances.
Furthermore, this work demonstrates that the different components and contents of volatile
substances led to the different aromas of the four chrysanthemum teas.
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2. Materials and Methods 
2.1. Materials 

The ‘Hangju’, ‘Huangju’, and chamomile used in the experiment came from super-
markets, while ‘Xiaokuixiang’ was a self-bred variety. The latter was harvested and air-
dried during the flowering period, and then oven-dried at 40 °C to ensure it was com-
pletely dry and, thus, fit for usability. 

2.2. HS-GC-IMS 
From each of the collected four types of dry chrysanthemum teas, we took 100 g and 

immersed it in 100 mL of 100 °C drinking water and let the tea brew for 30 min. Then, a 
0.22 μm filter (organic phase with a needle filter) was used for collecting the chrysanthe-
mum tea without impurities and placing it into an injection bottle (18 mm precision thread 
vial, volume of 20 mL, 75.5 mm  × 22.5 mm, clear glass, rounded bottom, white marking 
spot, and CNW LOGO, Borosilicate Type I Class A) to determine the VOCs of chrysan-
themum teas. 

Figure 1. The four types of dry chrysanthemum teas: (A) Chamomile; (B) ‘Xiaokuixiang’; (C) ‘Huangju’; and (D) ‘Hangju’.

2. Materials and Methods
2.1. Materials

The ‘Hangju’, ‘Huangju’, and chamomile used in the experiment came from supermar-
kets, while ‘Xiaokuixiang’ was a self-bred variety. The latter was harvested and air-dried
during the flowering period, and then oven-dried at 40 ◦C to ensure it was completely dry
and, thus, fit for usability.

2.2. HS-GC-IMS

From each of the collected four types of dry chrysanthemum teas, we took 100 g
and immersed it in 100 mL of 100 ◦C drinking water and let the tea brew for 30 min.
Then, a 0.22 µm filter (organic phase with a needle filter) was used for collecting the
chrysanthemum tea without impurities and placing it into an injection bottle (18 mm
precision thread vial, volume of 20 mL, 75.5 mm × 22.5 mm, clear glass, rounded bottom,
white marking spot, and CNW LOGO, Borosilicate Type I Class A) to determine the VOCs
of chrysanthemum teas.

The GC-IMS analysis was entrusted to the Application Shandong Hanon Scientific Instru-
ment Co., Ltd., Jinan, China. Briefly, approximately 5 mL of each chrysanthemum tea type
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was placed into a 20 mL headspace bottle and incubated at 90 ◦C for 15 min at 500 rpm before
determination. The injection volume was 200 µL, and the injection temperature was 85 ◦C.

2.3. Statistical Analysis

The instrument analysis software of the GC-IMS equipment was used. The NIST
(National Institute of Standards and Technology, an official website of the United States
government) and IMS (ion mobility spectroscopy, G.M.S., Dortmund, Germany) databases,
which are built into this application software, can be and were used for the qualitative
analysis of substances encountered in the four tea types.

Data analyses were performed in MS Excel (pie graph), GraphPad Prism 8.0 (bar chart),
and Heatmap Illustrator v1.0 (CUCKOO Workgroup, Wuhan, China). All determinations
were performed in triplicate, and the results are expressed as the mean ± standard deviation
(SD). One-way ANOVA (p < 0.05) was performed.

3. Results
3.1. HS-GC-IMS Topographic Plots for the Different Chrysanthemum Teas

The four chrysanthemum teas are shown in Figure 1. Their volatile compounds
were analyzed by HS-GC-IMS, and the ensuing data are depicted in a 2D topographical
visualization. As Figure 2 shows, the components and contents of volatiles clearly vary
among the different chrysanthemum teas. ‘Xiaokuixiang’ contained the greatest number of
volatile compound types, and by contrast, the volatile species of ‘Hangju’ were the least
(Figure 2).
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To more clearly compare the differences in the volatile components between the four
chrysanthemum teas, the topographic plot of fresh stipes from ‘Hangju’ was selected as the
reference, from which the topographic plots of the other tea type samples were deducted
(Figure S1). Accordingly, if the volatile compounds were consistent, the background after
the deduction was white, whereas red or blue indicated that the substance concentration
was higher or lower than the reference value, respectively. Most of the signals in the
chrysanthemum tea’s topographic plot from the four tea types had retention times between
200 and 1000 s, with several different signals discernible in ‘Xiaokuixiang’. These results
showed that the volatiles of ‘Xiaokuixiang’ had the most components and the highest
concentration, while ‘Hangju’ had the least in both respects.
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3.2. Comparative Analysis of Common Volatile Compounds in Different Chrysanthemum Teas

