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ABSTRACT

Freshwater eels are ecologically, and culturally important worldwide. The New Zealand
long-finned eel (Anguilla dieffenbachii) and short-finned eel (Anguilla australis) are
apex predators, playing an important role in ecosystem functioning of rivers and
lakes. Recently, there has been a national decline in their populations due to habitat
destruction and commercial harvest. The emergence of targeted environmental DNA
detection methodologies provides an opportunity to enhance information about their
past and present distributions. In this study we successfully developed species-specific
droplet digital Polymerase Chain Reaction (ddPCR) assays to detect A. dieffenbachii
and A. australis DNA in water and sediment samples. Assays utilized primers and
probes designed for regions of the mitochondrial cytochrome b and 16S ribosomal
RNA genes in A. dieffenbachii and A. australis, respectively. River water samples (n =
27) were analyzed using metabarcoding of fish taxa and were compared with the ddPCR
assays. The presence of A. dieffenbachii and A. australis DNA was detected in a greater
number of water samples using ddPCR in comparison to metabarcoding. There was a
strong and positive correlation between gene copies (ddPCR analyses) and relative eel
sequence reads (metabarcoding analyses) when compared to eel biomass. These ddPCR
assays provide a new method for assessing spatial distributions of A. dieffenbachii and
A. australis in a range of environments and sample types.

Subjects Aquaculture, Fisheries and Fish Science, Ecosystem Science, Molecular Biology, Zoology,
Freshwater Biology

Keywords Environmental DNA, eDNA, Metabarcoding, High-throughput sequencing, Anguilla,
Droplet digital PCR

INTRODUCTION

Documenting changes in biodiversity is becoming increasingly important due to the
exponential rise in species losses at local, regional, and global scales (e.g., Butchart et
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al., 2010; Dirzo & Raven, 2003; He et al., 2017). In fresh-water ecosystems, traditional
surveillance for fish uses nets, carrion-baited traps, visual surveys, or electrofishing to
obtain an overview of the existing community (Joy, David ¢» Lake, 2013). These techniques
are costly, labor and time intensive, and the detection of rare species requires a high
sampling effort. Traditional methods can be environmentally invasive, often resulting
in bycatch and require direct handling of target organisms (Portt et al., 2006; Reynolds &
Holliman, 2004).

The application of molecular techniques to detect environmental DNA (eDNA) in
a range of sample types forgoes many limitations of traditional surveying (reviewed by
Senapati et al., 2019). The concept of species detection based on eDNA relies on the
assumption that all organisms release their DNA (i.e., through decomposition, skin
cell shedding, waste production) to a collective pool of DNA that exists in the physical
environment. Assays analyzing eDNA can be either designed for a specific target, such as a
single species (or taxa) or non-targeted to assess an entire biological community.

Target-specific eDNA detection techniques have been applied to a range of aquatic
vertebrates and invertebrates, including abundant, rare, invasive, and endangered taxa.
Detecting eDNA of specific species can be more sensitive than traditional practices,
especially when the organisms are at low densities, i.e., rare species in large water bodies
(e.g., Jerde et al., 2011; Sigsgaard et al., 2015; Takahara, Minamoto & Doi, 2013; Wilcox et
al., 2016). Quantitative real-time PCR (qPCR) assays have been shown to be a sensitive
and quantitative approach to detect aquatic organisms, i.e., fish (e.g., Atkinson et al., 2018;
Laramie, Pilliod & Goldberg, 2015; Olsen et al., 2015; Piggott, 2017; Sigsgaard et al., 2015;
Takahara, Minamoto ¢ Doi, 2013; Turner et al., 2014; Wilcox et al., 2013), invertebrates
(e.g., Goldberg et al., 2013; Mauvisseau et al., 2018; Tréguier et al., 2014) and amphibians
(e.g., Pilliod et al., 2013; Secondi et al., 2016; Smart et al., 2015). Recently, the development
of droplet digital PCR (ddPCR), which measures absolute DNA copy numbers, has further
increased assay sensitivity, especially in the presence of PCR inhibitors (Doi et al., 2015a;
Doi et al., 2015b; Mauvisseau et al., 2019b; Simmons et al., 2015). Some studies that use
quantitative methods (i.e., QPCR and ddPCR) have shown positive correlations of PCR
copy numbers to the abundance and/or biomass of the target organism in a waterbody
(Hinlo et al., 2017; Klobucar, Rodgers & Budy, 2017; Mizumoto et al., 2018).

Metabarcoding is increasingly being used to characterize the species diversity of aquatic
communities (Blackman et al., 2017; Hinfling et al., 2016; Klymus, Marshall & Stepien,
2017; Shaw et al., 2016; Valentini et al., 2016). In contrast to target-specific approaches such
as ddPCR, metabarcoding enables the simultaneous identification of many species and
thus the community composition of groups of organisms, e.g. eukaryotes. However, many
studies recognize the various challenges associated with the amplification of multi-template
sequences. For example, primers are often not conserved across the entire community of
interest and therefore not universal, primers can also be biased to certain organisms or
species and reference databases remain inaccurate and often incomplete leading to incorrect
or incomplete taxonomic assignment of sequences (Clarke et al., 2014; Deagle et al., 2014;
Dowle et al., 2016; Wangensteen et al., 2018). Recently, universal primer sets and PCR assays
for metabarcoding fishes have been developed (MiFish-U/E and Teleo-F/R; Miya et al.,
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2015; Valentini et al., 2016). Each primer set targets a section within the 12S rRNA gene;
Mifish-U-F and Mifish-U-R (Miya et al., 2015) targets a region of approximately 220 base
pairs (bp), while Teleo-F and Teleo-R (Valentini et al., 2016) targets a different region of
approximately 100 bp. Both primer sets have sufficient coverage to detect a wide range of
fishes in various habitats; marine (Miya et al., 2015), lakes (Fujii et al., 2019) and rivers (Doi
et al., 2019; Valentini et al., 2016). However, in silico and in vitro trials of the two primer
pairs have previously highlighted differences in their ability to distinguish New Zealand
freshwater fish species (Banks, Kelly ¢ Clapcott, 2020). Only a limited number of studies
have compared detection rates between qPCR or ddPCR and metabarcoding approaches,
with most recommending application of a targeted approach when sensitive detection of
a specific species is paramount (e.g., Wood et al., 2019). A further significant advantage
of qPCR or ddPCR assays over metabarcoding, is that the results are instantaneous post
PCR, whereas metabarcoding samples require high-throughput sequencing post PCR
and bioinformatic processing. The cost of high-throughput sequencing machines is often
prohibitive meaning they are sent to specialized laboratories, adding to the length of time
for results to be returned.

