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Abstract Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading

microorganisms. These short, cationic peptides have been implicated in many biological processes,

primarily involving innate immunity. In vitro studies have shown AMPs kill bacteria and fungi at

physiological concentrations, but little validation has been done in vivo. We utilized CRISPR gene

editing to delete most known immune-inducible AMPs of Drosophila, namely: 4 Attacins, 2

Diptericins, Drosocin, Drosomycin, Metchnikowin and Defensin. Using individual and multiple

knockouts, including flies lacking these ten AMP genes, we characterize the in vivo function of

individual and groups of AMPs against diverse bacterial and fungal pathogens. We found that

Drosophila AMPs act primarily against Gram-negative bacteria and fungi, contributing either

additively or synergistically. We also describe remarkable specificity wherein certain AMPs

contribute the bulk of microbicidal activity against specific pathogens, providing functional

demonstrations of highly specific AMP-pathogen interactions in an in vivo setting.

DOI: https://doi.org/10.7554/eLife.44341.001

Introduction
While innate immune mechanisms were neglected during the decades where adaptive immunity cap-

tured most of the attention, they have become central to our understanding of immunology. Recent

emphasis on innate immunity has, however, mostly focused on the first two phases of the immune

response: microbial recognition and associated downstream signaling pathways. In contrast, how

innate immune effectors individually or collectively contribute to host resistance has not been investi-

gated to the same extent. The existence of multiple effectors that redundantly contribute to host

resistance has hampered their functional characterization by genetic approaches (Lemaitre and

Hoffmann, 2007). The single mutation methodology that still prevails today has obvious limits in the

study of immune effectors, which often belong to large gene families. As such, our current under-

standing of the logic underlying the roles of immune effectors is only poorly defined. As a conse-

quence, the key parameters that influence host survival associated with a successful immune

response are not well characterized. In this paper, we harnessed the power of the CRISPR gene edit-

ing approach to study the function of Drosophila antimicrobial peptides in host defence both indi-

vidually and collectively.

Antimicrobial peptides (AMPs) are small, cationic, usually amphipathic peptides that contribute to

innate immune defence in plants and animals (Imler and Bulet, 2005; Guanı́-Guerra et al., 2010;

Rolff and Schmid-Hempel, 2016). They display potent antimicrobial activity in vitro by disrupting
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negatively charged microbial membranes, but AMPs can also target specific microbial

processes (Park et al., 1998; Kragol et al., 2001; Rahnamaeian et al., 2015). Their expression is

induced to very high levels upon challenge to provide microbicidal concentrations in the mM range.

Numerous studies have revealed unique roles that AMPs may play in host physiology including anti-

tumor activity (Suttmann et al., 2008; Kuroda et al., 2015; Araki et al., 2018; Parvy et al., 2019),

inflammation in aging (Cao et al., 2013; Kounatidis et al., 2017; E et al., 2018), involvement in

memory (Bozler et al., 2017; Barajas-Azpeleta et al., 2018), mammalian immune

signaling (van Wetering et al., 2002; Tjabringa et al., 2003), wound-healing (Tokumaru et al.,

2005; Chung et al., 2017), regulation of the host microbiota (Login et al., 2011; Mergaert et al.,

2017), tolerance to oxidative stress (Zhao et al., 2011; Zheng et al., 2007), and of course microbici-

dal activity (Imler and Bulet, 2005; Wimley, 2010). The fact that AMP genes are immune inducible

and expressed at high levels has led to the common assumption they play a vital role in the innate

immune response. However, little is known in most cases about how AMPs individually or

collectively contribute to animal host defence. In vivo functional analysis of AMPs has been ham-

pered by the sheer number and small size of these genes, making them difficult to mutate with tradi-

tional genetic tools (but e.g. see Hoeckendorf et al., 2012).

Since the first animal AMPs were discovered in silk moths (Steiner et al., 1981), insects and par-

ticularly Drosophila melanogaster have emerged as a powerful model for characterizing their func-

tion. There are currently seven well-characterized families of inducible AMPs in D. melanogaster, but

we note that many genes encoding small peptides are strongly upregulated upon infection and are

awaiting description (De Gregorio et al., 2002). The activities of the seven known AMP families of

Drosophila have been determined either in vitro by using peptides directly purified from flies or pro-

duced in heterologous systems, or deduced by comparison with homologous peptides isolated in

other insect species: Drosomycin and Metchnikowin show antifungal activity (Fehlbaum et al., 1994;

Levashina et al., 1995); Cecropins (four inducible genes) and Defensin have both antibacterial and

some antifungal activities (Hultmark et al., 1980; Ekengren and Hultmark, 1999; Cociancich et al.,

1993; Tzou et al., 2002); and Drosocin, Attacins (four genes) and Diptericins (two genes) primarily

eLife digest All animals – from humans to mice, jellyfish to fruit flies – are armed with an

immune system to defend against infections. The immune system’s first line of defence often

involves a group of short proteins called antimicrobial peptides. These proteins are found anywhere

that germs and microbes come into contact with the body, including the skin, eyes and lungs. In

many cases, it is unclear how individual antimicrobial peptides work. For example, which germs are

they most effective against? Do they work alone, or in a mixture of other antimicrobial peptides?