A total of 150 volatile compounds were identified from the four chrysanthemum teas.
These compounds were characterized by comparing their IMS drift time and retention
index with those of the real reference compound. A total of 47 typical target compounds
from topographic plots were identified through the GC × IMS library (Tables 1 and S1).
As shown in Figure 3, qualitative and quantitative analyses were performed on the 47 iden-
tified compounds from the different tea samples (Figure 3). A stronger signal indicated a
higher volatile content. These results demonstrated that the compound types and contents
in ‘Xiaokuixiang’ surpassed those in the other three tea types (Figure 3B).

We then compared the volatile components of each chrysanthemum tea. This revealed
that the total amount of volatile compounds was highest in ‘Huangju’ tea, followed by
‘Xiaokuixiang’, with the lowest content of volatile components in ‘Hangju’ (Figure 4).
‘Xiaokuixiang’ had the highest content of ester, ketone, and alcohols compounds, and
‘Huangju’ had the highest content of terpenoids and aldehyde compounds. Compared
with the other three chrysanthemums, ‘Hangju’ had the lowest content of ester, alcohols,
terpenoids, and aldehyde compounds. The variety of volatile compounds in ‘Xiaokuixiang’
was relatively uniform. Notably, the content of ketone compounds in chamomile was
relatively low, and almost no ester compounds were detected in ‘Huangju’ and ‘Hangju’
(Figure 4).
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Table 1. Properties of volatile compounds.

Compound CAS Formula MW RI Rt [s] Dt
[a.u.] Chamomile ‘Xiaokuixiang’ ‘Huangju’ ‘Hangju’

(E)-2-Hexenal dimer C6728263 C6H10O 98.1 845 341.96 1.52 119.15 ± 13.38 75.51 ± 3.9 2584.61 ± 200.04 164.85 ± 17.54

(E)-2-Hexenal monomer C6728263 C6H10O 98.1 845.9 343.05 1.19 266.3 ± 4.4 118.7 ± 13.32 1466.64 ± 58.49 460.29 ± 37.3

1,8-Cineole dimer C470826 C10H18O 154.3 1039.4 668.17 1.73 2288.27 ± 95.94 1703.92 ± 33.27 10,356.01 ± 304.58 269.45 ± 17.21

1,8-Cineole monomer C470826 C10H18O 154.3 1039.9 669.06 1.30 4666.11 ± 33.93 2808.24 ± 98.28 4684.26 ± 217.57 1709.26 ± 147.07

1-Menthol dimer C2216515 C10H20O 156.3 1164.6 899.45 1.89 76.31 ± 8.05 104.58 ± 9.7 611.43 ± 44.5 95 ± 8.35

1-Menthol monomer C2216515 C10H20O 156.3 1167.1 904.07 1.22 1523.09 ± 132.67 1832.42 ± 212.92 13,371.96 ± 646.6 3336.42 ± 842.92

1-Octen-3-one C4312996 C8H14O 126.2 980.7 559.80 1.27 147.74 ± 10.47 457.74 ± 30.52 185.63 ± 11.63 132.28 ± 8.71

1-Propanol C71238 C3H8O 60.1 567.8 133.48 1.11 277.14 ± 37.46 510.58 ± 137.29 285.27 ± 70.16 120.95 ± 13.73

2-Butanone dimer C78933 C4H8O 72.1 598.6 148.07 1.25 66.32 ± 8.38 206.39 ± 16.58 91.84 ± 11.82 56.38 ± 2.7

2-Butanone monomer C78933 C4H8O 72.1 600.2 148.81 1.06 225.59 ± 5.57 304.15 ± 9.95 256.77 ± 17.37 224.55 ± 3.13

2-Methyl butanol dimer C137326 C5H12O 88.1 730.6 226.07 1.47 74.41 ± 43.88 377.13 ± 39.66 61.58 ± 6.67 24.73 ± 1.82

2-Methyl butanol monomer C137326 C5H12O 88.1 732.1 227.38 1.22 233.41 ± 45.94 738.55 ± 36.4 173.98 ± 10.38 90.78 ± 9.45