In freshwater environments, the analysis of eDNA in water samples is commonly used
in preference to sediment samples because there is generally a greater probability that
eDNA from fish and other vertebrates will be detected in these samples (e.g., Baldigo et
al., 2017; Buxton, Groombridge & Griffiths, 2018; Shaw et al., 2016). However, some studies
indicate that eDNA is found at higher, albeit more variable, concentrations and persists
for longer in aquatic sediments in comparison to water (Eichmiller, Bajer ¢~ Sorensen, 2014;
Sakata et al., 2020; Turner, Uy ¢ Everhart, 2015). Sediments can also act as a sink for DNA,
expanding the timescale at which eDNA can be assessed (Sakata et al., 2020). A number
of studies have highlighted the potential for reconstructing historical trends in catchment
use, species colonization history and aquatic community composition by eDNA analysis
of terrestrial plants and animals (Giguer-Covex et al., 2014; Parducci et al., 2019; Pedersen
et al., 2016), and freshwater fishes (Nelson-Chorney et al., 2019; Olajos et al., 2018) in lake
sediment cores.

Freshwater eels (Anguilla sp.) have large economic, cultural and ecological importance
worldwide, but global stocks are declining (Arai, 2014; Castonguay ¢ Durif, 2015). Three
freshwater eel species are found in New Zealand. The endemic long-finned eel (Anguilla
dieffenbachii) and the native short-finned eel (Anguilla australis) are widespread throughout
rivers and lakes. The Australian speckled long-finned eel (A. reinhardtii) inhabits a small
western region of the North Island (Jellyman et al., 1996). In freshwater food webs, eels are
the apex predator, and they play an important role in ecosystem functioning (e.g., Kelly
& Jellyman, 2007). Additionally, A. dieffenbachii and A. australis support important
traditional and commercial fisheries in New Zealand (Jellyman, 2007). These eels (or
tuna, as the are known by Maori, the indigenous people of New Zealand) are harvested
by Maori and represent an important part of their cultural history, often featuring in
their mythology (Doole, 2005; Jellyman, 2007). Although still common, there has been a
national decline in eel populations, especially A. dieffenbachii due to habitat destruction
(i.e., installation of dams, weirs and wetland loss) and commercial take (Beentjes, Jellyman
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¢ Kim, 2006; Boubee et al., 2003; Doole, 2005; Hoyle ¢ Jellyman, 20025 Jellyman, 2007;
Jellyman et al., 2000). Climate change has also been implicated as a future risk to eel
recruitment in New Zealand (August ¢ Hicks, 2008). Eel populations in New Zealand are
dependent on a successful reproductive life cycle, characterized by long-distance migrations
between fresh- and seawater environments where feeding and growth, and spawning occur,
respectively. The life histories of both New Zealand eels remain enigmatic, with the exact
location of spawning grounds in the Pacific Ocean not yet known (Jellyman & Tsukamoto,
2002).

Historically, eel population size and distribution have been determined via a range
of different capture methods, e.g., baited or unbaited traps, fyke netting, beam trawls or
electrofishing (e.g., Beentjes, Jellyman & Kim, 20065 Jellyman, 19965 Jellyman ¢» Chisnall,
1999; Jellyman ¢ Graynoth, 2005). Species-specific probe-based qPCR assays have been
successfully developed for a range of freshwater eels globally, namely the European eel,
Anguilla anguilla (Weldon et al., 2020), giant mottled eel Anguilla maramorata (Itakura et
al., 2020), and Japanese eel Anguilla japonica (Watanabe et al., 2005). These Anguilla sp.
specific assays have been used successfully in rivers (Itakura et al., 2020; Itakura et al., 2019),
lakes (Weldon et al., 2020), and experimental tanks. Comparisons between quantitative
eDNA methods and fishing surveys have highlighted the reliability and sensitivity of these
eDNA methods and there are weak correlations between eDNA concentration with the
abundance and biomass of eels (Itakura et al., 2020; Itakura et al., 2019; Weldon et al.,
2020). This study aimed to develop species-specific molecular assays that could be used
for the detection of A. dieffenbachii and A. australis in environmental water and sediment
samples.

MATERIALS & METHODS

Primer/probe design and in silico specificity

Species-specific assays were designed in silico for A. australis and A. dieffenbachii. The

A. australis assay targeted the mitochondrial 16S ribosomal RNA (16S rRNA) gene and
the A. dieffenbachii assay targeted the mitochondrial cytochrome b (cytb) gene. Nucleotide
sequences of A. australis and A. dieffenbachii (16S rRNA and cytochrome b genes) were
sourced from the National Centre for Biotechnology Information nucleotide database
(NCBI; https://www.ncbi.nlm.nih.gov/; Tables S1 and S2). Primers and probes were
designed using Primer3 (Untergasser et al., 2012) from a consensus alignment of multiple
sequences (Tables S1 and S2) to reduce potential intraspecific variability. In addition, target
amplicons were aligned in silico with a wider range of Anguilla spp. (Tables S1 and S2) to
determine percent similarity of sequences and to check for interspecific cross-reactivity.
Target amplicons were also blasted against a wider database (Blastn; NCBI) to further
check that no cross-reactivity would occur with other fish species. Primetime TagMan
probes and molecular beacon probes (IDT) were used for A. australis and A. dieffenbachii,
respectively. Both probes are oligonucleotides that hybridize to an internal region of
the PCR product and release fluorescence during PCR, but unlike TagMan probes that
release fluorescence during replication through cleavage, molecular beacons use changes in
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structure to cause fluorescence and therefore remain intact during PCR and must rebind to
the target in every cycle, which makes the probes more sensitive to single-base mismatches.
To maximize assay specificity, primers and probes were designed in regions of the genes
exhibiting the most interspecific variability among all eel species found in New Zealand
(A. australis, A. dieffenbachii and A. reinhardhtii; Tables S1 and 52). The design specifically
focused on identifying nucleotide mismatches among species at the 3’end of the primer.

Sample collection
Tissue samples

The specificity of both assays was tested on DNA extracted from tissue from A. dieffenbachii
and A. australis, as well as a range of freshwater fish species commonly found in New
Zealand. Tissue samples from morphologically identified A. australis and A. dieffenbachii
specimens were provided from other projects. The samples were collected from
Whakaki Lagoon (39°02'45”S, 177°32'50"E) or Te Waihora/Lake Ellesmere (43°47'21"S,
172°27'19”E), and the Maitai River (41°1649”S, 173°19'47"E), respectively. All tissue
samples were collected under the specifications of Special Permit 651 from the New
Zealand government agency Ministry for Primary Industries.

