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Bimodal Expansion of the Lymphatic Vessels Is Regulated by
the Sequential Expression of IL-7 and Lymphotoxin a1b2 in
Newly Formed Tertiary Lymphoid Structures
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Menka Chachlani,* Nathalie Steinthal,* David H. Gardner,* Philip Rankin,*
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Sanjiv Luther,x Christopher D. Buckley,* and Francesca Barone*

Lymphangiogenesis associated with tertiary lymphoid structure (TLS) has been reported in numerous studies. However, the kinetics

and dynamic changes occurring to the lymphatic vascular network during TLS development have not been studied. Using a viral-

induced, resolving model of TLS formation in the salivary glands of adult mice we demonstrate that the expansion of the lymphatic

vascular network is tightly regulated. Lymphatic vessel expansion occurs in two distinct phases. The first wave of expansion is

dependent on IL-7. The second phase, responsible for leukocyte exit from the glands, is regulated by lymphotoxin (LT)bR

signaling. These findings, while highlighting the tight regulation of the lymphatic response to inflammation, suggest that targeting

the LTa1b2/LTbR pathway in TLS-associated pathologies might impair a natural proresolving mechanism for lymphocyte exit

from the tissues and account for the failure of therapeutic strategies that target these molecules in diseases such as rheumatoid

arthritis. The Journal of Immunology, 2016, 197: 1957–1967.

D
uring inflammation or following immunization critical
changes occur to the nonhematopoietic stromal com-
ponent (fibroblast subsets, blood, and lymphatic endo-

thelial cells) of the target tissue. Lymph node swelling occurs as a
result of active stromal cell proliferation, accumulation of follicular
dendritic cells, and the expansion and stretching of fibroblastic
reticular cells, owing to mechanical changes that occur to the fi-

broblastic reticular cell cytoplasm (1). Similarly, changes in the
vascular system occur upon immunization that allow a dramatic

expansion of the lymphatic and vascular network that enables
maximal cellular interaction and increases cellular output from the

lymph node (2). The enlargement of the pre-existing lymphatic
network is achieved by de novo formation of lymphatic vessels, also

known as lymphangiogenesis (3–7). The cytokine IL-7 produced
both by fibroblastic reticular cells and by lymphatic endothelial

cells has been shown to contribute to this phenomenon during
lymph node remodeling in a paracrine and autocrine manner (8, 9).

Lymphotoxin (LT)a1b2/LTbR signaling is thought to contribute to

the homeostatic regulation of the lymphatic vessels in secondary
lymphoid organs (SLOs) (10). Interestingly, LTa1b2 signaling is

also responsible for the formation and maintenance of fibroblast
network, which in turn produces cytokines critical to preserve

vascular integrity, such as vascular endothelial growth factor
(VEGF)-A and -C (11, 12). We have recently shown how defects in

lymphatic vessel formation in the lymph node anlagen profoundly
impair development and function of these organs (13). Similarly, in

adult life, interruption of lymphatic vessels is known to impair

lymph node homeostasis (14), thus highlighting the reciprocal re-
lationships that take place between vascular cells, the lymphatic

system, and lymphoid fibroblastic cells in SLOs.
Tertiary lymphoid structures (TLS) are ectopic accumulations of

lymphoid cells within peripheral tissue that share many cellular

compartments, spatial organization, vasculature, chemokines, and
function with SLOs. TLS form preferentially at mucosal sites in

response to chronic antigenic challenge during infections or au-

toimmune diseases (i.e., in the salivary glands of patients with
Sjögren’s syndrome or in the thyroid glands of patients with

Hashimoto’s disease) (15–18). We and others have described the
formation of activated stromal cell networks within TLS with the

concomitant expression of lymphoid chemokines and cytokines
(such as LTa1b2) that regulate lymphocyte clustering and orga-

nization (16, 19). TLS formation recapitulates some aspects of

*Rheumatology Research Group, Centre for Translational Inflammation Research,
Institute of Inflammation and Ageing, University of Birmingham Research Lab-
oratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom;
†Cardiovascular Sciences, College of Medical and Dental Sciences, University of
Birmingham, Birmingham B15 2TT, United Kingdom; ‡Medical Research Council
Centre for Immune Regulation, College of Medical and Dental Sciences, University
of Birmingham, Birmingham B15 2TT, United Kingdom; and xDepartment of Biochem-
istry, University of Lausanne, 1066 Epalinges, Switzerland

ORCIDs: 0000-0001-5628-3079 (M.C.); 0000-0003-0422-950X (N.S.); 0000-0003-
1633-7313 (P.R.); 0000-0003-3530-7056 (J.H.C.); 0000-0002-5950-8840 (H.M.M.);
0000-0002-7846-7423 (S.P.W.); 0000-0002-8758-957X (S.L.); 0000-0001-6924-
6402 (C.D.B.); 0000-0002-5287-9614 (F.B.).

Received for publication March 23, 2015. Accepted for publication June 27, 2016.

This work was supported by the Wellcome Trust. F.B. holds an Arthritis Research UK
Senior Fellowship, and H.M.M. holds an Arthritis Research UK Career Development
Fellowship (Grant 19899). C.D.B. is a recipient of an Arthritis Research UK program
grant. F.B., H.M.M., and C.D.B. are part of the Arthritis Research UK Centre of
Excellence for the Pathogenesis of Rheumatoid Arthritis.

Address correspondence and reprint requests to Dr. Francesca Barone, Rheumatology
Research Group, Centre for Translational Inflammation Research, Institute of Inflam-
mation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth
Hospital, Birmingham B15 2WB, U.K. E-mail address: f.barone@bham.ac.uk

The online version of this article contains supplemental material.