2-Methylbutanal dimer C96173 C5H10O 86.1 661.8 177.99 1.40 1432.09 ± 65.61 909.09 ± 49.14 674.59 ± 72.26 495.8 ± 36.75

2-Methylbutanal monomer C96173 C5H10O 86.1 659.7 177.00 1.16 401.75 ± 14.95 301.28 ± 4.45 443.43 ± 6.92 492.91 ± 20.22

2-Pentenal (E) dimer C1576870 C5H8O 84.1 745.3 238.45 1.37 54.63 ± 6.98 120.37 ± 5.89 243.18 ± 31.99 33.63 ± 2.47

2-Pentenal (E) monomer C1576870 C5H8O 84.1 745.6 238.71 1.11 165.33 ± 11.36 200.09 ± 3.45 426.63 ± 36.76 152.51 ± 7.41

2-Pentylfuran C3777693 C9H14O 138.2 1001.9 598.78 1.24 212.31 ± 21.79 1327.04 ± 82.25 263.66 ± 30.66 172.3 ± 2.81

3-Methylbutanal dimer C590863 C5H10O 86.1 652.4 173.54 1.41 979.83 ± 46.43 458.85 ± 29.25 219.49 ± 28.19 218.41 ± 19.24

3-Methylbutanal monomer C590863 C5H10O 86.1 649.7 172.30 1.17 310.93 ± 22.26 252.22 ± 6.09 251.21 ± 4.01 312.4 ± 14.22

3-Octanol dimer C589980 C8H18O 130.2 983.5 565.02 1.77 27.63 ± 0.35 109.59 ± 5.66 32.29 ± 3.77 31.99 ± 6.66

3-Octanol monomer C589980 C8H18O 130.2 984.2 566.23 1.39 218.74 ± 9.55 437.37 ± 27.6 232.78 ± 8.53 154.96 ± 5.27

5-Methyl-2-furanmethanol dimer C3857258 C6H8O2 112.1 954.5 511.57 1.57 197.92 ± 22.36 59.33 ± 1.58 149.97 ± 7.99 102.93 ± 8.99

5-Methyl-2-furanmethanol monomer C3857258 C6H8O2 112.1 955.8 513.98 1.26 511.85 ± 51.91 411.24 ± 14.62 664.63 ± 13.69 355.18 ± 8.68

6-Methyl-5-hepten-2-one C110930 C8H14O 126.2 994.7 585.52 1.18 2100.88 ± 193.06 4922.49 ± 108.53 8939.93 ± 89.23 6135.18 ± 243.3

Acetone C67641 C3H6O 58.1 541.7 121.11 1.12 307.59 ± 31.17 3941.64 ± 1000.18 279.57 ± 72.23 93.38 ± 8.36
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Table 1. Cont.

Compound CAS Formula MW RI Rt [s] Dt
[a.u.] Chamomile ‘Xiaokuixiang’ ‘Huangju’ ‘Hangju’

benzaldehyde C100527 C7H6O 106.1 955 512.56 1.15 422.9 ± 56.36 129.43 ± 5.64 251.34 ± 11.67 228.79 ± 1.29

Butyl acetate C123864 C6H12O2 116.2 804.6 294.95 1.24 21.92 ± 1.42 97.13 ± 4.61 38.21 ± 6.31 21.04 ± 2.4

Ethyl 2-methylbutanoate C7452791 C7H14O2 130.2 841.7 338.13 1.66 4068.59 ± 54.94 6201.27 ± 149.74 105.39 ± 2.41 45.64 ± 2.85

Ethyl 2-methylpropanoate C97621 C6H12O2 116.2 749.8 242.27 1.57 45.89 ± 10.29 544.37 ± 4.24 23.53 ± 1.3 23.09 ± 3.23

Ethyl butyrate C105544 C6H12O2 116.2 800.4 290.03 1.21 13.06 ± 0.52 79.82 ± 7.13 12.84 ± 1.66 12.24 ± 1.95

Heptanal dimer C111717 C7H14O 114.2 899.4 410.27 1.70 684.87 ± 46.75 285.09 ± 14.02 780.97 ± 35.21 395.66 ± 12.06

Heptanal monomer C111717 C7H14O 114.2 899.3 409.93 1.33 281 ± 21.65 212.67 ± 8.64 296.56 ± 11.67 71.12 ± 2.49