The specificity of the assays was tested using DNA from other New Zealand
freshwater/brackish fish species which were collected as described in Brjkic ¢ Lear (2017).
Species tested included giant kokopu (Galaxias argenteus), black mudfish (Neochanna
diversus), estuarine triplefin (Forsterygion nigripenne), Cran’s bully (Gobiomorphus basalis),
upland bully (Gobiomorphus breviceps), giant bully (Gobiomorphus gobioides), bluegill
bully (Gobiomorphus hubbsi), redfin bully (Gobiomorphus huttoni) and shortjaw kokupu
(Galaxias postvectis).

Environmental samples

Water samples were collected from 11 rivers across New Zealand (Table S3). Water samples
(n=1to 5 per site) were collected to compare metabarcoding and ddPCR methods across
a range of rivers and sites. For a subset of these sites (W9-W13), water samples were
collected in triplicate to compare metabarcoding and ddPCR with eel biomass.

Single point water samples (0.25-10 L) were collected mid-river using a Smith-Root
eDNA backpack sampler (ANDe™ system; Thomas et al., 2018) or Geotech pump system
and filtered using Polyethersulfone (PES) membrane filters (1.2 pm or 5 pm; Table S3).
One liter of sterile water was filtered in the field as a control for onsite contamination
(sample W11). Filters were transferred to sterile tubes and stored at —20 °C (<3 weeks)
before DNA extraction and subsequent ddPCR and high-throughput sequencing (HTS).

Within one day of water sample collection at sites W9—W13, fish biomass assessments
were also carried out. In a 150 m stretch of river, fish were caught by electrofishing as per
Joy, David ¢ Lake (2013), taxonomically identified, counted and length measured. Fish
weight in grams (W) was calculated by W = aL®, where L is fish length (cm), a is the
intercept and b is the slop value estimated from a linear regression of log-transformed
length-weight data (Jellyman et al., 2013). Total fish biomass was calculated at each site and
used to determine both total and relative biomass of A. dieffenbachii and A. australis. Eels
that could not be identified to species level were classified as unidentified Anguilla. Two
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of these sites, W9 and W10, had no eel biomass recorded and were therefore considered
negative field control sites.

Surface sediment samples were collected from three sites in the upper South Island: Lake
Rotoiti, Maitai River and Tasman Valley Stream (Table S4). These locations were chosen
due to previous knowledge and observations of high concentrations of A. dieffenbachii
and/or A. australis. At each location, a combination of surface sediment (<2 cm depth)
and biofilm (removed from rock surfaces) samples (n = 5 to 7) were collected using a
sterile spatula and stored in sterile tubes at —20 °C (<1 week) before DNA extraction and
subsequent ddPCR analysis (Table S4)

DNA extraction

All molecular analyses (DNA extractions and PCRs) were conducted in sterile laboratories,
with separate and sequential workflow to reduce cross-contamination. Benchtop UV
sterilisation (>15 min) was undertaken before DNA extractions and PCR set-up. PCR
set-up was done in laminar flow cabinets with HEPA filtration.

DNA was extracted from tissue samples using the DNeasy® Blood and Tissue Kit
(QIAGEN, USA) following the manufacturer’s instructions for tissue samples. DNA
was extracted from the PES filters using the Zymo Blood and Tissue Kit according to
the manufacturer’s directions. As preliminary experiments indicated that inhibition was
present in most samples, all DNA samples were diluted 1 in 10 prior to downstream
analysis. DNA was extracted from sediment samples using the DNeasy PowerSoil® DNA
Isolation Kit (QIAGEN, USA). A subsample of surface sediment was weighed directly into
the first tube of the kit and the extraction performed following the manufacturer’s protocol.
A blank extraction without a sample was undertaken using only extraction kit buffers for
all sample types.

Droplet digital PCR
Absolute concentrations of the mitochondrial 16S rRNA and cytb genes for A. australis and
A. dieffenbachii respectively, were measured in tissue and environmental samples using
a BioRad QX200 ddPCR system. Each ddPCR reaction had a total volume of 22 nL and
included primers (forward and reverse; 454 nM), probe (454 nM), 1x BioRad ddPCR
Supermix for probes (no dUTP), 1-3 nL DNA, and sterile water. The ddPCR reaction
mixture (20 wL) was combined with 70 nL of BioRad droplet oil for probes and partitioned
into nanodroplets by the BioRad QX200 droplet generator. The nanodroplet emulsion
(40 nL) was transferred to and amplified in a PCR plate using the following cycling protocol;
95 °C for 10 min for initial denaturation, 45 cycles 0f 94 °C (30 s) and 59 °C (1 min; selected
after testing different annealing temperatures), and a final step of 98 °C, 10 min for enzyme
deactivation. The QX200 droplet reader (BioRad) was then used to analyze the plate. For
each ddPCR assay, at least one negative methodological control (RNA/DNA-free water
Life Technologies), one negative biological control (1 ng L ™! tissue DNA extracted from
non-target eel species) and one positive control (1 ng pL~! tissue DNA extracted from
target eel species) were included.

Fluorescence amplitude thresholds for positive droplets were determined separately
for each assay (10,000 and 2,000 amplitude for A. dieffenbachii and A. australis assays,
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respectively) based on the amplitude of negative droplets across both methodological and
biological negative controls. For quality control, no positive droplets were allowed in either
negative control for assay results to be accepted. When a single positive droplet occurred
in a well, the sample was run twice more to confirm if the sample was positive (droplet in
two of the triplicates) or negative (droplet only in one of the triplicates).

Estimation of assay limit of detection and quantification

Synthetic sections of target DNA (gblocks; manufacturer requirement to be >125 bp,
Integrated DNA Technologies) were designed to match the A. australis 16S rRNA gene
amplicon sequence (126 bp; including 21 additional bases on each end of the amplicon;
Table S5) and the A. dieffenbachii cytb gene amplicon sequence (138 bp; including 6
additional bases on each end of the amplicon; Table S5). The highest concentrations of
gblocks and target tissue DNA were quantified (ng L ™1) using a Qubit (ThermoFisher
Scientific, USA).

The ddPCR assay limits of detection (LOD) and quantification (LOQ) for tissue DNA
were estimated using a ten-fold dilution series (in duplicate) of target tissue DNA ranging
from 1 ng pL~! to 0.1 fg wL™!. The LOD was defined as the last standard dilution at which
the targeted DNA was detected and quantified in at least two out of three replicates. The
LOQ was defined as the last standard dilution in which the targeted DNA was detected and
quantified in all replicates.