Abbreviations used in this article: EPCAM, epithelial cell adhesion molecule; LEC,
lymphatic endothelial cell; LT, lymphotoxin; LTi, lymphoid tissue inducer; p.c.,
postcannulation; ROR, retinoic acid–related orphan receptor; RQ, relative quantity;
SLO, secondary lymphoid organ; TLS, tertiary lymphoid structure; VEGF, vascular
endothelial growth factor; wt, wild-type.

This is an open-access article distributed under the terms of the CC-BY 3.0 Unported
license.

Copyright � 2016 The Authors 0022-1767/16

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1500686

http://orcid.org/0000-0001-5628-3079
http://orcid.org/0000-0003-0422-950X
http://orcid.org/0000-0003-1633-7313
http://orcid.org/0000-0003-1633-7313
http://orcid.org/0000-0003-3530-7056
http://orcid.org/0000-0002-5950-8840
http://orcid.org/0000-0002-7846-7423
http://orcid.org/0000-0002-8758-957X
http://orcid.org/0000-0001-6924-6402
http://orcid.org/0000-0001-6924-6402
http://orcid.org/0000-0002-5287-9614
mailto:f.barone@bham.ac.uk
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1500686/-/DCSupplemental
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


embryological SLO development. Moreover, Rorgt+ lymphoid
tissue inducer (LTi) cells and activated stromal cells have been
identified at these sites (16, 20–25). Although mechanisms leading
to lymphangiogenesis in lymph nodes are relatively well under-
stood, there is still limited information regarding the signals that
regulate inflammatory lymphangiogenesis within TLS. Using a re-
cently described, inducible model of TLS formation (26), we have
dissected the expansion of the lymphatic vascular network within
ectopic lymphoid organs that form in the salivary glands. We have
observed expansion of the lymphatic endothelial cell (LEC) com-
partment and an increase in number of lymphatic vessels. This
expansion, synchronous with the development of the inflammatory
aggregates, results in progressive vascular splitting and is dependent
on the presence of IL-7, LTa1b2, and infiltrating lymphocytes, in a
similar manner to what is observed in SLOs. In our resolving
model, this enlarged lymphatic system sustains lymphocyte egress
from the tissue, suggesting that in TLS-associated diseases targeting
the LT pathway might be counterproductive for the resolution of the
lymphoid cell aggregates.

Materials and Methods
Mice and salivary gland cannulation

C57BL/6 mice were from Harlan Laboratories. Ltßr2/2 mice, Rorc2/2 mice,
Rag22/2 mice (on boyJ background), and boyJ mice were bred in the Bio-
medical Service Unit at the University of Birmingham. All mice were main-
tained under specific pathogen-free conditions in the Biomedical Service Unit
at the University of Birmingham according to Home Office and local Ethics
Committee regulations. Under ketamine/domitor anesthesia, the submandibular

glands of female C57BL/6, boyJ, and knockout mice (8–12 wk old) were
intraductally cannulated with 108–109 PFU of luciferase-encoding replication-
defective adenovirus (Adv5), as previously described (15). Animals were re-
covered from anesthesia. Mice were culled by terminal anesthesia at days 2, 5,
8, 15, 23, or 26 after cannulation and salivary glands were harvested.

In vivo blocking with anti–IL-7Ra

Rat anti-mouse anti–IL-7Ra Ab was used as described (27). Starting at day
0 postcannulation (p.c.), mice were administered a dose of 100 mg of Ab
via i.p. injection followed by daily injections for 4 d.

In vivo treatmet of LtbR2/2 with recombinant VEGF-C

Recombinant VEGF-C (Abcam) was administered in the salivary glands of
Ltßr2/2 mice at the dose of 2 mg/gland at day 6 p.c., and mice were
sacrificed at day 8 and glands were analyzed.

Histology and immunofluorescence

Salivary glands from virus- or control vehicle-cannulatedmicewere harvested
and snap frozen in OCT over liquid nitrogen. Six-micrometer-thick frozen
sections were cut, left to dry overnight at room temperature, and stored next
day in 280˚C until use. For immunofluorescence analysis, slides were
allowed to come to room temperature and then fixed for 20 min in ice-cold
acetone, left to dry, and then hydrated in PBS. For immunofluorescence
staining, all dilutions of reagents and Abs were made in PBS with 1% BSA.
First, to block endogenous biotin, sections were treated with 0.05% avidin
and 0.005% biotin for 15 min each and washed for 5 min with PBS in be-
tween the two incubations, followed by blocking with 10% horse serum for
10 min. Slides were then incubated for 60 min with cocktails containing the
following primary Abs in PBS (1% BSA): gp38/podoplanin clone 8.1.1,
CD4 Alexa Fluor 647, or CD4 Pacific Blue clone RM4-5 (from BD Phar-
mingen), CD31-biotin or CD31-FITC clone 390, CD19 Alexa Fluor 647
clone eBio1D3, CD3e-biotin clone ebio500A2, and retinoic acid–related

FIGURE 1. Bimodal expansion of the

lymphatic bed during TLS development.