Heptanoic acid dimer C111148 C7H14O2 130.2 1053 693.30 1.76 91.78 ± 6.98 1362.95 ± 189.03 190.7 ± 22.46 81.34 ± 6.96

Heptanoic acid monomer C111148 C7H14O2 130.2 1051.6 690.58 1.36 217.9 ± 9.68 457.72 ± 51.97 86.71 ± 5.29 60.26 ± 1.53

Hexanal dimer C66251 C6H12O 100.2 791.1 279.29 1.57 1899.55 ± 72.68 2897.65 ± 52.78 2694.57 ± 86.19 1494.49 ± 19.81

Hexanal monomer C66251 C6H12O 100.2 791.1 279.29 1.26 1088.22 ± 49.57 1063.24 ± 43.75 1230.44 ± 37.1 1166.24 ± 21.4

Isoamyl acetate dimer C123922 C7H14O2 130.2 876 378.14 1.75 26.48 ± 6.98 144.48 ± 13.61 20.43 ± 1.35 20.8 ± 2.31

Isoamyl acetate monomer C123922 C7H14O2 130.2 876.6 378.85 1.30 66.4 ± 4.29 395.1 ± 12.85 102.52 ± 8.51 54.28 ± 6.8

Linalool oxide dimer C60047178 C10H18O2 170.3 1076.6 736.77 1.82 89.87 ± 6.51 450.59 ± 73.39 63.83 ± 5.24 49.68 ± 5.15

Linalool oxide monomer C60047178 C10H18O2 170.3 1077 737.67 1.26 326.91 ± 24.45 804.93 ± 72.82 74.35 ± 25.8 34.87 ± 2.02

Methyl 2-methylbutanoate dimer C868575 C6H12O2 116.2 768.8 258.26 1.54 217.3 ± 9.99 252.67 ± 7.51 24.62 ± 2.9 15.52 ± 1.03

Methyl 2-methylbutanoate monomer C868575 C6H12O2 116.2 770 259.28 1.18 404.26 ± 20.26 352.79 ± 23.05 211.43 ± 8.69 146.93 ± 5.49

Pentanal dimer C110623 C5H10O 86.1 694.6 195.77 1.43 1044.79 ± 43.21 923.43 ± 31.09 1084.99 ± 23.53 1093.19 ± 19.8

Pentanal monomer C110623 C5H10O 86.1 694.9 196.05 1.18 964.72 ± 56.23 1044.44 ± 46.97 749.54 ± 55.68 321.03 ± 3.04

Propylacetate dimer C109604 C5H10O2 102.1 707.7 206.83 1.48 39.05 ± 17.76 420.42 ± 8.88 27.48 ± 7.19 20.46 ± 0.21

Propylacetate monomer C109604 C5H10O2 102.1 708.4 207.36 1.17 64.59 ± 6.93 292.21 ± 5.69 71.38 ± 3.49 83.29 ± 4.01

Propylsulfide C111477 C6H14S 118.2 884.7 388.21 1.16 42.7 ± 2.2 39.03 ± 1.77 226.35 ± 16.02 80.77 ± 4.8
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3.3. Comparative Analysis of Unique Volatile Compounds in Different Chrysanthemum Teas