Assay accuracy was tested by calculating % yield from gblocks (formula below) using
ten-fold dilution series ranging from 6000—0.0006 copies uL~! and 10,000-0.001 copies
uL™! for A. australis and A. dieffenbachia, respectively. Copies per well (of gblocks) was
calculated from a known concentration (ng) using the molecular weights (provided by
manufacturer) of the target amplicons for A. australis (77,716 g mol™!) and A. dieffenbachii
(85,134 g mol™1).

number of copies (per Well) measured

% vield blocks =
% yield from gblocks number of copies (per well) expected

Sanger sequencing

Amplicon sequence confirmation was carried out on DNA from A. australis and

A. dieffenbachii tissue samples, as well as environmental samples to confirm assay
specificity (see Table 1). For sequencing preparation, ddPCR product was pooled and
cleaned based on the manufacturer suggested protocol (Droplet Digital Application Guide;
“Amplicon Recovery from Droplets”; http://www.bio-rad.com/webroot/web/pdt/Isr/
literature/Bulletin_6407.pdf; BioRad). Briefly, ddPCR reactions were carried out for each
assay separately as previously described. Samples were assayed using 2 to 10 times dilutions
depending on the amplicon concentration. Droplets for one replicate were read as per
the normal protocol to confirm the successful amplification of ddPCR product. Prior to
droplet analysis, the full well volume (40 L) of all other replicate samples were transferred
to a new tube.
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Table 1 Droplet digital PCR and high-throughput sequencing of Anguilla DNA extracted from river water. Droplet digital PCR (ddPCR) ampli-
fication with Anguilla australis and Anguilla dieffenbachii specific assays and high-throughput sequencing (HTS) of DNA extracted from river water
samples.
Site Sample  Species HTS relative abundance (% of total fish community) ddPCR (copies LL™1)
ID size
Average (+se) Positive detection/ Average (*se) Positive detection/
samples analyzed samples analyzed
A. australis 44% 1/1 0.75 1/1
W1 n=1
A. dieffenbachii 55% 1/1 0.24 1/1
A. australis 17% 1/1 0.085 1/1
W2 n=1
A. dieffenbachii - o/1° 0.2 1/1°
A. australis 62% 171 0.51 1/1
W3 n=1
A. dieffenbachii - 0/1 - 0/1
A. australis 60% 171 1.03 171
W4 n=1 . .
A. dieffenbachii 21% 1/1 0.06 1/1
A. australis * 14% 171 2.6 171
W5 n=1
A. dieffenbachii’ 9% 1/1 4.33 1/1
A. australis® 7% 171 5.21 171
W6 n=1
A. dieffenbachii 2% 1/1 0.34 1/1
A. australis 1% 171 0.02 1/1
W7 n=1 . .
A. dieffenbachii 29% 11 0.38 1/1
A. australis - 0/3" 0.12 1/3"
W8 n=3 . .
A. dieffenbachii 75+ 11.3% 2/3° 0.51 £ 0.21 3/3
A. australis - 0/3 - 0/3
W9 n=3 . .
A. dieffenbachii 12.6% 1/2° 0.56 £ 0.36 3/3
A. australis - 0/3 - 0/3
W10 n=3 . .
A. dieffenbachii - 0/3" 0.07 1/3°
Wil 5 A. australis 13.0 £ 2.64% 5/5 4.69 £0.47 5/5
n=
A. dieffenbachii 52.9 + 2.00% 5/5 12.62 £ 0.93 5/5
Wiz 3 A. australis 77.7 £3.91% 3/3 4.82+0.44 3/3
n=
A. dieffenbachii 16.9 £ 2.75% 3/3 1.26 £ 0.37 3/3
A. australis 15.0% 1/3" 1.01 £0.16 3/3"
WI3  pn=3 ‘ )
A. dieffenbachii 10.6 £ 0.36% 2/3" 1.74 £ 0.31 3/3"
W14 . A. australis - 0/1 - 0/1
n=
(control) A. dieffenbachii — 0/1 — 0/1
Notes.

2ddPCR products were sequenced and confirmed amplification of correct sequence.
bsamples with different number of positive detections between HTS and ddPCR methods.

After all droplets floated to the top, the floating droplet phase was retained from the
ddPCR product mix and the bottom oil phase discarded. An aliquot of TE buffer (20 uL for
1x ddPCR well, total 40 wnL > 1 ddPCR well) was added to the droplet phase, followed by
chloroform (70 nL for 1 x ddPCR well, total 140 wL > 1 ddPCR well). The mix was vortexed
(1 min) and centrifuged (15,500 g, 10 min). The ddPCR amplicon (upper aqueous layer)
was retained, quantified (Qubit) and kept at —4 °C prior to sequencing. Bi-directional
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sequencing was undertaken using the BigDye Terminator v3.1 Cycle Sequencing Kit at the
Genetic Analysis Services, University of Otago (Applied Biosystems, CA, USA).

High-throughput sequencing and bioinformatics

For water samples (W1-W8, W14), regions of the mitochondrial 12S rRNA gene were
amplified using two previously published primer sets with illumina tags: MiFish-UF
and MiFish-UR (Miya et al., 2015) and Teleo-R and Teleo-F (Valentini et al., 2016). For
samples W9-W13, only the MiFish primer set was used. Each PCR reaction consisted of
10 nL of 2x MiFi Taq Mastermix (Bioline, London, UK), 1 nL of the relevant forward
and reverse primer, 6 pL of DNAse free sterile water (Invitrogen, Carlsbad, CA, USA)
and 2 pL of template DNA. Each PCR run included a positive control (DNA extracted
from the tissue of G. argenteus) and a no template control. Cycling conditions consisted
of an initial denaturation step at 95 °C for 2 min, followed by 40 cycles of denaturation
at 95 °C for 30 s, annealing at 55 °C for 30 s and extension at 72 °C for 45 s, with a final
extension at 72 °C for 5 min. Each PCR was conducted in triplicate to minimize the impact
of PCR biases and the PCR product pooled for visualization on a 1% agarose gel. The
pooled PCR product was purified and normalized using SequelPrep Normalization plates
(Applied Biosystems, Foster City, CA, USA), resulting in a concentration of ~1 ng mL~L,
The cleaned samples were sent to Auckland Genomics Facility for paired-end sequencing
on an Illumina Miseq™ platform (2 x 250 bp and 1 x 150 bp for MiFish and Teleo
assays, respectively). The concentration and quality of the library was quantified using a
bioanalyzer. The library was diluted to 4 nM, denatured and a 15% PhiX spike added. The
library was further diluted to a final loading concentration of 7 pM. Raw sequence reads
are deposited in the NCBI short read archive (SRP319777).

