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Ultra-rare mutations in SRCAP segregate
in Caribbean Hispanic families with
Alzheimer disease

ABSTRACT

Objective: To identify rare coding variants segregating with late-onset Alzheimer disease (LOAD)
in Caribbean Hispanic families.

Methods: Whole-exome sequencing (WES) was completed in 110 individuals from 31 Caribbean
Hispanic families without APOE e4 homozygous carriers. Rare coding mutations segregating in
families were subsequently genotyped in additional families and in an independent cohort of Carib-
bean Hispanic patients and controls. SRCAP messenger RNA (mRNA) expression was assessed in
whole blood frommutation carriers with LOAD, noncarriers with LOAD, and healthy elderly controls,
and also from autopsied brains in 2 clinical neuropathologic cohort studies of aging and dementia.

Results: Ten ultra-rare missense mutations in the Snf2-related CREBBP, activator protein
(SRCAP), were found in 12 unrelated families. Compared with the frequency in Caribbean His-
panic controls and the Latino population in the Exome Aggregation Consortium, the frequency of
SRCAPmutations among Caribbean Hispanic patients with LOAD was significantly enriched (p5

1.19e-16). mRNA expression of SRCAP in whole blood was significantly lower in mutation car-
riers with LOAD, while the expression in whole blood and in the brain was significantly higher in
nonmutation carriers with LOAD. Brain expression also correlated with clinical and neuropatho-
logic endophenotypes.

Conclusions: WES in Caribbean Hispanic families with LOAD revealed ultra-rare missense muta-
tions in SRCAP, a gene expressed in the brain and mutated in Floating-Harbor syndrome. SRCAP
is a potent coactivator of the CREB-binding protein and a regulator of DNA damage response
involving ATP-dependent chromatin remodeling. We hypothesize that increased expression in
LOAD suggests a compensatory mechanism altered in mutation carriers. Neurol Genet 2017;3:

e178; doi: 10.1212/NXG.0000000000000178

GLOSSARY
CBP 5 CREB-binding protein; CI 5 confidence interval; DLPFC 5 dorsolateral prefrontal cortex; ExAC 5 Exome Aggregation
Consortium; FPKM 5 fragments per kilobase per million fragments mapped; GEE 5 generalized estimating equation; IRB 5 institu-
tional review board; LOAD5 late-onset Alzheimer disease;MCI5 mild cognitive impairment;mRNA5 messenger RNA; OR5 odds
ratio;QC5 quality control;SNP5 single nucleotide polymorphism;SNV5 single nucleotide variant;WES5whole-exome sequencing.

Progress has been made in understanding the genetics of late-onset Alzheimer disease
(LOAD),1,2 but gaps in its genetic influence still need investigation. Common variants play
a role in disease risk, but functionally important rare or ultra-rare variants may help to explain
the remaining heritability2,3 undetected by genome-wide association studies. Sequencing of large
families multiply affected by LOAD increases the ability to detect novel variants conferring risk.
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The frequency of LOAD among Caribbean
Hispanic multiplex families from the Domin-
ican Republic was 5 times higher than ex-
pected for similarly aged individuals in
a non-Hispanic white population from the
United States,4 and inbreeding was a signifi-
cant predictor of LOAD in this population
after adjusting for APOE-e4 genotype, an es-
tablished genetic risk factor.5

To identify novel variants associated with
the risk of LOAD, we conducted whole-
exome sequencing in 31 Caribbean Hispanic
families (table e-1 at Neurology.org/ng) with
4 or more affected individuals, no mutations
in known AD genes, specifically PSEN1,
PSEN2, or APP, and no APOE e4 homozy-
gotes. For each family, we sequenced at least 2
affected and 1 unaffected member aged 65
years or older.

METHODS Sample selection. Families were recruited as

a part of a 15-year family-based study with institutional review

board (IRB) approval based in the Dominican Republic.6 Thirty-

one families (98 affected and 12 unaffected individuals) were

selected for sequencing (mean age at onset was 74.8 wa8.3 years,

and 63.1% were women) (table e-1, a–c). All family members had

standard neuropsychological tests and neurologic examinations to

verify their clinical status and for diagnoses based on NINCDS-

ADRDA criteria.7,8

Postmortem human brain samples. Data were obtained from

2 clinical neuropathologic cohort studies: the ROS9 and the

MAP.10 The IRB of Rush University Medical Center previously

approved both studies. Clinical evaluations were used to deter-

mine NINCDS-ADRDA7,8 criteria for dementia annually.11–13 At

death, a clinical diagnosis opinion was provided by a neurologist.14

Neuropathologic evaluations included neuritic plaques, diffuse

plaques, and neurofibrillary tangles in 5 cortical regions, scaled

and averaged to obtain a composite score.15 Participants who met

intermediate or high likelihood were rendered pathologic diagno-

sis of LOAD.16,17

WHOLE-EXOME SEQUENCING Sample preparation.