To clarify the specific differentially occurring substances in the comparison samples,
all peaks obtained by gas-phase ion mobility spectroscopy were selected for a fingerprint
comparison. The results showed that the volatile compounds for the four chrysanthe-
mum teas were quite different. Figure 5 shows the visual information pertaining to the
types and the corresponding contents of volatile compounds in the chrysanthemum tea
types studied. The greatest variety of volatile compounds was found in ‘Xiaokuixiang’,
while there were fewer varieties of volatile compounds in ‘Huangju’ as compared to
‘Xiaokuixiang’. Chamomile exhibited fewer types of volatile compounds than ‘Huangju’,
while ‘Hangju’ showed the fewest varieties of volatile compounds (Figures 5 and S1).
Additionally, we analyzed the primary volatile components and main compounds in
each chrysanthemum tea. We found that, in chamomile, the primary volatile compo-
nents consisted of ethyl 2-methylbutanoate in esters and 1,8-cineole monomer in alcohols
(Figure 6A), and for those in ‘Huangju’, it was 1-menthol monomer and 1,8-cineole dimer
in terpenoids (Figure 6B). Likewise, those in ‘Xiaokuixiang’ were ethyl 2-methylbutanoate
in esters and 6-methyl-5-hepten-2-one in ketones (Figure 6C), and those in ‘Hangju’ were
6-methyl-5-hepten-2-one in ketones and 1-menthol monomer in terpenoids (Figure 6D).
Hence, the volatile components of each chrysanthemum tea were not the same.
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Figure 6. The VOCs in the four chrysanthemum teas: (A) The pie chart and column VOCs of
Chamomile; (B) the pie chart and column VOCs of ‘Huangju’; (C) the pie chart and column VOCs of
‘Xiaokuixiang’; (D) the pie chart and column VOCs of ‘Hangju’. Pie chart and column, (content > 300),
error bars show the standard deviation between three biological replicates (n = 3). Three independent
experiments were performed and error bars indicate standard deviations. Letters indicate significant
differences which were determined by Duncan’s multiple range test (p < 0.05).
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Our quantitative analysis of the identified compounds showed that there were high
amounts of some of them in chamomile, such as 1,8-cineole monomer, ethyl 2-methylbutanoate,
1,8-cineole dimer, 6-methyl-5-hepten-2-one, and hexanal dimer. Likewise, high amounts of
ethyl 2-methylbutanoate, 6-methyl-5-hepten-2-one, hexanal dimer, and 1,8-cineole monomer,
as well as acetone, were found in ‘Xiaokuixiang’. In ‘Huangju’, high amounts of 1-menthol
monomer, along with 1,8-cineole dimer, 6-methyl-5-hepten-2-one, 1,8-cineole monomer,
and hexanal dimer were present, and finally, high amounts of 6-methyl-5-hepten-2-one,
1-menthol monomer, 1,8-cineole monomer, hexanal dimer, and hexanal monomer were
present in ‘Hangju’ (Figure 6). We determined that ‘Hangju’, chamomile, ‘Xiaokuixiang’, and
‘Huangju’ contained the highest levels of 6-methyl-5-hepten-2-one, 1,8-cineole monomer, ethyl
2-methylbutanoate, and 1-menthol monomer, respectively (Figure 7 and Table S1).

Molecules 2021, 26, x FOR PEER REVIEW 9 of 13 
 

 

Figure 6. The VOCs in the four chrysanthemum teas: (A) The pie chart and column VOCs of Chamomile; (B) the pie chart 
and column VOCs of ‘Huangju’; (C) the pie chart and column VOCs of ‘Xiaokuixiang’; (D) the pie chart and column VOCs 
of ‘Hangju’. Pie chart and column, (content > 300), error bars show the standard deviation between three biological repli-
cates (n = 3). 

Our quantitative analysis of the identified compounds showed that there were high 
amounts of some of them in chamomile, such as 1,8-cineole monomer, ethyl 2-methyl-
butanoate, 1,8-cineole dimer, 6-methyl-5-hepten-2-one, and hexanal dimer. Likewise, high 
amounts of ethyl 2-methylbutanoate, 6-methyl-5-hepten-2-one, hexanal dimer, and 1,8-
cineole monomer, as well as acetone, were found in ‘Xiaokuixiang’. In ‘Huangju’, high 
amounts of 1-menthol monomer, along with 1,8-cineole dimer, 6-methyl-5-hepten-2-one, 
1,8-cineole monomer, and hexanal dimer were present, and finally, high amounts of 6-
methyl-5-hepten-2-one, 1-menthol monomer, 1,8-cineole monomer, hexanal dimer, and 
hexanal monomer were present in ‘Hangju’ (Figure 6). We determined that ‘Hangju’, 
chamomile, ‘Xiaokuixiang’, and ‘Huangju’ contained the highest levels of 6-methyl-5-hep-
ten-2-one, 1,8-cineole monomer, ethyl 2-methylbutanoate, and 1-menthol monomer, re-
spectively (Figure 7 and Table S1). 

 
Figure 7. PLS-DA of the four chrysanthemum teas. (A) PLS-DA of the four chrysanthemum teas, (B) the variable im-
portance in projection (VIP) scores. 