Primers were removed from the raw reads with the program Cutadapt (Martin, 2011)
allowing one mismatch. Sequences without primer sequences were discarded. Remaining
sequences were processed with DADA?2 (Callahan et al., 2016) within the R framework (R
Core Team, 2016). Sequences were filtered and trimmed to 150 bp for the MiFish primer
set and 85 bp for the Teleo primer set, with a maximum expected error of two for forward
reads and four for reverse reads. Error profiles for both forward and reverse reads were
estimated with DADA?2 using 103 bases. Sequences were then dereplicated and sample
inference undertaken for each sample. Forward and reverse reads were merged with a
maximum of one mismatch and a minimum overlap of 50 bp for the MiFish sequences
and 40 bp for the Teleo sequences. Sequences were size-selected (160-240 nucleotides
for MiFish and 90-140 nucleotides for Teleo), and chimeras were removed using the
removeBimeraDenovo command in DADA?2. A reference database was constructed using
12S rRNA sequences of chordates downloaded from GenBank and supplemented with
12S rRNA sequences of New Zealand native fishes (Table S6; Banks, Kelly ¢ Clapcott,
2020). Taxonomic assignment was undertaken using DADA2 and the assign Taxonomy
command with bootstrapping increased to 90. This was undertaken due to the closely
related nature of many of New Zealand’s freshwater species to reduce the risk of spurious
species assignments. The number of reads for amplicon sequence variants (ASVs) present
in the negative controls was subtracted from all samples. The resulting ASVs with the
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corresponding taxonomic assignment were filtered to exclude non-fish sequences. Samples
with <100 reads were removed. Read abundance tables for Anguilla spp. were constructed
from the data using the Phyloseq package (McMurdie & Holmes, 2013) in Rstudio (R Studio
Team, 2015). Read numbers were converted into relative read abundance (% of total fish

abundance) and when both primer sets were used, results were averaged from Teleo and

MiFish primer sets.

Data analysis

Data distributions were evaluated with exploratory histograms and boxplots to ensure
assumptions of normality and homogeneity of variance (Levene’s test) were met. DNA
concentrations (from eel tissue and gblocks), copy numbers of amplicons, relative eel reads
from metabarcoding and eel biomass parameters were log-transformed prior to analysis to
normalize the data. Simple linear regression was undertaken to determine standard curve
correlations between dilution series of a known amount of DNA (from eel tissue or gblocks)
and copy numbers of amplicons. For environmental data, simple linear regressions were
used to determine relationships between log-transformed biomass parameters (relative and
total), relative eel reads from metabarcoding and copy numbers of amplicons in a subset
of water samples (W11-W13) with sufficient biological replication (n = 3 or n = 5). Data
from negative sites W9 and W10 were predominantly zero values and these were excluded
from linear regression analyses. Statistical analyses were conducted using R software (R
Core Team, 20165 R Studio Team, 2015) with ggplot2 (Wickham, 2016) and heplots (Fox,
Friendly & Monette, 2018).

RESULTS

Primer/probe design and in silico specificity

The A. australis assay amplified a 126 bp region of the 16S rRNA mitochondrial gene
using the forward primer (A.aust16S-F: 5~CCC AAA AGC AGC CAC CTG -3'), reverse
primer (A.austl16S-R: 5~AGG GGG TGG GGA GTT TAT TA -3’) and primetime probe
(A.aust16S-P: 5'—/56-FAM/AAA GAA AGC/ZEN/GTT AAA GCT CCG A/3IABKFQ/ -3';
Fig. 1A). The A. dieffenbachii assay amplified a 138 bp region of the cytb mitochondrial
gene using the forward primer (A.dieffCytB-F: 5-GAT TCT TCG CAT TCC ACT TCT
TA -3'), reverse primer (A.dieffCytB-R: 5~GGA CTT TGT CTG CGT CAG AGT TT -3')
and molecular beacon probe (A.dieffCytB-P: 5~/56-FAM/TCC TAC ATG AAA CAG GAT
CAA GCA ATC CA/3IABKFQ/ -3'; Fig. 1B). The sequence similarity of A. dieffenbachii
and A. australis for the whole 16S rRNA and cytb genes, was 97% and 94% respectively.
Sequence similarity of amplified products between the two species was 86% and 89% for
16S rRNA and cytb, respectively (Tables S1 and S2).

In silico specificity was validated by nucleotide mismatches between species-specific
primer and probes and non-target Anguilla sp. Specifically, there were 10 base pair
mismatches (across both primers and probe) between the A. australis assay and the
A. dieffenbachii gene sequence (Fig. 1A) and similarly there were 11 base pair mismatches
between the A. dieffenbachii assay and the A. australis gene sequence (Fig. 1B). In addition,
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A 16S rRNA gene (ddPCR amplicon)

Anguilla australis 1 CCCAAAAGCAGCCACCTGTAAAGAAAGCGTTAAAGCTCCGATAAATACAAACCAAAAATA
Anguilla dieffenbachii b 5095 0000000000 U NG 500 0000000000003 000 I5(E€58 000000 (€56 000 s 500
Anguilla reinhardtii 1 556000 (580600000000 4056000 000000000300003 (€5 0000060000000 5000
Anguilla australis 61 AAGATAATAAACTCCCCACCCCCT
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B Cytochrome b gene (ddPCR amplicon)

Anguilla dieffenbachii 1 GATTCTTCGCATTCCACTTCTTATTCCCATTTGTAGTTGCTGGAGCTACAATAATTCATC
Anguilla australis L 56 60000000006000060000 (©5€a0 0000000000000 00 (@b00000000000 Bo60000
Anguilla reinhardtii L 506000000000000080000 600095000000 0000003 (€6 aC500600000000000 CP
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Anguilla dieffenbachii 121 AAGTCC

Anguilla australis 121 ..A...

Anguilla reinhardtii 121 ..A...

Figure 1 Target species-specific primer and probe sequences used for amplification of Anguilla aus-
tralis or Anguilla dieffenbachii DNA by droplet digital PCR. Target species-specific sections of; (A)
16S ribosomal RNA gene, and (B) Cytochrome b mitochondrial gene for species-specific amplification by
droplet digital PCR (ddPCR) for; (A) Anguilla australis, and (B) Anguilla dieffenbachii. Species-specific
primer and probe positions are indicated by red and blue text, respectively. Interspecific sequence mis-
matches between New Zealand Anguilla spp. are shown.