Qiagen’s Gentra Puregene and FlexiGene kits were
used to extract high-molecular-weight DNA from
fresh or frozen (,280°C) samples. DNA from saliva
was isolated using prepIT.L2P (DNA Genoteck Inc.,
Ottawa, ON, Canada). Cell lines from lymphocytes
(in 13 probands) were used when high-quality blood
DNA was not available. The concentration of DNA
was determined using a NanoDrop spectrophotometer.

Sequencing. The Illumina TruSeq DNA preparation
kit was used to prepare and index genomic DNA
libraries. Custom oligonucleotide baits in the TruSeq
Exome Enrichment kit were used to capture coding
regions and splice sites and amplified according to
the Illumina protocol. The DNA samples were

multiplexed in batches of 12 samples with index “bar-
code” primers. These were sequenced using the Illu-
mina Genome Analyzer IIx, HiSeq 2000, and MiSeq
platforms (illumina.com) as paired-end reads over
82–307 cycles. Demultiplexing by barcode retrieved
individual samples from sequencing pools. We ob-
tained a high coverage across the samples at an average
depth of .603 per sample.

Follow-up genotyping. Putative variants were confirmed
and population frequencies estimated by genotyping
the discovery samples, additional family members,
and unrelated controls of the same ancestry (table
e-1). Allele frequencies of novel variants were estimated
from 1,949 unrelated patients and 318 healthy elderly
controls similar in age and ancestry.6 Genotypes were
generated using the KASP genotyping technology,
which uses allele-specific PCR for accurate calling of
single nucleotide polymorphisms (SNPs) and Indels.18

Analytical methods. Burrows-Wheeler Aligner19 was
used to align sequence reads to the reference genome
build 37. Sequencing data quality control (QC) was
performed using the Genome Analysis Toolkit
(GATK),20 followed by variant calling using the
UnifiedGenotyper and VariantRecalibrator mod-
ules. Variants that passed QC were annotated by
ANNOVAR21 that included functional prediction
by SIFT22 and PolyPhen.23

STATISTICAL METHODS Association tests. Variants
that were validated by follow-up genotyping were
tested for association with LOAD using generalized
estimating equations (GEEs), which accounts for the
familial correlation. We adjusted for age and sex using
data from the families and unrelated healthy controls.
We used GEE to conduct single variant and burden
tests.

For joint analyses of multiple variants, we summed
the number of rare variant alleles found in all individ-
uals and tested association using GEE, adjusting for
familial correlation, age and sex, and APOE e4. The
p value threshold required to define statistical signif-
icance using a rare variant burden analysis for 20,000
genes would be 2.5 3 1026. However, this would be
difficult to achieve by assessing rare or ultra-rare var-
iants in a data set of this size. Thus, to determine
whether or not the variants discovered were enriched
in families with AD in subsequent analyses, we
used data from the Exome Aggregation Consortium
(ExAC) (exac.broadinstitute.org) combined with the
Caribbean Hispanic controls.

Exome Aggregation Consortium. The ExAC database24

contains whole-exome data from 60,706 unrelated
adults sequenced as part of various disease-specific
(excluding AD) and population genetic studies from
6 ethnic groups. For disease association analyses, we
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compared the allele frequencies of suspected variants
in the healthy controls from the Caribbean Hispanic
cohort to the Latino, Caucasian, and African sub-
populations of the ExAC database using a Fisher exact
test to avoid differences based on ancestry. Sub-
sequent disease-associated analyses were only con-
ducted when there were no statistically significant
differences in allele frequency between the Caribbean
Hispanic controls and the ExAC subpopulations. To
confirm associations of genetic variants with LOAD,
we compared the variant allele frequencies by select-
ing 1 patient from each Caribbean Hispanic family

with both unaffected unrelated controls and ExAC
combined using a Fisher exact test.