(A) Representative dot plots showing flow

cytometry staining for gp38 and CD31 in

the CD452EpCAM2 cells from salivary

glands isolated at day 5 after viral cannu-

lation. The LECs are identified as gp38+

CD31+ cells. (B) Time course of LEC ex-

pansion during the inflammatory process

determined by flow cytometry (percentage

of gp38+CD31+ population in the CD452

EpCAM2 component) from infected wt

mice at days 0, 5, 8, 15, 23, and 26 p.c. Data

are presented as means of five independent

experiments. **p , 0.01, ***p , 0.001,

unpaired t test, comparing LEC population

at each time point with day 0 p.c. LEC. (C)

Graphs showing summary of analysis for

percentage of proliferating (BrdU+) gp38+

CD31+ LECs in the CD452EpCAM2 stro-

mal fraction. BrdU was administered from

day 0 continuously. *p , 0.05, **p , 0.01

versus day 0 p.c. for wt mice. (D) Quanti-

tative RT-PCR analysis of mRNA transcript

for Vegfc in wt mice at days 0, 5, 8, 15, and

23 p.c. Transcripts were normalized to

housekeeping gene b-actin. The RQ ex-

pression values were calibrated with day

0 p.c. salivary gland values. Data are rep-

resentative of three to four independent

experiments with six to eight glands ana-

lyzed per group. Data are shown as mean 6
SEM. *p , 0.05, **p , 0.01.
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orphan receptor (ROR)gt clone AFKJS-9 (all from eBioscience), and CCL21
(goat polyclonal). CD31 FITC-conjugated Abs were detected using rabbit
anti-FITC (Sigma-Aldrich) and then goat anti-rabbit IgG-FITC (Jackson
ImmunoResearch Laboratories, West Grove, PA). CCL21 Abs were detected
using donkey anti-goat FITC (Jackson ImmunoResearch Laboratories) and
then rabbit anti-FITC (Sigma-Aldrich), followed by goat anti-rabbit IgG-
FITC (Jackson ImmunoResearch Laboratories). RORgt was detected with
goat anti-rat FITC (SouthernBiotech) and then rabbit anti-FITC (Sigma-
Aldrich), followed by goat anti-rabbit IgG-FITC (Jackson ImmunoResearch
Laboratories). gp38/podoplanin was detected using goat anti-hamster biotin
(Cambridge Bioscience, Cambridge, U.K.). Biotinylated Abs were detected
using streptavidin–Alexa Fluor 555 or 488 (Molecular Probes). Hoescht
(Molecular Probes) was used for nuclear stain. All secondary Abs were in-
cubated for 30 min. Slides were mounted with ProLong Gold antifade reagent
(Invitrogen Life Technologies).

Images were acquired on a Zeiss LSM 510 laser scanning confocal head
with a Zeiss Axio imager Z1microscope.Digital imageswere recorded in four
separately scanned channels with no overlap in detection of emissions from
the respective fluorochromes. Confocal micrographs were stored as digital
arrays of 2048 3 2048 pixels with 8-bit sensitivity; detectors were routinely
set so that intensities in each channel spanned the 0–255 scale optimally. The
LSM 510 image examiner software was used to process these images.

Lymphatic quantitation

To investigate the dynamics of lymphatic vessels during different phases of
the inflammatory process in inflamed salivary glands, we stained for the
lymphatics using LYVE-1 Ab (Abcam) and imaged the whole tissue section
using the Leica DM6000 (as mentioned above). Using ImageJ software, we
drew a region around the lymphatic vessels and estimated both the area
covered by the lymphatic vessels and the total tissue area. These data were
then used to calculate the size of lymphatic vessels as relative area covered
by lymphatic vessels (percentage). We also counted the lymphatics in each
tissue section to ascertain the number of lymphatics per area of tissue.
Analysis was performed by two blinded observers.

Isolation of stromal cells

Harvested salivary glands from virus- or vehicle control-cannulated mice
were cut into small pieces and digested for 40 min at 37˚C with gentle
stirring in 1.5 ml RPMI 1640 medium containing collagenase D (3.7 mg/ml;
from Roche), DNAse I (30 mg/ml; from Sigma-Aldrich), and 2% (v/v) FCS.
The suspension was gently pipetted at 15-min intervals to break up aggre-
gates. The remaining fragments were further digested for 20 min at 37˚C
with medium containing collagenase dispase (3.7 mg/ml) and DNAse I (30
mg/ml). The suspension was then gently pipetted to break up remaining
aggregates until no visible fragments remained. During the final pipetting,
EDTA was added to a final concentration of 5 mM to further reduce cell
aggregates. Cells were then passed through a 70-mm mesh, washed twice,
and were resuspended in RPMI 1640 medium containing 10% (v/v) FCS.

Flow cytometry

Single-cell suspensions were stained for 30 min in PBS (with 0.5% BSA and
2 mM EDTA) with cocktails of the following Abs: CD31-FITC clone 390,
gp38-PE clone 8.1.1, CD45 PerCP/Cy5.5 clone 30-F11 (from eBioscience),
epithelial cell adhesion molecule (EPCAM) PE/Cy7 clone G8.8 (from Bio-
Legend), Ki67–Alexa Fluor 647, and BrDU–Alexa Fluor 647 (BD Pharmin-
gen). Afterwards cells were washed twice, resuspended, and then analyzed
using a CyAn ADP (Dako) with forward/side scatter gates set to exclude
nonviable cells. Data were analyzed with FlowJo software (Tree Star).

In vitro tube formation assay

The tube formation assay was performed on 12-well plates coated with 100 ml
of Matrigel (BD Biosciences, Oxford, U.K.) as previously described with
modifications (1). After polymerization of Matrigel at 37˚C for 30 min, human
LECs (1.5 3 105 cells/well) resuspended in 2 ml of MV2 growth medium
(PromoCell, Heidelberg, Germany) were seeded to each well and incubated at
37˚C, 5% CO2 for 1 h. The medium was then changed and treatments were
added to the cells. FCS (20%) was used as a positive control. Recombinant
LTa1b2 (R&D Systems Europe, Abingdon, U.K.) was used at 2 mg/ml.