Full-size & DOI: 10.7717/peer;j.12157/fig-1

in silico testing identified six and seven base pair mismatches between the A. reinhardtii
gene sequence and the A. australis and A. dieffenbachii assays, respectively.

Assay validations using ddPCR

Assay specificity

Anguilla australis and A. dieffenbachii ddPCR assays successfully amplified tissue DNA from
morphologically identified A. australis and A. dieffenbachii specimens (Table 1). There was
a distinctive division between positive and negative droplets in both ddPCR assays (Fig. S1).
There was no cross-reactivity between assays for each eel species and tissue DNA from the
non-target eel species at the maximum DNA concentrations tested (1 ng pL™1; Fig. S1).
Sequencing confirmed the correct amplification of either the A. australis 16S rRNA gene
or A. dieffenbachii cytb gene in all ddPCR products that were sent for sequencing. Neither
eel ddPCR assay cross-reacted with any of the non-target freshwater fish species assessed.

Assay sensitivity and percentage yield

Serial dilutions of tissue DNA and synthetic DNA (gblocks) had a strong and significant
correlation (r? > 0.96, p < 0.001) to the amplicon copies per well determined by ddPCR
fluorescence (Fig. 2). Using synthetic gblocks as template, the assays were linear with
positive detections in range from 6000-0.06 copies uL~! and 10,000-0.1 copies uL =" for
A. australis and A. dieffenbachii, respectively. Within this linear range, percentage yield of
gblock DNA (number of copies measured/number of copies expected) was on average
80.07% = 15.36% for the A. australis assay and 62.65% =+ 7.39% for A. dieffenbachii assay.
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Figure 2 Linear regression analysis of droplet digital PCR copy numbers and target DNA
concentrations from eel tissue DNA or synthetic amplicon sequences. The relationship between
the log-transformed amplicon copies per well of droplet digital PCR (A, B) Anguilla australis and
(C, D) Anguilla dieffenbachii assays and log-transformed dilution series concentration of target DNA
concentrations sourced from (A, C) eel tissue DNA, and (B, D) synthetic amplicon sequence (gblocks).
Results from linear regression analysis are shown.

Full-size & DOI: 10.7717/peerj.12157/fig-2

Using tissue DNA as template, the assays were linear with positive detections in range
from 1-0.001 ng wL™! for A. australis and A. dieffenbachii (Fig. 2.). The LOQ and LOD of
tissue DNA amplification was 0.001 and 0.0001 ng T P respectively, for both A. australis
and A. dieffenbachii assays.

Environmental sample assessment
Water samples

Of the 27 filtered river water samples tested, 16 were positive for A. australis and 18 for
A. dieffenbachii in the metabarcoding and ddPCR analysis (Table 1). In addition, the
ddPCR assays detected A. australis and A. dieffenbachii DNA in three and six samples,
respectively in which there was no positive detection in the metabarcoding analysis. At
sites with biomass assessment (n = 5), sites with eel biomass (W11-W13) also had positive
detection of eel DNA by metabarcoding or ddPCR for both species. In addition, for W9
and W10, ddPCR and metabarcoding detected A. dieffenbachii, despite no eel biomass
recorded. Sequencing confirmed the correct ddPCR amplification of both A. australis and
A. dieffenbachii DNA in sample W5 as well as additional confirmation of A. australis DNA
in sample W6 (Table 1).
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Eel biomass at sites differed between species, ranging from 0-901 g and 0-7130 g for
A. australis and A. dieffenbachii, respectively. There was a significant positive relationship
(p < 0.001) between eel biomass (g) in the river and ddPCR copy numbers per mL of
river water filtered for both A. australis and A. dieffenbachii (Fig. 3). Goodness of fit of
models were strong, with high 2 values for the A. australis (r* = 0.92) and A. dieffenbachia
(r2=0.91). For A. australis, a positive relationship (p < 0.007) but with a lower goodness
of fit (r> = 0.66) was also identified between metabarcoding relative eel reads (%) and
relative biomass, however a contrasting negative relationship was identified when % reads
was compared to absolute A. australis biomass (g; Fig. 3). In contrast, a significant positive
relationship was identified between metabarcoding relative eel reads (%) and both total and
relative biomass for A. dieffenbachia, with r? values improved when relative eel reads were
compared to relative biomass (r? = 0.74) in comparison to absolute biomass (r* = 0.95;
Fig. 3). Despite significant relationships existing between eel DNA proxies (ddPCR and
metabarcoding relative reads) and eel biomass, there was only a positive relationship
between ddPCR copies and relative metabarcoding reads for A. dieffenbachii (r*> = 0.69,
p = 0.003) with an opposing negative relationship for A. australis (r> =0.91, p < 0.001;
Fig. 3).

There was a proportion of eel biomass and metabarcoding reads that were identified as
Anguilla sp. but were unable to be further classified to species level. In the metabarcoding
analysis of sample W11, Anguilla sequences that could only be assigned to genus level
accounted for a relatively small proportion of total fish community (1.64 + 0.03%)
in comparison to the proportion of A. australis and A. dieffenbachii (13% and 53%,
respectively). In comparison, Anguilla biomass that could not be morphologically identified
to species level was 0.8%, 49.2% and 26% of the total eel biomass at sites W11, W12 and
W13, respectively. Analysis of species-specific relationships between DNA proxies and
biomass did not include unidentified Anguilla biomass.

To further explore if the high proportion of unspecified Anguilla biomass impacted
these relationships, analyses were also carried out at genus level (i.e., combined species
data for metabarcoding and ddPCR analyses) that also included unidentified Anguilla
biomass in the models (Fig. 4). These produced positive, significant (p < 0.001) and
strong (r? > 0.8) relationships between ddPCR concentrations and total biomass as well
as between metabarcoding relative reads and relative biomass. No significant relationship
was identified between % reads and absolute biomass (p = 0.9; Fig. 4). Even with species
data combined, there was no significant relationship between ddPCR concentrations and
relative metabarcoding relative reads (r*> =0.03, p = 0.07; Fig. 4).