Gene expression in the postmortem human brain. RNA-
Seq data came from the 541 ROS-MAP postmortem
human brain samples (average age at death was 88.4
NA6.7 years; 63.0% were women and 97.4 self-
identified Caucasian ancestry). RNA was extracted
from the gray matter of frozen dorsolateral prefrontal
cortex tissue using the Qiagen miRNeasy mini kit
(Cat. no. 217004) and the RNase-free DNase Set
(Cat. no. 79254) and quantified using NanoDrop.
RNA-Seq library was prepared on the Broad In-
stitute’s Genomics Platform using the strand-specific
dUTP method25 with poly-A selection.26 Sequencing
was performed on the Illumina HiSeq with 101bp
paired-end reads and minimal coverage of 50M reads.
Reads were aligned to the reference genome
(GRCh37/hg19) using Bowtie and gene expression,
measured as fragments per kilobase per million frag-
ments mapped (FPKM), and estimated using RSEM
software. Quantile normalization was applied to the
FPKM calls, with batch effect removed using Com-
bat.27 Logarithm base 2 transformation was applied to
the gene expression level prior to the analyses.

The Student t test compared brain expression levels
between LOAD and controls. Regression models were
used to examine the association of gene expression with
LOAD and with level of cognition proximate to death.
Regression models were used to examine the relation
between gene expression and a postmortem diagnosis
of LOAD or with LOAD pathology. All models were
adjusted for age at death, sex, education, postmortem
interval RNA integrity number, and APOE e4 status.
Analyses were performed using SAS software, version
9.3, of the SAS(R) system for Linux.

RESULTS Whole-exome sequencing. Variant calling,
recalibration, and application of QC filters resulted
in 290,623 single nucleotide variants (SNVs) and in-
dels called across the 110 individuals from the 31
families (figure 1). The mean depth of sequence cov-
erage was over 60-fold across individuals. We priori-
tized damaging SNVs by SIFT22 or by PolyPhen28

and indels in 78 genes segregating with LOAD in
families (figure e-1, A and B), which were confirmed
by genotyping in the discovery families, additional
family members (265 affected and 61 unaffected in-
dividuals), and a set of 318 unrelated controls of
similar age and ancestry. Using GEE adjusted for age,
sex, and APOE genotype, we found 22 (28%) of the
78 selected variants (in 22 genes) significantly asso-
ciated with LOAD (p 5 6.4e-03 corrected for mul-
tiple testing) (table e-2). Only 4 of these 22 genes
were known to be expressed in brain-ADCY6, CIT,
SRCAP, and SVOPL. The variants in SRCAP,

Figure 1 Workflow of the experiment and yield at each step

CH 5 Caribbean Hispanic; ExAC 5 Exome Aggregation Consortium; GEE 5 generalized
estimating equation; OR 5 odds ratio; QC5 quality control; SNV5 single nucleotide variant;
WES 5 whole-exome sequencing.
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ADCY6, and SVOPL were absent in unaffected
Caribbean Hispanic individuals, but only SRCAPmet
criteria for further analyses by having multiple,
putatively damaging variants segregating in more than
1 of the 31 families.

We observed 10 ultra-rare missense mutations,
defined as having an allele frequency #0.5%, in
SRCAP in 12 families (table 1). Seven of these muta-
tions were predicted to be damaging by either Poly-
Phen or SIFT and had a Combined Annotation
Dependent Depletion29 .10. Twenty-four (24.4%)
of the 98 affected individuals sequenced within the 31
families were carriers of SRCAP mutations. This was
significantly higher than the expected frequency
based on data from ExAC database24 (1.79 expected
mutations; p 5 1.38e-05 using a binomial test).

All 10 SRCAP mutations were genotyped in addi-
tional members of the 31 families and segregated with
affection status but with incomplete penetrance (fig-
ures e-3, A–D and e-4). Of the 265 patients with
LOAD in the 31 families, 47 patients (17.67%) car-
ried at least 1 of the 10 missense mutations in SRCAP
compared with 2 of the 61 (3.2%) unaffected indi-
viduals from these families. Variant p.R1115H
segregated with LOAD in the largest sibship in an
age-dependent manner (supplementary methods,
figure e-2, tables e-3, a and b) and was absent in
Caribbean Hispanic controls and ExAC individuals

of European, Latino, and African ancestry. p.R1115H
was also found within 0.35 MB of a linkage peak (log-
arithm (base 10) of odds 5 1.8). A single patient was
homozygous for an SRCAP p.S2524C mutation and
had an earlier age at onset compared with the average
age in the cohort (63 vs 73.8 years). In family 1755
(figure 2), there were 2 compound heterozygous carriers
(p.L2919F and p.S1033P) with earlier ages at onset
(55 and 59 years) compared with LOAD patients with-
out SRCAPmutations (p5 0.023) or patients who had
a single SRCAP mutation (p 5 0.018). Of interest, no
unaffected family member or unrelated control was
a homozygous or compound heterozygous carrier.