The effect of the stated treatments on human LEC network formation was
evaluated 5 h after their addition. Images were digitally captured using a Zeiss
0.16 numerical aperture Plan-Neofluar 35 Ph1 lens on a Zeiss Axiovert 200
inverted high-end microscope (Zeiss, Welwyn Garden City, U.K.) and a
Hamamatsu Orca 285 cooled digital camera using SlideBook software (In-
telligent Imaging Innovations). Analysis of cellular networks was performed
using Gilles Carpentier’s angiogenesis analyzer for ImageJ (available online at:
http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-ImageJ)
by quantifying total branching length, number of junctions, and number of
meshes in five different images per well. Comparisons between nontreated,
FCS-supplemented, and LTa1b2-treated samples were carried out using a
one-way ANOVA test followed by a Bonferroni posttest. Results shown are
mean 6 SD from three independent experiments.

RNA isolation and quantitative PCR

Total RNA was isolated from salivary glands with an RNeasy mini kit
(Qiagen) and the RNA was then reverse transcribed using a high-capacity
reverse transcription cDNA synthesis kit (Applied Biosystems) according
to the manufacturer’s specifications. Reverse transcription was carried out on
Techne 312 thermal cycler PCR machine. Quantitative RT-PCR (Applied
Biosystems) was performed on cDNA samples for LTb and VEGF-C mRNA
expression. b-Actin was used as an endogenous control. The primers and
probes used were from Applied Biosystems. The quantitative real-time PCR
was run in duplicates on a 384-well PCR plate (Applied Biosystems) and
detected using an ABI Prism 7900HT instrument. Results were analyzed
with the Applied Biosystem’s SDS software (SDS 2.3). We used the mean of
two technical replicates (Ct values) to calculate the DCt value. The Ct of the
b-actin was subtracted from the target gene Ct value and the relative amount

FIGURE 2. Remodeling of the lymphatic

network during TLS development. (A) Pho-

tomicrograph of lymphoid aggregates from

infected salivary glands (days 5 and 15 p.c.)

from wt mice stained for CD3 (red), CD19

(blue), and CD31 (green). Original magni-

fication, 325. (B) Photomicrograph of lym-

phatic vessels in infected salivary glands

(day 5 p.c.) from wt mice stained for LYVE-

1 (red), gp38 (blue), and DAPI (green).

Original magnification, 310 and 325. (C

and D) Graphs summarizing image analysis

in salivary gland tissue sections at different

time points of the inflammatory process to

identify changes observed in lymphatic vessel

expansion. The graphs show the number of

lymphatic vessels/mm2 of tissue area (C) and

average vessel area expressed in mm2 (D).

Data are representative of three to four inde-

pendent experiments with four to six glands

analyzed per group. Data shown as mean 6
SEM. *p , 0.05, **p , 0.01 versus day

0 p.c. for wt mice.
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was calculated as 22DC
t. The relative quantity (RQ) expression values were

calculated as 22DDC
t, where DDCt is the difference between the DCt values

of cannulated salivary glands and the DCt of noncannulated salivary glands.
Ct values .34 were not accepted, nor were technical replicates with more
than two cycle differences between them.

Statistics analysis

Statistical analysis was determined for all analyses in figures (except Fig. 6)
with a Student t test. Statistical significance in Fig. 6 was determined by a
one-way ANOVA.

Results
Bimodal expansion of the lymphatic vascular network during
TLS development

To dissect the dynamics of lymphatic vessel expansion in the context
of ectopic lymphoneogenesis, we used a model of TLS formation in
the salivary glands, where the single administration of a replication-
deficient adenovirus via retrograde cannulation of submandibular
glands is sufficient to induce focal aggregate formation as observed
in human Sjögren’s syndrome (28). This model is characterized by
expansion of lymphoid aggregates, T/B cell segregation, and lym-
phoid chemokine expression, which reaches a peak around day 15
p.c. and undergoes resolution with complete lymphocyte clearance

by day 30 p.c. (Supplemental Fig. 1A). These aggregates are
characterized by expansion of a gp38+/podoplanin+ fibroblast net-
work, previously observed in human TLS (Supplemental Fig. 1B)
(21).
Salivary glands of wild-type (wt) mice were cannulated with

replication deficient adenovirus or vehicle control. Mice were
sacrificed at specific time points p.c. and salivary glands were
isolated as described (28). Flow cytometry on digested single-
cell suspensions to evaluate the expansion of LECs within the
EPCAM2CD452 compartment (Fig. 1A) revealed a bimodal
pattern of expansion of the gp38+CD31+ LECs. The first peak
coincided with the initial establishment of the TLS and was
observed around day 5–8 p.c. (Fig. 1B). A second phase of expan-
sion occurred after day 15 p.c. and coincided with the beginning
of the involution of the inflammatory foci (Fig. 1B, Supplemental
Fig. 1B). Investigation of the proliferative status of the LECs,
using BrdU incorporation, administered to the mice continuously
from the day of the cannulation, revealed stable proliferation of
this compartment between day 5 and day 23 p.c. (Fig. 1C). The
proliferation observed in the LEC associates with a stepwise in-
crease in vegfc transcript upon cannulation of the salivary glands
(Fig. 1D).