3.4. PLS-DA Analysis of the Four Chrysanthemum Teas 
PLS-DA is a multivariate statistical analysis method with supervised pattern recog-

nition. PLS-DA was performed to separate the four chrysanthemum teas based on the 
volatile compounds after data normalization. As shown in Figure 7A, the four groups of 
chrysanthemum teas could be completely separated. The relationship between groups 
chamomile and ‘Hangju’ was more similar, and the relationship between groups ‘Xiaokui-
xiang’ and ‘Huangju’ was weaker. Furthermore, ‘Xiaokuixiang’ and ‘Huangju’ were dis-
tinct from chamomile and ‘Hangju’, respectively. A score plot displays clear separation 
between the samples. The samples could be separated into four classes with preferably 
explained variance (R2Y = 0.666, Q2 = 0.512). The variable importance in projection (VIP) 
scores are the estimate of the importance of each variable in the PLS model. Among the 
important volatile compounds that contributed to the separation were ethyl 2-methyl-
butanoate, (E)-2-hexenal dimer, acetone, ethyl 2-methylpropanoate, 1,8-cineole dimer, 
heptanoic acid dimer, methyl 2-methylbutanoate dimer, propylacetate dimer, linalool ox-
ide monomer, 1-menthol dimer, 1-menthol monomer, (E)-2-hexenal monomer, 2-pentenal 
(E) dimer, and 2-methyl butanol dimer (Figure 7B). Taken together, these results revealed 

Figure 7. PLS-DA of the four chrysanthemum teas. (A) PLS-DA of the four chrysanthemum teas, (B) the variable importance
in projection (VIP) scores.

3.4. PLS-DA Analysis of the Four Chrysanthemum Teas

PLS-DA is a multivariate statistical analysis method with supervised pattern recogni-
tion. PLS-DA was performed to separate the four chrysanthemum teas based on the volatile
compounds after data normalization. As shown in Figure 7A, the four groups of chrysan-
themum teas could be completely separated. The relationship between groups chamomile
and ‘Hangju’ was more similar, and the relationship between groups ‘Xiaokuixiang’ and
‘Huangju’ was weaker. Furthermore, ‘Xiaokuixiang’ and ‘Huangju’ were distinct from
chamomile and ‘Hangju’, respectively. A score plot displays clear separation between the
samples. The samples could be separated into four classes with preferably explained vari-
ance (R2Y = 0.666, Q2 = 0.512). The variable importance in projection (VIP) scores are the
estimate of the importance of each variable in the PLS model. Among the important volatile
compounds that contributed to the separation were ethyl 2-methylbutanoate, (E)-2-hexenal
dimer, acetone, ethyl 2-methylpropanoate, 1,8-cineole dimer, heptanoic acid dimer, methyl
2-methylbutanoate dimer, propylacetate dimer, linalool oxide monomer, 1-menthol dimer,
1-menthol monomer, (E)-2-hexenal monomer, 2-pentenal (E) dimer, and 2-methyl butanol
dimer (Figure 7B). Taken together, these results revealed that the volatile fingerprints of
different chrysanthemum teas were successfully established through GC-IMS.

4. Discussion
4.1. Volatile Compounds in Different Chrysanthemum Teas

Chrysanthemum tea is one of the most popular flower teas in China because of its
unique flavor and nutritional qualities [1]. Most studies have focused on the nutritional
and functional components of chrysanthemum tea [4,6,38], but the volatility is also an
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important trait that determines chrysanthemum tea’s overall quality and flavor [10]. To
fill this knowledge gap, in this study, we relied on GC-IMS to identify the volatile compo-
nents in different chrysanthemum teas. Furthermore, a cluster analysis based on volatile
components was used to distinguish chrysanthemum teas with different flavors. More-
over, ‘Xiaokuixiang’ could be a new type of chrysanthemum tea because of its unique
volatile components.