To learn more about a protein, scientists can often delete the gene that encodes it and observe

what happens. Antimicrobial peptides, however, are small proteins encoded by a large number of

very short genes, which makes them difficult to target with most genetic tools. Fortunately, gene

editing via the CRISPR/Cas9 system can overcome many of the limitations of more traditional

methods; this allowed Hanson et al. to systematically remove the antimicrobial peptide genes from

fruit flies to explore how these proteins work.

In the experiments, ten antimicrobial peptide genes known from fruit flies were removed, and the

flies were then infected with a variety of bacteria and fungi. Hanson et al. found that the

antimicrobial peptides were effective against many bacteria, but unexpectedly they were far more

important for controlling one general kind of bacterial infection, but not another kind. Further

experiments showed that some of these proteins work alone, targeting only a particular species of

microbe. This finding suggested that animals might fight infections by very specific bacteria with a

very specific antimicrobial peptide rather than with a mixture.

By understanding how antimicrobial peptides work in more detail, scientists can learn what types

of microbes they are most effective against. In the future, this information may eventually lead to the

development of new types of antibiotics and better management of diseases that affect important

insects, like bumblebees.

DOI: https://doi.org/10.7554/eLife.44341.002
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exhibit antibacterial activity (Kragol et al., 2001; Asling et al., 1995; Cudic et al., 1999;

Hedengren et al., 2000; Bulet et al., 1996). In Drosophila, these AMPs are produced either locally

at various surface epithelia in contact with environmental microbes (Tzou et al., 2000; Basset et al.,

2000; Gendrin et al., 2009), or secreted systemically into the hemolymph, the insect blood. During

systemic infection, these 14 antimicrobial peptides are strongly induced in the fat body, an organ

analogous to the mammalian liver.

The systemic production of AMPs is regulated at the transcriptional level by two NF-kB pathways,

the Toll and Imd pathways, which are activated by different classes of microbes. The Toll pathway is

predominantly responsive to Gram-positive bacteria and fungi, and accordingly plays a major role in

defence against these microbes. In contrast, the Imd pathway is activated by Gram-negative bacteria

and a subset of Gram-positive bacteria with DAP-type peptidoglycan, and mutations affecting this

pathway cause profound susceptibility to Gram-negative bacteria (De Gregorio et al., 2002;

Lemaitre et al., 1997). However, the expression pattern of AMP genes is complex as each gene is

expressed with different kinetics and can often receive transcriptional input from both

pathways (De Gregorio et al., 2002; Leulier et al., 2000). This ranges from Diptericin, which is

tightly regulated by the Imd pathway, to Drosomycin, whose expression is mostly regulated by the

Toll pathway (Lemaitre et al., 1997), except at surface epithelia where Drosomycin is under the con-

trol of Imd signaling (Ferrandon et al., 1998; Tzou et al., 2000). While a critical role of AMPs in

Drosophila host defence is supported by transgenic flies overexpressing a single AMP (Tzou et al.,

2002), the specific contributions of each of these AMPs has not been tested. Indeed loss-of-function

mutants for most AMP genes were not previously available due to their small size, making them diffi-

cult to mutate before the advent of CRISPR/Cas9 technology. Despite this, the great susceptibility

to infection of mutants with defective Toll and Imd pathways is commonly attributed to the loss of

the AMPs they regulate, though these pathways control hundreds of genes awaiting

characterization (De Gregorio et al., 2002). Strikingly, Clemmons et al. (2015) recently reported

that flies lacking a set of uncharacterized Toll-responsive peptides (named Bomanins) succumb to

infection by Gram-positive bacteria and fungi at rates similar to Toll-deficient

mutants (Clemmons et al., 2015). This provocatively suggests that Bomanins, and not AMPs, might

be the predominant effectors downstream of the Toll pathway; yet synthesized Bomanins do not dis-

play antimicrobial activity in vitro (Lindsay et al., 2018). Thus, while today the fly represents one of

the best-characterized animal immune systems, the contribution of AMPs as immune effectors is

poorly defined as we still do not understand why Toll and Imd pathway mutants succumb to

infection.