A joint burden analysis within the 31 discovery
families using GEE adjusted for familial correlation,
age, sex, and APOE genotype found a 6-fold increase
in the risk of LOAD (odds ratio [OR] 5 5.94; 95%
confidence interval [CI] 1.59–22.27, p 5 8.2e-03).
Adding the additional 47 families resulted in a 2.5-
fold risk of LOAD in families (OR 5 2.54; 95% CI
1.03–6.21, p 5 0.04). We then tested the joint bur-
den of the 10 SRCAP variants in all the genotyped
individuals in both sets of families, 1,949 unrelated
LOAD cases and 318 unrelated elderly controls (table
e-1b). The risk of LOAD associated with SRCAP
remained increased (OR 5 1.92; 95% CI 1.13–
3.28, p 5 0.016) after including APOE e4 in the
model (OR5 1.82; 95% CI 1.04–3.19, p5 0.036).

Table 1 Missense variants in SRCAP found in WES of Caribbean Hispanic families

Chr Start Gene Ref Obs AA changea

Discovery WESb

Genotyping in
discovery
familiesc Validation genotyping cohort ExAC frequencies

AFF
samplesd FAMe

AFF
samplesd FAMe

Frequency
in familial
load casesf

Frequency
in elderly
unaffected (>65 y)f Latino

Global
frequency

16 30731484 SRCAP G A R940Q 1 1 1 1 4.30e-04 2.92e-03 8.64e-05 8.24e-06

16 30732143 SRCAP T C S1033P 5 3 12 4 8.89e-03 5.85e-03 7.45e-03 7.41e-04

16 30732558 SRCAP C A T1101K 3 1 9 1 7.63e-03 2.92e-03 2.59e-03 6.00e-03

16 30732600 SRCAP G A R1115H 4 1 6 1 1.28e-03 0 0 8.24e-06

16 30732644 SRCAP C T P1130S 1 1 2 2 4.71e-03 7.35e-03 2.94e-03 2.57e-03

16 30734934 SRCAP A G I1397V 3 1 4 1 1.93e-03 0 0.00e100 3.30e-04

16 30748932 SRCAP C G S2524C 2 1 1 1 1.27e-02 2.96e-03 1.30e-03 2.04e-03

16 30749583 SRCAP C G P2741R 3 1 6 2 1.28e-03 0 — —

16 30749652 SRCAP T G V2764G 1 1 2 1 6.66e-04 0 — —

16 30750116 SRCAP C T L2919F 1 1 5 1 2.58e-03 0 6.05e-04 1.35e-03

Abbreviations: ExAC 5 Exome Aggregation Consortium; WES 5 whole-exome sequencing.
a AA change: amino acid change caused by the mutation.
bDiscovery WES: number of affected individuals and families identified as carrying an SRCAP variant in the WES experiment in 110 individuals (31
families).
c Genotyping in discovery families: number of affected individuals and families identified as carrying an SRCAP variant in the validation genotyping in all the
members of the 31 discovery families.
dAFF samples: number of familial-affected samples carrying the SRCAP variant.
e FAM: number of families carrying the SRCAP variant.
f Frequency in the affected and unaffected individuals included familial and unrelated cases and controls.
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To reach genome-wide significance (p 5 2.5e-06)
in a gene-based test, assuming an OR of 2.0 and 5%
causal SNPs and b5 0.8, a gene of average size, such
as SRCAP, requires an extremely large sample size
(N5 42,000). Therefore, we compared the combined
genotyped data mentioned above with data from the
ExAC database.24 Using a Fisher exact test, we found
no statistically significant differences in the allele fre-
quencies of the SRCAP variants in healthy Caribbean
Hispanic controls compared with the Latino, African
American, and white, non-Hispanics in the ExAC
database. We then compared the frequencies of
SRCAP variants of LOAD patients with Caribbean
Hispanic controls alone or with ExAC Latino controls,
ExAC African American controls, or ExAC white,
non-Hispanic controls. Using one mutation carrier
per family, we compared the number of variant al-
leles in the LOAD patients with the number of al-
leles in the ExAC database. Two variants, p.P2741R
and p.V2764G, were not found in the ExAC data-
base (table 1). We used the total number of alleles
genotyped or sequenced for the 10 mutations as the
denominator for the Fisher exact test. The enrich-
ment of SRCAP variants in the Caribbean Hispanic
patients with LOAD was highly significant at p 5