FIGURE 3. Lack of LTb affects lym-

phangiogenesis in TLS. (A) Graph showing

flow cytometry analysis of LEC expansion

in wt mice (filled bars) compared with

LtbR2/2 (open bars) mice. *p, 0.05, **p,
0.01, unpaired t test, comparing gp38+CD31+

LEC population in infected knockout mice at

various time points to their wt counterparts.

(B) Graphs showing summary of analysis for

percentage of proliferating (BrdU+) gp38+

CD31+ LEC within the CD452EpCAM2

stromal fraction in wt mice (filled bars)

compared with LtbR2/2 (open bars) mice. (C

and D) Summarizing image analysis results

showing differences observed in the number

of lymphatic vessels/mm2 of tissue area (C)

and average vessel area (mm2) (D) in wt

mice (filled bars) compared with LtbR2/2

mice (open bars). Data are representative of

three independent experiments with four to

six glands analyzed per group. Data are

shown as mean 6 SEM. *p , 0.05, **p ,
0.01, ***p , 0.001, unpaired t test, com-

paring LYVE-1+ vessels in infected knockout

mice at various time points to their wt

counterparts. (E) Representative photomi-

crograph of lymphatic vessels in infected

salivary glands (days 5, 15, and day 23 p.c.)

from Ltbr2/2 mice in comparison with wt

mice stained for LYVE-1 (green). Scale bars,

100 mm. (F) Histogram showing LTbR ex-

pression (black) and isotype control (gray)

on LECs in salivary glands at day 5 p.c.
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Remodeling of the lymphatic vascular network during TLS
formation

Immunofluorescence analysis performed on dissected salivary
glands after cannulation allowed direct visualization and quanti-
fication of the lymphatic network in the context of the lymphoid

aggregates. A combination of CD31 and LYVE-1 staining showed
the presence of lymphatic vessels in the glands with a tendency to

localize in the outer part of the follicular aggregates at the earliest

disease phases of TLS assembly (Fig. 2A, 2B). At this stage most

lymphatic vessels were characterized by enlargement of the vascular

FIGURE 4. The early phase of lymphatic vessels remodeling is dependent on IL-7. (A) Quantitative RT-PCR analysis of mRNA transcript for il-7 in wt

mice at days 0, 2, 5, 8, 15, and 23 p.c. Transcripts were normalized to housekeeping gene pdgfrß. The RQ expression values were calibrated with day 0 p.c.

salivary gland values. Data are representative means 6 SEM of three to four experiments with six to four glands analyzed per group. *p , 0.05, **p ,
0.01. (B) Histogram showing IL-7Ra expression (black) and isotype control (gray) on LECs in salivary glands at day 5 p.c. (C) Graph showing flow

cytometry analysis of percentage of LEC in wt mice treated with isotype Ab (black bars) as compared with IL-7Ra blocking Ab–treated mice (gray bars)

mice. Data are represented as mean 6 SEM. *p , 0.05. (D) Graph showing flow cytometry analysis of absolute number of LEC in wt mice treated with

isotype Ab (black bars) as compared with IL-7Ra blocking Ab–treated mice (gray bars) mice. Data are represented as mean 6 SEM. (E and F) Graphs

summarizing image analysis results showing differences observed in the number of lymphatic vessels/mm2 of tissue area and average vessel area (mm2) in

wt mice treated with IL-7Ra blocking Ab (gray bars) compared with isotype treated mice (black bars). Data are representative of two independent ex-

periments with four to six glands analyzed per group. Data are shown as mean 6 SEM. *p , 0.05, unpaired t test. (G) Representative photomicrograph of

lymphatic vessels in infected salivary glands (day 5 p.c.) from IL-7Ra blocking Ab–treated mice (i and ii) in comparison with wt mice treated with isotype

(iii and iv) stained for LYVE-1 (green). Scale bars, 100 mm. (H) Graphs showing summary of analysis for percentage of proliferating (BrdU+) gp38+CD31+

LEC within the CD452EpCAM2 stromal fraction in wt mice treated with isotype Ab (black bars) as compared with IL-7Ra blocking Ab–treated mice

(gray bars) mice. Data are represented as mean 6 SEM. *p , 0.05.
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lumen and the presence of lymphocytes within the vessels (Fig. 2B).
This phenomenon was less evident in the later phases of the disease
(day 23 p.c.) that were characterized by lymphatic vessels of smaller
caliber, essentially devoid of lymphocytes (Supplemental Fig. 2).
Quantification of the area covered by the lymphatic network was

achieved by using ImageJ analysis on whole-section tile scans (see
Materials and Methods). A significant increase in the total number
of vessels per tissue area was observed in the early phases of the
TLS formation (day 5 p.c.) as compared with resting conditions.
This increased number of vessels remained stable over time, with
a further significant increase observed at day 23 p.c. (Fig. 2C). The
average vessel area measured showed that an increase in lym-
phatic vessel number was associated with a reduction in the mean
vessel lumen area, suggesting progressive splitting of the pre-
existing vessels (Fig. 2D).