Currently, the main types of chrysanthemum tea on the Chinese market are chamomile,
‘Huangju’, and ‘Hangju’ varieties. We detected and analyzed the VOCs of chrysanthemum
teas made using those three types and also ‘Xiaokuixiang’. The main volatile compounds in
those chamomile tea infusions were aldehydes (34.87%) and terpenoids (30.92%; Figure 6A).
A previous study that also used GC-MS found differing components of main volatile com-
pounds in fresh German versus Roman chamomile teas; the former’s major compounds
were sesquiterpenoids and monoterpenoids, while the latter’s were esters [26]. In our
study, it was obvious that the components of the main volatile compounds are different
between the flower’s head and the brewed tea in chamomile. Our research group bred
‘Xiaokuixiang’, and its exploratory potential is promising. Its levels of ketones, aldehydes,
esters, and terpenoids were 23.9%, 21.86%, 21.34%, and 18.73%, respectively; hence, the
volatile compounds’ distribution of each major category was relatively uniform (Figure 6C).
In stark contrast, for ‘Huangju’, the main volatile compounds present in its tea were ter-
penoids (52.72%) (Figure 6B). To the best of our knowledge, no studies have investigated the
components of the main volatile compounds in ‘Huangju’ chrysanthemum tea. Sesquithu-
jene, nootkatene, β-curcumene, cedrol, and β-bisabolol are the primary compounds in
‘Hangju’ [39]. Compared with the volatile compounds in dried chrysanthemum flowers,
the main volatile compounds in the ‘Hangju’ tea infusion were aldehydes (33.88%) and
ketones (31.69%) (Figure 6D). The components of the main volatile compounds were also
different between the flower’s head and tea infusion in ‘Hangju’, similar to the case in
chamomile. Therefore, different chrysanthemum teas harbor uniquely dominant VOCs.

4.2. Different Chrysanthemum Teas Differed in Their Flavor

We compared the VOC content and compounds in the four chrysanthemum teas.
A total of 150 volatile compounds were identified. Approximately 47 compounds were
identified in different samples by the qualitative and quantitative analyses (Table 1). As
seen in Figure 2, the VOCs for ‘Xiaokuixiang’ were the most abundant and had the highest
concentrations, and the lowest amounts of volatile components were found in ‘Hangju’.
The volatile compound present at the highest level was also different among the four tea
types: 1,8-cineole in chamomile, ethyl 2-methylbutanoate in ‘Xiaokuixiang’, 1-menthol
monomer in ‘Huangju’, and 6-methyl-5-hepten-2-one in ‘Hangju’. However, the most
abundant volatile compounds in the product may not be the most important factor that
contributes to their flavor, because the comprehensive performance of the composition,
type, and content proportion of volatile substances constituted the unique flavor of each tea.

Therefore, in this study, the formation of different flavors of the four chrysanthemum
teas did not necessarily result from highest amount of chemical compounds, but rather,
may have resulted due to the main contribution of volatile compounds present in very
low amounts, or the combination of multiple compounds. For example, in ‘Huangju’ and
‘Hangju’, although the amount of esters was low, esters are the main flavor compounds in
many fruits [40,41], and therefore, the effect of esters on flavor cannot be ignored. Thus,
the formation of the unique flavor of the four chrysanthemum teas was closely related to
the combination and amount of their volatiles and the perception threshold of individual
volatile compounds.

In this study, PLS-DA was performed as shown in Figure 7A, and ‘Hangju’, ‘Huangju’,
chamomile, and ‘Xiaokuixiang’ could be distinguished from each other. Thus, we deter-
mined that GC-IMS may be successfully used to distinguish chrysanthemum tea according
to the composition of volatile substances. In summation, we found a new type of chrysan-
themum tea with a unique flavor that can enrich the varieties of chrysanthemum tea and
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expand chrysanthemum’s economic value, while also providing new insights and ideas for
the study of edible chrysanthemum plant products.

5. Conclusions

In this study, we detected and quantified the variation in volatile flavor components
in infusions made with four types of chrysanthemum teas. HS-GC-IMS was used to ef-
fectively identify characteristic flavor compounds in the different samples. The volatile
components and their amounts differed among the tested chrysanthemum teas. The main
volatile components in chamomile were ethyl 2-methylbutanoate in esters and 1,8-cineole
monomer in alcohols; in ‘Xiaokuixiang’, they were ethyl 2-methylbutanoate in esters and
6-methyl-5-hepten-2-one in ketones. However, in both ‘Hangju’ and ‘Huangju’, they were
6-methyl-5-hepten-2-one in ketones and 1-menthol monomer in terpenoids. The volatile
compounds’ PLS-DA analysis showed that the four chrysanthemum teas could be com-
pletely separated.

Supplementary Materials: The following are available online, Figure S1: Gas-phase ion mobility
spectra of VOCs from four chrysanthemum teas, Table S1: Total volatile compounds were identified
from the four chrysanthemum teas.
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