In this paper, we took advantage of recent gene editing technologies to delete most of the

known immune inducible AMP genes of Drosophila. Using single and multiple knockouts, as well as

a variety of bacterial and fungal pathogens, we have characterized the in vivo function of individual

and groups of antimicrobial peptides. We reveal that AMPs can play highly specific roles in defence,

being vital for surviving certain infections yet dispensable against others. We highlight key interac-

tions amongst immune effectors and pathogens and reveal to what extent these defence peptides

act in concert or alone.

Results

Generation and characterization of AMP mutants
We generated null mutants for 10 of the 14 known Drosophila antimicrobial peptide genes that are

induced upon systemic infection. These include five single gene mutations affecting

Defensin (DefSK3), Attacin C (AttCMi), Metchnikowin (MtkR1), Attacin D (AttDSK1)

and Drosomycin (DrsR1), respectively, and two small deletions removing both Diptericins

DptA and DptB (DptSK1), or the gene cluster containing Drosocin, and Attacins AttA and AttB (Dro-

AttABSK2). The function of Cecropins were not assessed in this manuscript. All mutations/deletions

were made using the CRISPR editing approach with the exception of Attacin C, which was disrupted

by insertion of a Minos transposable element (Bellen et al., 2011), and the Drosomycin and Metchni-

kowin deletions generated by homologous recombination (Figure 1A and Figure 1—figure supple-

ment 1). To disentangle the role of Drosocin and AttA/AttB in the Dro-AttABSK2 deletion, we also

generated an individual Drosocin mutant (DroSK4); for complete information, see Figure 1—figure
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Figure 1. Description of AMP mutants. (A) Chromosomal locations of AMP genes that were deleted. Each mutation is color-coded with the mutagenic

agent: black, a Minos insertion or homologous recombination, red, CRISPR-CAS9-mediated deletion, and blue CRISPR CAS9 mediated indel causing a

nonsense peptide. (B) A representative MALDI-TOF analysis of hemolymph samples from immune-challenged (1:1 E. coli and M. luteus at OD600 = 200)

iso w1118 and DAMPs flies as described in Uttenweiler-Joseph et al. (1998). No AMP-derived products were detected in the hemolymph samples of

Figure 1 continued on next page
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supplement 1. We then isogenized these mutations for at least seven generations into the w1118

DrosDel isogenic genetic background (Ryder et al., 2004) (iso w1118). Then, we recombined these

seven independent mutations into a background lacking these 10 inducible AMPs referred to as

‘DAMPs.’ DAMPs flies were viable and showed no morphological defects. To confirm the absence of

AMPs in our DAMPs background, we performed a MALDI-TOF analysis of hemolymph from both

unchallenged and immune-challenged flies infected by a mixture of Escherichia coli and Micrococcus

luteus. This analysis revealed the presence of peaks induced upon challenge corresponding to AMPs

in wild-type but not DAMPs flies. Importantly, it also confirmed that induction of most other

immune-induced molecules (IMs) (Uttenweiler-Joseph et al., 1998), was unaffected in DAMPs flies

(Figure 1B). Of note, we failed to observe two IMs, IM7 and IM21, in our DAMPs flies, suggesting

that these unknown peptides are secondary products of AMP genes. We further confirmed that Toll

and Imd NF-kB signaling pathways were intact in DAMPs flies by measuring the expression of target

genes of these pathways (Figure 1C–D). This demonstrates that Drosophila AMPs are not signaling

molecules required for Toll or Imd pathway activity. We also assessed the role of AMPs in the mela-

nization response, wound clotting, and hemocyte populations. After clean injury, DAMPs flies survive

as wild-type (Figure 1—figure supplement 2A). We found no defect in melanization (c2, p=0.34,

Figure 1—figure supplement 2B) as both adults and larvae strongly melanize the cuticle following

clean injury (Figure 1—figure supplement 2C). Furthermore, we visualized the rapid formation of

clot fibers ex vivo using the hanging drop assay and PNA staining (Scherfer et al., 2004) in hemo-

lymph of both wild-type and DAMPs larvae (Figure 1—figure supplement 2D). Hemocyte counting

(i.e. crystal cells, FACS) did not reveal any deficiency in hemocyte populations of DAMPs larvae (Fig-

ure 1—figure supplement 2E,F, and not shown). Altogether, our study suggests that Drosophila

AMPs are primarily immune effectors, and not regulators of innate immunity.