1.19e-16. Similarly, the enrichment was statistically
significant for white, non-Hispanics, and the African
American ethnic groups in the ExAC database (table
e-4; p5 1.51e-21 for white, non-Hispanics; p5 3e-
04 for African Americans). Five of the 10 SRCAP
mutations were not found in the Caribbean His-
panic controls, and 4 of these were absent in the
ExAC Latino data (table 1). Restricting analyses to
these 5 SNPs only, the enrichment remained signif-
icant p 5 3.55e-07.

SRCAP is highly intolerant toward loss of function
and missense mutations.24,30 SRCAP’s intolerance
score (2.23) in the ExAC ranks in the 18th percentile

and in the top 0.15 and 0.3 percentiles of genes
ranked by the Residual Variation Intolerance Score
(RVIS) using the ExAC and Exome Sequencing Pro-
ject data sets, respectively.

Replication in the AD Neuroimaging Initiative data set.

Using data from the Alzheimer Disease Neuroimag-
ing Initiative (ADNI) data set,31 we repeated the anal-
ysis of the exonic regions of SRCAP. The analyses
included 213 patients with LOAD, 304 individuals
with mild cognitive impairment (MCI), and 214
healthy controls of white, non-Hispanic ancestry.
We found a higher frequency of nonsynonymous
mutations in LOAD and MCI cases (10.4%) vs
controls (7.4%) representing a 40% enrichment.
Because of the sample size, we once again compared
the frequency of nonsynonymous mutations in
LOAD with the ExAC database. Of interest, there
was a higher frequency in LOAD vs ExAC controls
(OR 5 1.78, p 5 2.3e-04).

SRCAP gene expression. Among the ROS-MAP co-
horts, 218 of 541 (40.3%) individuals were diagnosed
with LOAD at death, and compared with non-
demented persons, SRCAP expression was signifi-
cantly higher (OR 5 4.9 [2.1–11.6], p 5 0.0002)
(figure 3A). Individuals with higher SRCAP expres-
sion also had lower cognitive scores prior to death
(b 5 20.96, p , 0.0001) (figure 3B). Similar as-
sociations were observed in episodic, semantic and
working memory, and perceptual speed (table e-5).
Using the clinical diagnosis, higher SRCAP expression
was associated with greater likelihood of meeting the
NIA-Reagan criteria for AD (OR 5 4.0 [1.7–9.2],
p 5 0.0015) (figure 3C). Individuals with higher
SRCAP expression had a greater burden of pathology
(b5 0.3, p, 0.0001) (figure 3D). We also accessed
whole-genome sequencing data from 63 participants
with brain expression. Two of 69 individuals

Figure 2 Segregation pattern of missense SRCAP mutations in pedigree 1755

Patients 99 and 9 are compound heterozygotes with ages at onset of 59 and 55 years, respectively. Four other affected siblings who were heterozygous (3
p.L2919F and 1 p.S1033P) for SRCAP mutation had ages at onset of 58, 58, 72, and 76 years, respectively. Import ID: Subject ID; AAO_Affected_Else_A-
geLast_Seen: Age at onset of LOAD or age at last examination for healthy individuals. LOAD 5 late-onset Alzheimer disease.
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sequenced carried 1 of the 10 SRCAP missense mu-
tations (S1033P and L2919F), and both were diag-
nosed with mild cognitive impairment.