Sediment and biofilm samples

The ddPCR assay results were positive for A. dieffenbachii in all samples from Lake Rotoiti,
with only one detection of A. australis (Table 2). This was consistent with multiple A.
dieffenbachii observed at the site during sampling. In the Maitai River, A. dieffenbachii was
detected in only two of the five samples (M1 and M5) even though multiple A. dieffenbachii
were visibly present at the sampling site. No A. australis was detected. There were three and
two positive detections for A. australis and A. dieffenbachii in the Tasman Valley Stream,
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Figure 3 Targeted species-specific linear regressions between droplet digital PCR and metabarcoding
analyses of eel DNA in river water and associated eel biomass. The relationships between log-
transformed (A) high-throughput sequencing relative reads (%) and eel biomass (g), (B) droplet
digital PCR (ddPCR) amplicon copies per mL of filtered water and eel biomass (g) (C) high-throughput
relative reads (%) and eel biomass relative to total fish biomass (%) and (D) dd PCR amplicon copies per
mL of filtered water and high-throughput sequencing relative reads for Anguilla dieffenbachii and Anguilla
australis at three river sites (n = 3 DNA samples per site except for W11 with n = 5). Results from linear
regression analysis are shown.

Full-size Gl DOI: 10.7717/peerj.12157/fig-3

respectively (Table 2), consistent with the visual identification of both species. Despite
both eel species being present, eels were not detected in three out of the five samples from
Tasman Valley Stream.

DISCUSSION
Assay design, specificity, and sensitivity
In this study we successfully developed ddPCR assays for two closely related eel species,
A. australis and A. dieffenbachii. Using these assays, eDNA from both species was detected
in environmental water and sediment samples collected from lakes and rivers. There
was no cross-reactivity with any of the other New Zealand freshwater fish species tested.
These results corroborate many studies that highlighted the ability of probe-based gPCR
or ddPCR assays to specifically detect freshwater fishes including other Anguilla sp. in
environmental samples, even at low abundances (e.g., Atkinson et al., 2018; Bergman et al.,
20165 Itakura et al., 2020; Ttakura et al., 2019; Piggott, 2017; Simmons et al., 2015; Weldon et
al., 2020).

Attaining species-specific detection can be problematic when attempting to distinguish
among closely related species. For example, Wilcox et al. (2013) and Wilcox et al. (2015)
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Figure 4 Linear regressions between droplet digital PCR and metabarcoding analyses of total
eel DNA in river water and associated eel biomass. The relationships between log-transformed (A)
high-throughput sequencing relative reads (%) and eel biomass (g), (B) droplet digital PCR (ddPCR)
amplicon copies per mL of filtered water and eel biomass (g) (C) high-throughput relative reads (%) and
eel biomass relative to total fish biomass (%) and (D) dd PCR amplicon copies per mL of filtered water
and high-throughput sequencing relative reads for Anguilla (combined results from Anguilla dieffenbachii,
Anguilla australis and unidentified Anguilla) at three river sites (n = 3 DNA samples per site except for
W11 with n = 5). Results from linear regression analysis are shown.

Full-size G4l DOI: 10.7717/peerj.12157/fig-4

noted it was challenging to design species-specific assays for closely related species of
char (Salvelinus sp.) and subspecies of trout (Oncorhynchus sp.), respectively. A decline
in assay specificity can result in an increase of both false negative and positive target
species detections (Freeland, 2017; Wilcox et al., 2013). In the present study, there was high
sequence similarity between A. dieffenbachii and A. australis for both target genes and
therefore careful primer and probe design was required to maximize sequence mismatches
between the species. Wilcox et al. (2013) highlighted the importance of mismatches being
in the primer in preference to the probe, and for these mismatches to be concentrated at the
3’end of the primers. We followed this approach, which restricted the flexibility of primer
and probe design. Although this enabled specific assays to be developed, it is likely that assay
sensitivity was slightly reduced (i.e., for optimised ddPCR assay design refer to Edwards ¢
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Table 2 Droplet digital PCR analysis of Anguilla DNA extracted from surface sediments. Droplet digital PCR (ddPCR) amplification with An-
guilla dieffenbachii and Anguilla australis specific assays of DNA extracted from various surface sediment samples.

Site Sample ID Species identified ddPCR (number of copies Eels present at sampling
per mg wet weight of material) (++) abundant (>10)
(+) present (>0 and <10)
(-) absent
R1 A. australis 0.29" -
A. dieffenbachii 2.81 ++
A. australis - _
R2 } .
A. dieffenbachii 0.56 ++
Lake Rotoiti R3 A. australis - _
A. dieffenbachii 3.59 ++
A. australis - _
R4
A. dieffenbachii 1.32 ++
A. australis - _
R5 i .
A. dieffenbachii * 3.21 ++
A. australis - _
M1 ] .
A. dieffenbachii 0.16 ++
A. australis - _
M2 ] .
A. dieffenbachii - T+
Maitai River M3 A. australis - _
A. dieffenbachii - ++
A. australis - —
M4 i .
A. dieffenbachii - 4+
A. australis - -
M5 i .
A. dieffenbachii 0.25" ++
1 A. australis - +
A. dieffenbachii 0.13° ++
2 A. australis - +
A. dieffenbachii - 4+
13 A. australis - +
Tasman Valley Stream A. dieffenbachii - ++
J4 A. australis - +
A. dieffenbachii - 4+
5 A. australis’ 40.54 +
A. dieffenbachii* 24.76 ++
6 A. australis 1.07° +
A. dieffenbachii 6.88 ++

Notes.
2ddPCR products were sequenced and confirmed amplification of correct sequence.
bsingle droplet samples were measured in triplicate to confirm true positives.

Logan, 2004; Huggett et al., 2013). The LOQ for target tissue DNA was 1073 ng pnL~! and

LOD 10™* ng uL ™!, respectively for A. australis and A. dieffenbachii. These levels are within
the ranges of LOD and LOQ reported for other targeted species assays, albeit at the lower
end of sensitivity. For example, LOD for the mussel Margaritifera margaritifera was 10~* ng
or 107 ng of DNA depending on the target gene (Mauvisseau et al., 2019a; Stoeckle, Kuehn
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¢ Geist, 2016), whereas higher sensitivity was found for the invasive crayfish Procambarus
clarkia, and the endangered newt Triturus cristatus (10-8 ng pL~! and 10-7 ng pL™%,
respectively; Buxton et al., 2017; Tréguier et al., 2014). Despite lower LODs, the LOQs for
A. australis and A. dieffenbachii were similar to P. clarkia and T. cristatus (10-4 ng pL™!
and 10-5 ng WL ™1, respectively; Buxton et al., 2017; Tréguier et al., 2014).