AMPs are essential for combating Gram-negative bacterial infection
We used these DAMPs flies to explore the role that AMPs play in defence against pathogens during

systemic infection. We first focused our attention on Gram-negative bacterial infections, which are

combatted by Imd pathway-mediated defence in Drosophila (Lemaitre and Hoffmann, 2007). We

challenged wild-type and DAMPs flies with six different Gram-negative bacterial species, using inocu-

lation doses (given as OD600) selected such that at least some wild-type flies were killed. In our sur-

vival experiments, we also include Oregon R (OR-R) as an alternate wild-type for comparison, and

Relish mutants (RelE20) that lack a functional Imd response and are known to be very susceptible to

this class of bacteria (Hedengren et al., 1999) (Figure 2). Globally, DAMPs flies were extremely sus-

ceptible to all Gram-negative pathogens tested (Figure 2, light blue plots). The susceptibility of

AMP-deficient flies to Gram-negative bacteria largely mirrored that of RelE20 flies. For all Gram-neg-

ative infections tested, DAMPs flies show a higher bacterial count at 18 hr post-infection (hpi) indicat-

ing that AMPs actively inhibit bacterial growth, as expected of ‘antimicrobial peptides’ (Figure 2—

figure supplement 1A). Use of GFP-expressing bacteria show that bacterial growth in DAMPs flies

radiates from the wound site until spreading systemically (Figure 2—figure supplement 1B,C). Col-

lectively, the use of AMP-deficient flies reveals that AMPs are major players in resistance to Gram-

negative bacteria, and likely constitute an essential component of the Imd pathway’s contribution

for survival against these germs.

Figure 1 continued

DAMPs flies. No signals for IM7, nor IM21 were observed in the hemolymph samples of DAMPs mutants suggesting that these uncharacterized immune-

induced molecules are the products of AMP genes. The Imd pathway (C) and Toll pathway (D) are functional and respond to immune challenge in

DAMPs flies. We used alternate readouts to monitor the Toll and Imd pathways: pirk and PGRP-LB for Imd pathway and CG5791 (Bomanin) and IMPPP

for Toll signaling (De Gregorio et al., 2002; Hanson et al., 2016). UC = unchallenged, Inf = infected. hpi = hours post-infection. Expression

normalized with iso w1118-UC set to a value of 1.

DOI: https://doi.org/10.7554/eLife.44341.003

The following figure supplements are available for figure 1:

Figure supplement 1. Genetic description of mutations generated in this study.

DOI: https://doi.org/10.7554/eLife.44341.004

Figure supplement 2. DAMPs flies have otherwise wild-type immune reactions.

DOI: https://doi.org/10.7554/eLife.44341.005
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Figure 2. Survival of DAMPs flies to diverse microbial challenges. Control lines for survival experiments included two wild-types (w;Drosdel (iso w1118)

and Oregon R (OR-R) as an alternate wild-type), mutants for the Imd response (RelE20), mutants for Toll signaling (spzrm7), and mutants for Bomanins

(BomD55C). DAMPs flies are extremely susceptible to infection with Gram-negative bacteria (blue backgrounds). Unexpectedly, DAMPs flies were not

markedly susceptible to infection with Gram-positive bacteria (orange backgrounds), while BomD55C flies were extremely susceptible, often mirroring

Figure 2 continued on next page
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Bomanins and to a lesser extent AMPs contribute to resistance against
Gram-positive bacteria and fungi
Previous studies have shown that resistance to Gram-positive bacteria and fungi in Drosophila is

mostly mediated by the Toll pathway, although the Imd pathway also contributes to some

extent (Lemaitre et al., 1997; Leulier et al., 2000; Rutschmann et al., 2002; Tanji et al., 2007).

Moreover, a deletion removing ten uncharacterized Bomanins (BomD55C) induces a strong suscepti-

bility to both Gram-positive bacteria and fungi (Clemmons et al., 2015), suggesting that Bomanins

are major players downstream of Toll in the defence against these germs. This prompted us to

explore the role of antimicrobial peptides in defence against Gram-positive bacteria and fungi. In

these experiments, we additionally included spätzle mutant flies (spzrm7) lacking Toll signaling as sus-

ceptible controls. We first challenged wild-type and DAMPs flies with two lysine-type (E. faecalis, S.

aureus) and two DAP-type (B. subtilis, L. innocua) peptidoglycan-containing Gram-positive bacterial

species. We observed that DAMPs flies display only weak or no increased susceptibility to infection

with these Gram-positive bacterial species, as DAMPs survival rates were closer to the wild-type than

to spzrm7 mutants lacking a functional Toll pathway (Figure 2, orange plots), with the exception of S.

aureus. Meanwhile, BomD55C mutants consistently phenocopied spzrm7 flies, confirming the impor-

tant contribution of these peptides in defence against Gram-positive bacteria (Clemmons et al.,

2015).

Next, we monitored the survival of DAMPs to the yeast Candida albicans, the opportunistic fun-

gus Aspergillus fumigatus and two entomopathogenic fungi, Beauveria bassiana, and Metarhizium

anisopliae. For the latter two, we used a natural mode of infection by spreading spores on the

cuticle (Lemaitre et al., 1997). DAMPs flies were more susceptible to fungal infections with B. bassi-

ana, A. fumigatus, and C. albicans, but not M. anisopliae (Figure 2, yellow plots). In all instances,

BomD55C mutants were as or more susceptible to fungal infection than DAMPs flies, approaching

Toll-deficient mutant levels. Collectively, our data demonstrate that AMPs are major immune effec-

tors in defence against Gram-negative bacteria and have a less essential role in defence against bac-

teria and fungi.