Lack of LTa1b2 affects lymphangiogenesis in TLS

LTbR signaling has been reported to play a key role in physio-
logical lymphoneogenesis during SLO development (29, 30). To
investigate the effects of this pathway in TLS-associated lym-
phangiogenesis, we cannulated Ltßr knockout mice (Ltßr2/2).
Aggregates formed in Ltßr2/2 mice but were characterized by
reduced organization and diminished chemokine expression (data
not shown). Accordingly, the dynamics of vascular expansion was
altered in these animals. The first peak of LEC expansion in Ltßr2/2

mice was similar to their wt counterparts. Conversely, from day 8
p.c. we observed a decrease in the percentage of the LECs in the

Ltßr2/2 that became significant at days 23 and 26 p.c. (Fig. 3A).
Despite this defective expansion of the lymphatic network, the
LECs from Ltßr2/2 mice appeared to proliferate at the same rate
compared with wt mice (Fig. 3B).
Image analysis of the cannulated salivary glands of Ltßr2/2mice

demonstrated in the knockout mice a decrease in the number of
the lymphatic vessels that reached significance at days 15 and 23
p.c. (Fig. 3C). This phenomenon was associated with a tendency
in the Ltßr2/2 mice to form lymphatic vessels with larger caliber
as compared with the wt controls (Fig. 3D, 3E). Collectively, these
data suggest that LTbR-mediated signals are involved in the in-
duction of lymphangiogenesis within TLS. Indeed, expression of
LTbR is detected on salivary gland LECs (Fig. 3F)

The early phase of lymphatic vessel remodeling is dependent
on IL-7

Onder et al. (8) reported a critical role for IL-7 in lymphatic
remodeling in SLOs. In our cannulation model, IL-7 expression
was significantly increased and preceded the expansion of the
lymphatic bed (Fig. 4A). Moreover, LECs specifically express IL-
7Ra, thus displaying the machinery to respond to this homeostatic
signal in vivo (Fig. 4B).
To investigate whether IL-7 was responsible for the first phase of

expansion of the lymphatic bed, that is, intact in the Ltßr2/2mice, we
treated wt-cannulated mice with a blocking Ab against IL-7Ra (see
Materials and Methods). Treated mice display a significant decrease
in LECs (Fig. 4C, 4D) and average lymphatic vessel area (Fig. 4E,

FIGURE 5. LTa1b2 induces the formation of complex lymphatic networks in vitro. (A) Quantitative RT-PCR analysis of mRNA transcript for Vegfc in

LtbR2/2 mice (open bars) in comparison with their wt counterparts (filled bars) at days 0, 5, 8, 15, and 23 p.c. Transcripts were normalized to housekeeping

gene b-actin. The RQ expression values were calibrated with day 0 p.c. salivary gland values. *p , 0.05, **p , 0.01 versus wt mice. Data are repre-

sentative of mean6 SEM of three to four experiments with six to four glands analyzed per group. (B) Graph showing flow cytometry analysis of percentage

of LECs in LtbR2/2 mice treated with recombinant VEGF-C (open bars) as compared with PBS-treated mice (filled bars) mice. Data are represented as

mean 6 SEM. (C) Representative photomicrograph of lymphatic vessels in infected salivary glands (day 8 p.c.) from recombinant vegfc-treated mice in

comparison with PBS-treated LtbR2/2 mice stained for LYVE-1 (green). Scale bars, 100 mm. Summarizing image analysis results show differences

observed in the number of lymphatic vessels/mm2 of tissue area and average vessel area (mm2) in LtbR2/2 mice treated with recombinant vegfc (open bars)

as compared with PBS-treated mice (filled bars) mice. Data are representative of two independent experiments with four to six glands analyzed per group.

Data are shown as mean 6 SEM. *p , 0.05, unpaired t test.
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4G) and a smaller number of lymphatic vessels (Fig. 4F, 4G) that did
not reach significance. This defect appeared to be due to a significant
reduction in the proliferating ability of the LECs (Fig. 4H).

LTa1b2 induces the formation of complex lymphatic networks

Interestingly, VEGF-C mRNA transcripts were significantly de-
creased in Ltßr2/2 mice (Fig. 5A), thus suggesting the possibility
that the defect observed in the Ltßr2/2 is sustained by a defect in
VEGF-C induction. To test this hypothesis, we treated cannulated
Ltßr2/2 mice with recombinant VEGF-C (Fig. 5B) and observed a
partial compensation of the defective phenotype described in these
mice. VEGF-C–treated mice indeed displayed a significant in-
crease in lymphatic vessels number accompanied by a decrease in
the average vessel caliber (Fig. 5C), thus suggesting that although
VEGF-C provides a positive signal to sustain vascular splitting,
this does not completely explain the phenotype observed in the
LtbR2/2 mice.
To evaluate whether LTa1b2 could alone influence TLS lym-

phangiogenesis, we used an in vitro tube formation assay in vitro.
Primary human LECS were treated with either FCS or LTa1b2

(see Materials and Methods) and a series of parameters were
collected upon imaging the cultures (Fig. 6). We observed no

difference in proliferation, total branching length, or segments
length of the tubes formed by the nontreated, FCS control–treated,
and the LTa1b2-treated cells (Fig. 6A, 6B). On the contrary, we
detected a significant increase both in the number of nodes
(junctions) (Fig. 6C) and in the number of meshes (Fig. 6D, 6E) in
the LTa1b2-treated cells, similar to that induced in FCS (serum)-
treated positive control, as compared with nontreated samples.
These data indicate that LTa1b2 facilitates the formation of a
more sophisticated lymphatic network and are consistent with the
observed phenotype of failed lymphangiogenesis present in the
Ltßr2/2 mice.

Lymphatic vessel formation is influenced by the expression of
LTa1b2 by Rorg+ cells

It is known that Rorgt+ LTi cells represent the earliest source of
LTa1b2 during physiological lymphoneogenesis (30, 31). To dis-
sect the specific contribution of both these cellular components to
TLS-associated lymphangiogenesis, we induced TLS formation in
the salivary glands of Rorc2/2 mice that are characterized by a
defect in both LTi and Th17 cell formation. As predicted, the
defect observed in the Ltßr2/2 mice was largely reproduced in the
Rorc2/2 mice. In these mice we observed decreased LEC expansion

FIGURE 6. LTa1b2 induces the forma-

tion of complex lymphatic networks.