Comparison of droplet digital PCR with metabarcoding

Positive eel DNA detection by ddPCR occurred at all sites with eel presence as determined
by metabarcoding analysis. Furthermore, the new targeted ddPCR approach resulted

in a slightly higher number of positives detections of A. dieffenbachii and A. australis in
comparison to commonly used metabarcoding methods (MiFish-U/E and Teleo-F/R; Miya
et al., 2015; Valentini et al., 2016) corroborating the results from other studies (Bylemans et
al., 2019; Harper et al., 2018; Schenekar et al., 2020). Primer bias is a plausible explanation
for the lower number of detections in the metabarcoding approach. Metabarcoding studies
on ‘mock communities’ have highlighted that the detection of specific taxa within more
complex communities can be markedly reduced and alluded to primer bias as a reason
for this (Lee et al., 2012; Pochon et al., 2013). In a complex freshwater community matrix,
as investigated here, the target gene copy numbers of other taxa in the samples may be
differentially enhanced in comparison to A. dieffenbachii and A. australis. These results
highlight the need for careful consideration when using metabarcoding approaches to
detect specific species in environmental samples.

Comparison of DNA methods with biomass measurement
Positive DNA detections in the water aligned with the presence of eel biomass at sites. In
addition, metabarcoding and ddPCR positively detected eel DNA in the water at a site
with no eel biomass measured. This positive detection could be due to various factors, i.e.,
DNA methods being more sensitive than electrofishing methods that are known to range
in efficacy (Meador, McIntyre ¢ Pollock, 2003) or downstream transportation of fish eDNA
from above the defined fishing site (Pont et al., 2018).

Both ddPCR and metabarcoding DNA detection methods performed well at estimating
A. dieffenbachii biomass across five river sites as determined by traditional electrofishing
approaches. The ddPCR approach improved model goodness of fit and had a positive
significant relationship with A. australis biomass in comparison to metabarcoding,
suggesting that the relationship with ddPCR concentration was more reliable at a lower
biomass, as found for A. australis. In previous studies, eEDNA concentrations in water
samples have been similarly correlated to eel abundance and/or biomass in rivers (Chin et
al., 2021; Itakura et al., 2020; Itakura et al., 2019) and lakes (Weldon et al., 2020). Despite
this, the reliability of using eDNA concentrations to quantify population abundances is
under considerable debate. Some studies on a wider range of organisms have found a
positive correlation among results generated using molecular techniques and biomass and
abundance estimates (Klobucar, Rodgers ¢ Budy, 2017; Klymus et al., 2015; Mizumoto et
al., 2018; Takahara et al., 2012), while others note the absence of such correlation (Capo er
al., 2019; Deutschmann et al., 2019; Spear et al., 2015). Many of these positive relationships
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have been found in controlled laboratory set ups (Doi ef al., 2015b; Harper et al., 2019;
Klobucar, Rodgers ¢ Budy, 2017; Mizumoto et al., 2018; Takahara et al., 2012) with limited
success in the natural environment (Capo et al., 2019; Yates, Fraser ¢ Derry, 2019). There
are a number of factors such as temperature (Lacoursiére-Roussel, Rosabal ¢ Bernatchez,
20165 Takahara et al., 2012), and feeding and diet (Klymus et al., 2015) that influence the
amount of DNA in the environment and thus the relationship between abundance or
biomass and eDNA concentrations. Further caution is required as different life stages often
have variable cell numbers and different amounts of DNA may be shed at each life stage. For
example, Takeuchi et al. (2019) found that concentrations of eDNA shed from the Japanese
eel differed significantly among all life stages. In fresh water, the eel life cycle encompasses
elvers (ca. 6-20 cm), juveniles and adults (up to 24 kg and 3 kg for A. dieffenbachii and A.
australis, respectively) with sexual dimorphism in body size (Todd, 1980). At each eel life
stage there are also differences in habitat as well as diet (e.g., Jellyman, 1996; Jellyman ¢
Chisnall, 1999). Controlled experiments to compare the detection of eel DNA in water and
sediment with known parameters such as eel abundance, sex and body size are required to
address these issues and understand the future potential of using eel DNA as a proxy for
abundance under different conditions. Despite these uncertainties, targeted approaches,
such as the ddPCR assays developed in this study are extremely sensitive and specific. The
results are obtained instantaneously after the PCR step and using the BioRad machine up to
96 samples including controls can be analyzed simultaneously allowing for high-throughput
and rapid turnaround times.

Application of droplet digital PCRs on surface sediment DNA

Positive eel DNA detection in sediment samples aligned with the presence of eels at
sites as determined by visual surveys. However, in contrast to the consistency of water
eDNA detections, our data indicates that eDNA detections are more variable in sediment.
Several sediment samples were collected at three sites (two rivers, one lake). At each
site these were spatially close and taken near target species (ca. 5 m distance). Positive
detections (per site) corresponded to the eel species observed at sites, but detections
were variable among samples with some replicates failing to detect either eel species,
highlighting the problem of false negatives. There is mixed evidence in the literature
about the effectiveness of assessing eDNA in sediment. Turner et al. (2014) found that
fish DNA persisted for longer in sediment than water and suggested that eDNA was
more stable in sediment. In contrast, comparisons between water and sediment samples
for targeted fish detection or metabarcoding found that detection was more effective

in water column samples (Buxton, Groombridge ¢ Griffiths, 2018; Eichmiller, Bajer ¢
Sorensen, 20145 Shaw et al., 2016). Eichmiller, Bajer ¢ Sorensen (2014) observed that DNA
was concentrated in sediment but was highly variable and suggested this was due to
differential deposition and resuspension of sediment and DNA degradation. A larger
number of samples from a wider variety of habitats are required to confirm these possible
explanations. Furthermore, different sampling strategies and sample replication need to
be investigated to determine how sampling methods may affect the occurrence of false
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negatives and therefore the likelihood of positive detection. This next step is necessary
before considering the application of these eDNA assays as monitoring tools.

CONCLUSIONS

In this study we successfully developed species-specific ddPCR assays to detect A.
dieffenbachii and A. australis DNA in both water and sediment samples. The ddPCR
assays detected eels in a greater number of waters samples than when metabarcoding
techniques were applied. Water sample analyses using ddPCR and metabarcoding methods
were positively correlated with species-specific biomass. We recommend further research
across a greater number and type of river sites to determine the consistency of these
relationships and establish whether DNA methods are a reliable proxy of eel biomass.
When analyzing surface sediment/biofilm samples, there were several false negative results
that may relate to our ability to effectively extract DNA from sediment/biofilms or spatial
variation in organism DNA. The successful detections of eel DNA in water by ddPCR in
addition to its correlation with eel biomass coupled with the high-throughput and rapid
turnaround times highlights the potential for using these assays as a monitoring tools which
would enable analysis of eel population at scales and resolutions not previously possible.
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