A combinatory approach to explore AMP interactions
The impact of the DAMPs deletion on survival could be due to the action of certain AMPs having a

specific effect, or more likely due to the combinatory action of co-expressed AMPs. Indeed, cooper-

ation of AMPs to potentiate their microbicidal activity has been suggested by numerous in vitro

approaches (Rahnamaeian et al., 2015; Yu et al., 2016; Mohan et al., 2014), but rarely in an in vivo

context (Zanchi et al., 2017). Having shown that AMPs as a whole significantly contribute to fly

defence, we next explored the contribution of individual peptides to this effect. To tackle this ques-

tion in a systematic manner, we performed survival analyses using fly lines lacking one or several

AMPs, focusing on pathogens with a range of virulence that we previously showed to be sensitive to

the action of AMPs. This includes the yeast C. albicans and the Gram-negative bacterial species P.

burhodogranariea, P. rettgeri, Ecc15, and E. cloacae. Given seven independent AMP mutations,

over 100 combinations of mutants are possible, making a systematic analysis of AMP interactions a

logistical nightmare. Therefore, we designed an approach that would allow us to characterize their

contributions to defence by deleting groups of AMPs. To this end, we generated three groups of

Figure 2 continued

spzrm7 mutants. This pattern of BomD55C susceptibility held true for fungal infections (yellow backgrounds). DAMPs flies are somewhat susceptible to

fungal infections, but the severity shifts with different fungi. Pellet densities are reported for all systemic infections in OD at 600 nm. p-Values are given

for DAMPs flies compared to iso w1118 using a Cox-proportional hazards model. N = total number of flies in experiments. A full description of p-values

relative to iso w1118 can be found in Figure 2—source data 1.

DOI: https://doi.org/10.7554/eLife.44341.006

The following source data and figure supplement are available for figure 2:

Source data 1. p-Values from Figure 2A relative to iso w1118.

DOI: https://doi.org/10.7554/eLife.44341.008

Figure supplement 1. DAMPs flies fail to suppress Gram-negative bacterial growth.

DOI: https://doi.org/10.7554/eLife.44341.007
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combined mutants: A) flies lacking Defensin (Group A); Defensin is regulated by Imd signalling but is

primarily active against Gram-positive bacteria in vitro (Imler and Bulet, 2005). B) Flies lacking three

antibacterial and structurally related AMP families: the Proline-rich Drosocin and the Proline- and

Glycine-rich Diptericins and Attacins (Group B, regulated by the Imd pathway). C) Flies lacking the

two antifungal peptide genes Metchnikowin and Drosomycin (Group C, mostly regulated by the Toll

pathway). We then combined these three groups to generate flies lacking AMPs from groups A and

B (AB), A and C (AC), or B and C (BC). Finally, flies lacking all three groups are our DAMPs flies,

which are highly susceptible to a number of infections. By screening these seven genotypes as well

as individual mutants, we were able to assess potential interactions between AMPs of different

groups, as well as decipher the function of individual AMPs.

Drosomycin and metchnikowin additively contribute to defence against
the yeast C. albicans
We first applied this AMP-groups approach to infections with the relatively avirulent yeast C. albi-

cans. Previous studies have shown that Toll, but not Imd, contributes to defence against this

fungus (Gottar et al., 2006; Glittenberg et al., 2011). Thus, we suspected that the two antifungal

peptides, Drosomycin and Metchnikowin, could play a significant role in the susceptibility of DAMPs

flies to this yeast. Consistent with this, Group C flies lacking Metchnikowin and Drosomycin were

more susceptible to infection (p<0.001 relative to iso w1118) with a survival rate similar to DAMPs flies

(Figure 3A). Curiously, AC-deficient flies that also lack Defensin survived better than Group C-defi-

cient flies (Log-Rank p=0.014). We have no explanation for this interaction, but this could be due to

i) a better canalization of the immune response by preventing the induction of ineffective AMPs, ii)

complex biochemical interactions amongst the AMPs involved affecting either the host or pathogen

or iii) differences in genetic background generated by additional recombination. We then investi-

gated the individual contributions of Metchnikowin and Drosomycin to survival to C. albicans. We

found that both MtkR1 and DrsR1 individual mutants were somewhat susceptible to infection, but

notably only Mtk; Drs compound mutants reached DAMPs levels of susceptibility (Figure 3B). This

co-occurring loss of resistance appears to be primarily additive (Mutant, Cox Hazard Ratio (HR),

p-value: MtkR1, HR =+1.17, p=0.008; DrsR1, HR =+1.85, p<0.001; Mtk*Drs, HR = �0.80, p=0.116).