Mutation-specific gene expression. Relative messenger
RNA (mRNA) expression of SRCAP (supplementary
methods) in whole blood was measured in 5 mutation
carriers with LOAD, 12 individuals without muta-
tions with LOAD, and 12 elderly controls without
dementia, all unrelated. After normalization against
GAPDH, SRCAPmRNA expression was significantly
lower in the mutation carriers with LOAD than in the
other 2 groups (figure 4) (LOAD carriers 0.74,
LOAD noncarriers 1.128, and controls 0.99, p 5

0.004). We compared the levels of exogenous mature
wild-type SRCAPmRNA in HEK293 cells to the one
carrying an ultra-rare mutation (p.P2741R; minor
allele frequency 5 0.00128 in Caribbean Hispanic
cases and absent in ExAC). mRNA expression of
mutant SRCAP (p.P2741R) was downregulated by
40% relative to wild-type SRCAP.

DISCUSSION A statistically significant enrichment
of SRCAP ultra-rare mutations was found among
patients within Caribbean Hispanic families multiply
affected by LOAD. These mutations were observed to
segregate imperfectly with disease consistent with the
presence of phenocopies in large LOAD families.

Reduced mRNA expression of SRCAP was found in
whole blood of mutation carriers compared with
noncarriers and controls. Higher SRCAP expression
was expressed in noncarriers in both blood of
Caribbean Hispanic patients with LOAD and brains
of Caucasian patients with LOAD, irrespective of
differences in ancestry. Pathologic evidence indicates
that SRCAP expression is altered in LOAD with or
without mutations, correlating with characteristic
clinical manifestations. Taken together, the com-
bined data implicate a putative role for SRCAP in
LOAD.

Snf2-related cyclic AMP-responsive element–
binding protein (SRCAP) binds to the CREB-binding
protein (CBP), which influences the transcription of
CREB. CREB and the related transcription factors
are involved in memory retention32 and consolidation
by hippocampal neurogenesis.33 In AD-transgenic
mice and in humans with LOAD, CREB and
CBP are decreased or disrupted by the accumulation
of amyloid-b.34–36 Reduced levels have also been
observed for pCREB, CBP, and related CREB co-
activators p300 and cAMP-dependent protein kinase
in the human AD brain and blood compared with
elderly controls.37 We also observed reduced mRNA
expression of SRCAP in mutation carriers compared

Figure 3 Association of expression level of SRCAP in autopsy brain tissue with
(A) AD clinical diagnoses, (B) cognitive performance, (C) AD pathologic
diagnoses, and (D) global AD pathology

AD 5 Alzheimer disease.

Figure 4 Comparison of SRCAP mRNA
expression in affected mutation
carriers, affected noncarriers, and
controls

mRNA 5 messenger RNA.
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with healthy elderly controls and unrelated, noncar-
riers with LOAD, and a reduction in SRCAP expres-
sion in cell lines transfected with SRCAP mutations.
We reported an association between episodic memory
and SNP rs2526690 in CBP as well as nominal sig-
nificance for common variants in CREB1 and
RBAP48 in the CREB pathway.38

SRCAP regulates the CREB pathway by catalyzing
H2A.Z into chromatin, which is required for gene
expression and interactions with co-activators of CREB
such as CBP.39,40 In the absence of mutations, the
increased mRNA expression of SRCAP in postmortem
LOAD brain suggests a compensatory response to
promote CREB activation in the presence of Ab accu-
mulation. Paradoxically, in persons with SRCAP mu-
tations, disruption of the binding of SRCAP to CBP
would decrease CREB-mediated transcription in brain
over the lifetime. CREB may have neuroprotective
qualities against Ab toxicity, and persistent downregu-
lation of CREB resulting from decreased SRCAP could
promote neurodegeneration.41 This suggests that
SRCAP has a regulatory role in the CREB pathway
in LOAD, regardless of the presence or absence of
SRCAP mutations. Ample evidence indicates disrup-
tion of CREB transcription by Ab, but the effects of
these ultra-rare mutations on protein function and the
LOAD phenotype will need to be fully elucidated.

Truncating mutations in SRCAP cause Floating-
Harbor syndrome,42 a childhood disorder characterized
by short stature, delayed speech, and facial abnor-
malities. The majority of SRCAP mutations reduced
expression and create a nonfunctioning protein.
Mutations in CBP, the substrate of SRCAP activation,
cause a developmental disorder similar to Floating-
Harbor syndrome and Rubinstein-Taybi syndrome.

This study does have limitations. We found a mod-
est increase in the risk of LOAD among carriers of these
ultra-rare SRCAP mutations in Caribbean Hispanic
families, which makes replication difficult. Validation
and replication efforts in other ethnic backgrounds
would be essential to generalize the findings.
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