In vitro analysis of the effect of LTa1b2

stimulation on lymphatic endothelial cell

tube formation assay showing (A) total

branching length, (B) segment length (pix-

els), (C) number of nodes, and (D) number

of meshes. (E) Representative photomicro-

graphs of nontreated, FCS-treated, and

LTa1b2-treated lymphatic endothelial cells.

Data are representative of three independent

experiments. *p , 0.05 after one-way re-

peated measurements ANOVA analysis.
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as compared with wt mice (Fig. 7A). Moreover, we detected a
significant increase in the average lymphatic vessel area and de-

creased number of vessels, suggesting a defect in lymphangio-

genesis similar to that observed in the Ltßr2/2 mice (Fig. 7B–D).

This phenotype was not attributable to a proliferative defect, as

shown by BrdU incorporation (Supplemental Fig. 3).

Lack of lymphocytes affects both phases of lymphatic vessel
expansion

In adult SLOs, lymphocytes can compensate for the absence of LTi
in the production of LTa1b2. Accordingly, cannulated Rag22/2

mice display a similar phenotype to the Ltßr2/2 mice in the late
phase of vascular expansion, accompanied by a significant defect

FIGURE 7. Lymphatic vessel formation is influenced by the expression of LTb by Rorg+ cells. (A) Graph showing flow cytometry analysis of LEC

expansion in wt mice (filled bars) compared with Rorc2/2 mice (open bars). Data are represented as mean 6 SEM of two independent experiments. *p ,
0.05, **p , 0.01, unpaired t test, comparing gp38+CD31+ LEC population in infected knockout mice at various time points to their wt counterparts. (B)

Graphs showing the number of lymphatic vessels/mm2 of tissue in wt mice (filled bars) compared with Rorc2/2 (open bars) mice. Data are representative of

mean 6 SEM of three independent experiments with four to six glands analyzed per group. *p , 0.05, **p , 0.01, ***p , 0.001, unpaired t test,

comparing LYVE-1+ vessels in infected knockout mice at various time points to their wt counterparts. (C) Graphs showing average vessel area (mm2) in wt

mice (filled bars) compared with Rorc2/2 mice (open bars). Data are representative of mean 6 SEM of three independent experiments with four to six

glands analyzed per group. *p , 0.05, **p , 0.01, ***p , 0.001, unpaired t test, comparing LYVE-1+ vessels in infected knockout mice at various time

points to their wt counterparts. (D) Representative photomicrograph of lymphatic vessels in infected salivary glands (days 5, 15, and day 23 p.c.) from

Rorc2/2 mice in comparison with wt mice stained for LYVE-1 (green). Scale bars, 100 mm.
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in lymphangiogenesis even in the first wave of expansion, both in
terms of LECs (Fig. 8A) and in the lymphatic vessel area and
number, with the latter only showing a nonsignificant reduction
(Fig. 8B, 8C). IL-7 transcripts in Rag22/2 mice showed a sig-
nificant decrease as compared with wt mice (Supplemental Fig. 3).

Discussion
During inflammation, expansion of the lymphatic vascular network
is required to drain local edema, increase cellular output, and
deliver infiltrating immune cells and Ags to draining lymph nodes.
In order to accomplish these tasks lymphatic vessels undergo
dramatic changes in shape and size that enable the clearance of
immune cells and pathogens from the affected tissue (2).
TLS are aberrant accumulations of lymphocytes that form

preferentially within inflamed mucosal sites and acquire features
and functions similar to lymphoid tissue. In many diseases, TLS
persistence is associated with worse disease outcome and, in some
cases, development of lymphoid malignancies (15, 20, 32). In the
lymph node, expansion of the lymphatic vascular network syn-
chronizes with the enlargement of the lymphoid stroma and the
increase in the influx of lymphocytes to preserve tissue homeo-

stasis (2, 12). In TLS it is thought that this drainage system is
defective and that lymphocyte accumulation occurs as a result of
insufficient expansion of the lymphatic network. Indeed, failure to
drain activated lymphocytes from the tissue might contribute to
the persistence of tissue inflammation (33–35).
In this study, we examined the complex phenomenon of lym-

phoneogenesis, evaluating the expansion of LECs as well as the
changes in shape and size of the lymphatic vessels by immuno-
fluorescence. In this work we demonstrate that the increase in
lymphatic vessels is initiated in the early phases of TLS devel-
opment, but that this process is delayed and impaired when the
aggregates reach full size and a higher degree of organization. At
this stage lymphoid aggregates are surrounded by lymphocytes
engulfed in lymphatic vessels, thus suggesting a reduction in the
ability of the vascular network to drain the recruited lymphocytes.
Interestingly, this phenomenon is reversed in the resolution phase
of the TLS when a second wave of lymphatic vessel expansion
occurs, together with the formation of small-caliber lymphatic
vessels that contribute to tissue clearance.
In our model the expansion of the lymphatic vascular network

is preceded by a significant increase in both IL-7 and LTa1b2

FIGURE 8. Lack of lymphocytes affects

both phases of lymphatic vessel expansion.