We observed that Group C deficient flies eventually succumb to uncontrolled C. albicans growth by

monitoring yeast titre, indicating that these AMPs indeed act by suppressing yeast growth

(Figure 3C).

In conclusion, our study provides an in vivo validation of the potent antifungal activities of Metch-

nikowin and Drosomycin (Fehlbaum et al., 1994; Levashina et al., 1995), and highlights a clear

example of additive cooperation of AMPs.

AMPs synergistically contribute to defence against P.
burhodogranariea
We next analyzed the contribution of AMPs in resistance to infection with the moderately virulent

Gram-negative bacterium P. burhodogranariea. We found that Group B mutants lacking Drosocin,

the two Diptericins, and the four Attacins, were as susceptible to infection as DAMPs flies

(Figure 4A), while flies lacking the antifungal peptides Drosomycin and Metchnikowin (Toll-regu-

lated, Group C) resisted the infection as wild-type. Flies lacking Defensin (Group A) showed an inter-

mediate susceptibility, but behave as wild-type in the additional absence of Toll Group C peptides

(Group AC). Thus, we again observed a better survival rate with the co-occurring loss of Group A

and C peptides (see possible explanation above). In this case, Group A flies were susceptible while

AC flies were not.

Following the observation that Group B flies were as susceptible as DAMPs flies, we sought to

better decipher the contribution of each Group B AMP to resistance to P. burhodogranariea. We

observed that mutants for Drosocin alone (DroSK4), or the DiptericinA/B deficiency were not suscep-

tible to this bacterium (Figure 4B). We additionally saw no marked susceptibility of Drosocin-Attacin

A/B-deficient flies, nor Attacin C or Attacin D mutants (not shown). Interestingly, we found that com-

pound mutants lacking Drosocin and Attacins A, B, C, and D (Figure 4B: ‘DDro, DAtt’), or Drosocin

and Diptericins DptA and DptB (‘DDro, DDpt’) displayed an intermediate susceptibility. Only the

Group B mutants lacking Drosocin, all Attacins, and both Diptericins (DDro, DAtt, DDpt)
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phenocopied DAMPs flies (Figure 4B), with synergistic statistical interactions observed upon co-

occurring loss of Attacins and Diptericins (DAtt*DDpt: HR =+1.45, p<0.001); we emphasize here that

this synergistic interaction solely reflects that the effect on survival of combining these mutations is

greater than the sum effect of the individual mutations (discussed later). By 6hpi, bacterial titres of

individual flies already showed significant differences in the most susceptible genotypes (Figure 4C),

although these differences were reduced by 18 hpi likely owing to the high chronic load P.
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Figure 3. Identification of AMPs involved in the susceptibility of DAMPs flies to C. albicans. (A) Survival of mutants for groups of AMPs reveals that loss

of only Toll-responsive Group C peptides (Metchnikowin and Drosomycin) is required to recapitulate the susceptibility of DAMPs flies. Co-occurring loss

of groups A and C has a net protective effect (A*C: HR = �1.71, p=0.002). (B) Further dissection of Group C mutations reveals that both Metchnikowin

and Drosomycin contribute to resist C. albicans survival (p=0.008 and p<0.001, respectively). The interaction of Metchnikowin and Drosomycin was not

different from the sum of their individual effects (Mtk*Drs: HR = �0.80, p=0.116). (C) Fungal loads of individual flies at 18 hpi. At this time point,

BomD55C mutants and spzrm7 flies have already failed to constrain C. albicans growth (C’). Fungal titres at 36hpi (C’’), a time point closer to mortality for

many AMP mutants, show that some AMP mutants fail to control fungal load, while wild-type flies consistently controlled fungal titre. One-way ANOVA:

not significant = ns, p<0.05 = *, p<0.01 = **, and p<0.001 = *** relative to iso w1118.

DOI: https://doi.org/10.7554/eLife.44341.009
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Figure 4. Identification of AMPs involved in the susceptibility of DAMPs flies to P. burhodogranariea. (A) Survival of mutants for groups of AMPs reveals

that loss of Imd-responsive Group B peptides (Drosocin, Attacins, and Diptericins) recapitulates the susceptibility of DAMPs flies. Loss of the Group A

peptide Defensin also resulted in strong susceptibility (p<0.001) (and see Figure 4—figure supplement 1). (B) Further dissection of AMPs deleted in

Group B reveals that only the loss of all Drosocin, Attacin, and Diptericin gene families leads to susceptibility similar to DAMPs flies. Simultaneous loss

of Attacins and Diptericins results in a synergistic loss of resistance (DAtt*DDpt: HR =+1.45, p<0.001). (C) Bacterial loads of individual flies at 6 hpi (C’).

At this time point, most AMP mutants had significantly higher bacterial loads compared to wild-type flies. At 18 hpi (C’’), differences in bacterial load

are reduced, likely owing to the high chronic load P. burhodogranariea establishes even in surviving flies (Duneau et al., 2017). Meanwhile RelE20 flies

succumb ~18 hr earlier than DAMPs flies in survival experiments, and already have significantly higher loads. One-way ANOVA: not significant = ns,

p<0.05 = *, p<0.01 = **, and p<0.001 = *** relative to iso w1118.

DOI: https://doi.org/10.7554/eLife.44341.010

The following figure supplement is available for figure 4:

Figure supplement 1. Further dissecting effects of AMP groups.

DOI: https://doi.org/10.7554/eLife.44341.011
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burhodogranariea establishes in surviving flies (Duneau et al., 2017; also see Figure 2—figure sup-

plement 1A).

Collectively, the use of various compound mutants reveals that several Imd-responsive AMPs,

notably Drosocin, Attacins, and Diptericins, jointly contribute to defence against P. burhodogranar-

iea infection. A strong susceptibility of Group B flies was also observed upon infection with Ecc15,

another Gram-negative bacterium commonly used to infect flies (Neyen et al., 2014) (Figure 4—fig-

ure supplement 1B ).

Diptericins alone contribute to defence against P. rettgeri
We continued our exploration of AMP interactions using our AMP groups approach with the fairly

virulent P. rettgeri (strain Dmel), a strain isolated from wild-caught Drosophila

hemolymph (Juneja and Lazzaro, 2009). We were especially interested by this bacterium as previ-

ous studies (Unckless et al., 2015; Unckless and Lazzaro, 2016) have shown a correlation between

susceptibility to P. rettgeri and a polymorphism in the Diptericin A gene pointing to a specific AMP-

pathogen interaction. Use of compound mutants revealed only loss of Group B AMPs was needed

to reach the susceptibility of DAMPs and RelE20 flies (Figure 5A). Use of individual mutant lines, how-

ever, revealed a pattern overtly different from P. burhodogranariea, as the sole Diptericin A/B defi-

ciency caused susceptibility similar to Group B, DAMPs, and RelE20 flies (Figure 5B,C). We further

confirmed this susceptibility using a DptA RNAi construct (Figure 5—figure supplement 1A, B).

Moreover, flies carrying the DptSK1 mutation over a deficiency (Df(2R)Exel6067) were also highly sus-

ceptible to P. rettgeri (Figure 5D). Interestingly, flies that were heterozygotes for DptSK1 or the Df

(2R)Exel6067 that still have one copy of the two Diptericins were markedly susceptible to infection

with P. rettgeri (Figure 5D). This indicates that a full transcriptional output of Diptericin is required

over the course of the infection to resist P. rettgeri (Figure 5E). Altogether, our results suggest that

only the Diptericin gene family, amongst the many AMPs regulated by the Imd pathway, provides

the full AMP-based contribution to defence against this bacterium. To test this hypothesis, we gen-

erated a fly line lacking all the AMPs except DptA and DptB (DAMPs+Dpt). Strikingly, DAMPs+Dpt flies

have the same survival rate as wild-type flies, further emphasizing the specificity of this interaction

(Figure 5B). Bacterial counts confirm that the susceptibility of these Diptericin mutants arises from

an inability of the host to suppress bacterial growth (Figure 5C).

Collectively, our study shows that Diptericins are critical to resist P. rettgeri, while they play an

important but less essential role in defence against P. burhodogranariea infection. We were curious

whether Diptericin’s major contribution to defence observed with P. rettgeri could be generalized to

other members of the genus Providencia. An exclusive role for Diptericins was also found for the

more virulent P. stuartii (Figure 5—figure supplement 1C), but not for other Providencia species

tested (P. burhodogranariea, P. alcalifaciens, P. sneebia, P. vermicola) (data not shown).

Drosocin is critical to resist infection with E. cloacae
In the course of our exploration of AMP-pathogen interactions, we identified another highly specific

interaction between E. cloacae and Drosocin. Use of compound mutants revealed that alone, Group

B flies were already susceptible to E. cloacae. Meanwhile, Group AB flies additionally lacking Defen-

sin reached DAMPs levels of susceptibility, while Group A and Group C flies resisted as wild-type-

Meanwhile, Group AB flies reached DAMPs levels of susceptibility, while Group A and Group C flies

resisted as wild-type (Figure 6A). The high susceptibility of Group AB flies results from a synergistic

statistical interaction amongst Group A (Defensin) and Group B peptides in defence against E.

cloacae (A*B, HR =+2.55, p=0.003).