(A) Graph showing flow cytometry analysis

of LEC expansion in wt mice (filled bars)

compared with Rag22/2 mice (open bars) at

days 8 and 26 p.c. Data are represented as

mean 6 SEM of two independent experi-

ments. *p , 0.05, **p , 0.01, unpaired t

test, comparing gp38+CD31+ LEC pop-

ulation in infected knockout mice at various

time points to their wt counterparts. (B)

Graphs showing number of lymphatic ves-

sels and average vessel area (mm2) in wt

mice (filled bars) compared with Rag22/2

mice (open bars). Data are representative of

mean 6 SEM of three independent experi-

ments with four to six glands analyzed per

group. **p , 0.01, unpaired t test, com-

paring LYVE-1+ vessels in infected knock-

out mice at various time points to their wt

counterparts. (C) Representative photomi-

crograph of lymphatic vessels in infected

salivary glands (days 8 and 26 p.c.) from

Rag22/2 mice at day 8 p.c. (iii) and day 26

p.c. (iv) in comparison with wt mice at day

8 p.c. (i) and day 26 p.c. (ii) stained for

LYVE-1 (green). Scale bars, 100 mm.
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expression within the tissue, with both known to regulate leuko-
cyte homeostasis and lymphangiogenesis in SLOs (36, 37)
(Fig. 4A, Supplemental Fig. 4). IL-7 autocrine signal on the LECs
in SLOs has been shown to regulate lymphatic vessel remodeling
and expansion (9). Additionally, fibroblast-derived IL-7 appears to
support lymphangiogenesis in a paracrine manner (8), thus sug-
gesting IL-7 as key regulator of lymphatic vessel expansion in
TLS. Indeed, prophylactic block with IL-7 affects LEC prolifer-
ation, determining the formation of lymphatic vessels with smaller
caliber. Although this defect is not complete, it suggests a role for
IL-7 in the early phases of TLS-associated lymphangiogenesis.
During ontogeny, LTbR triggering has been also shown to ac-

tivate surrounding stromal cells to produce VEGF-C, a crucial
mediator of lymphangiogenesis (11). In our system, genetic de-
letion of LTbR results in a reduction of lymphatic vessel number
and size and a significant reduction in VEGF-C transcript ex-
pression after cannulation. Treatment of LtbR2 /2 mice with
recombinant VEGF-C was only partially able to restore the
LtbR2/2 defect, suggesting a direct role for the latter in lymphatic
vessel remodeling. Interestingly, blocking LTa1b2 did not influ-
ence LEC proliferation, as expected, but rather it decreased the
complexity of the vascular network in the cannulated samples.
Accordingly, it has been previously shown that blocking VEGF
receptor signaling can inhibit formation of the complex tube of
umbilical vein endothelial cells and LECs (38–40).
Previous studies have indicated a role for lymphocytes in

lymphangiogenesis (2, 37, 41–43). In our model, the second phase
of expansion of the lymphatic vessels is similarly affected by lack
of LTa1b2 and Rorgt+ cells. We demonstrated that Rorc2/2 mice,
although forming normal TLS (data not shown), are characterized
by a significant defect in lymphatic vessel expansion, similar to
that observed in the LtbR2/2mice. This, associated with the defect
in LTa1b2 observed in the Rorc2/2 mice, suggests that Rorgt+

represent a critical source of LTa1b2 during TLS formation. Al-
though the role of adult LTi in TLS formation is still debated, the
role of Rorgt+ Th17 in TLS establishment and chemokine ex-
pression at ectopic sites is well recognized (44, 45). In this study,
we suggest that Rorgt+ cells providing LTa1b2 play a larger and
more complex role within TLS, regulating their homeostatic res-
olution in the tissue.
Interestingly, the defect observed in the lymphatic vessels in the

absence of mature lymphocytes is already present in the early
phases of TLS establishment, in a phase that is independent from
LTbR activity. The decrease in IL-7 transcript observed in the
Rag22/2 mice could justify this defective phenotype and deserves
further investigation (Supplemental Fig. 3).
Lymphocyte-derived LTa1b2 is important for the full acquisi-

tion of lymphoid features by the TLS and has therefore been
identified as a suitable target for TLS-associated disease (15, 46).
Unfortunately, clinical trials that block the LT pathway in rheu-
matoid arthritis failed to meet primary end points, thus suggesting
a more complex or redundant role for this molecule in the system
(47). Our data support a critical role for LTa1b2 in TLS-associated
lymphoneogenesis and provide a potential explanation as to why
blocking the LT pathway in TLS-associated diseases may not be
effective based on a requirement for the expansion of lymphatic
vessels to enable lymphocyte egress during the resolution phase of
inflammation.
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13. Bénézech, C., S. Nayar, B. A. Finney, D. R. Withers, K. Lowe, G. E. Desanti,
C. L. Marriott, S. P. Watson, J. H. Caamaño, C. D. Buckley, and F. Barone. 2014.
CLEC-2 is required for development and maintenance of lymph nodes. Blood
123: 3200–3207.

14. Hendriks, H. R., A. M. Duijvestijn, and G. Kraal. 1987. Rapid decrease
in lymphocyte adherence to high endothelial venules in lymph nodes deprived of
afferent lymphatic vessels. Eur. J. Immunol. 17: 1691–1695.

15. Aloisi, F., and R. Pujol-Borrell. 2006. Lymphoid neogenesis in chronic inflam-
matory diseases. Nat. Rev. Immunol. 6: 205–217.

16. Barone, F., M. Bombardieri, A. Manzo, M. C. Blades, P. R. Morgan,
S. J. Challacombe, G. Valesini, and C. Pitzalis. 2005. Association of CXCL13
and CCL21 expression with the progressive organization of lymphoid-like
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