We chose to further explore the AMPs deleted in Group B flies, as alone this genotype already

displayed a strong susceptibility. Use of individual mutant lines revealed that mutants for Drosocin

alone (DroSK4) or the Drosocin-Attacin A/B deficiency (Dro-AttABSK2), but not AttC, AttD, nor DptSK1

(not shown), recapitulate the susceptibility observed in Group B flies (Figure 6B). At 18 hpi, both

DroSK4 and DAMPs flies had significantly higher bacterial loads compared to wild-type flies, while

RelE20 mutants were already moribund with much higher bacterial loads (Figure 6C). Indeed, the

deletion of Drosocin alone alters the fly’s ability to control the otherwise avirulent E. cloacae upon

inoculations using OD = 200 (~39,000 bacteria, Figure 6A–C) or even OD = 10 (~7000 bacteria, Fig-

ure 6—figure supplement 1A).
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Figure 5. Identification of AMPs involved in the susceptibility of DAMPs flies to P. rettgeri. (A) Survival of mutants for groups of AMPs reveals that only

loss of Imd-responsive Group B peptides (Drosocin, Attacins, and Diptericins) recapitulates the susceptibility of DAMPs flies. (B) Further dissection of

the mutations affected in Group B reveals that only the loss of Diptericins (DptSK1) leads to susceptibility similar to DAMPs flies. Remarkably, flies lacking

all other AMPs (DAMPs+Dpt) resist as wild-type. (C) Bacterial loads of individual flies are similar at 6hpi (C’), but by 18hpi (C’’), Dpt mutants and RelE20

flies have all failed to control P. rettgeri growth. (D) Heterozygote flies for DptSK1 and a deficiency including the Diptericins and flanking genes (Df(2R)

Exel6067) recapitulates the susceptibility of Diptericin mutants. Intriguingly, heterozygotes with one functional copy of the Diptericins (+/DptSK1 or +/Df

(2R)Exel6067) are nonetheless highly susceptible to infection. (E) Diptericin A transcriptional output is strongly reduced in heterozygotes 6 hpi

compared to wild-type flies. One-way ANOVA: not significant = ns, p<0.05 = *, p<0.01 = **, and p<0.001 = *** relative to iso w1118.

Figure 5 continued on next page
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We confirmed the high susceptibility of Drosocin mutant flies to E. cloacae in various contexts:

transheterozygote flies carrying DroSK4 over a Drosocin deficiency (Df(2R)BSC858) that also lacks

flanking genes including AttA and AttB ((Figure 6D), the Dro SK4 mutations in an alternate genetic

background (yw, Figure 6E), and, Drosocin RNAi (Figure 6—figure supplement 1B,C). Thus, we

recovered two highly specific AMP-pathogen interactions: Diptericins are essential to combat P.

rettgeri infection, while Drosocin is paramount to surviving E. cloacae infection.

Discussion

A combinatory approach to study AMPs
Despite the recent emphasis on innate immunity, little is known on how immune effectors contribute

individually or collectively to host defence, exemplified by the lack of in depth in vivo functional char-

acterization of Drosophila AMPs. Taking advantage of new gene editing approaches, we developed

a systematic mutation approach to study the function of Drosophila AMPs. With seven distinct muta-

tions, we were able to generate a fly line lacking 10 AMPs that are known to be strongly induced

during the systemic immune response. A striking first finding is that DAMPs flies were perfectly

healthy and have an otherwise wild-type immune response. This indicates that in contrast to

mammals (van Wetering et al., 2002), these Drosophila AMPs are not likely to function as signaling

molecules. Using a systemic mode of infection that induces AMP expression in the fat body and

hemocytes, we found that most flies lacking a single AMP family exhibited a higher susceptibility to

certain pathogens consistent with their in vitro activity. We found activity of Diptericins against P.

rettgeri, Drosocin against E. cloacae, Drosomycin and Metchnikowin against C. albicans, and Defen-

sin against P. burhodogranariea. In most cases, the susceptibility of single mutants was slight, and

the contribution of individual AMPs could be revealed only when combined to other AMP mutations

as illustrated by the susceptibility of Drosocin, Attacin, and Diptericin combined mutants to P. burho-

dogranariea. Thus, the use of compound rather than single mutations provides a better strategy to

decipher the contribution of AMPs to host defence. Our findings are consistent with a previous study

using flies that constitutively expressed individual peptides (Tzou et al., 2002), which showed an

activity of Drosomycin against A. fumigatus and Attacin against Ecc15. Beyond the systemic immune

response, AMPs are also expressed in many tissues such as the gut and trachea (Ferrandon et al.,

1998; Tzou et al., 2000). Future studies should investigate the role of AMPs in these local epithelial

immune responses.

AMPs and Bomanins are essential contributors to Toll and Imd pathway
mediated host defence
The Toll and Imd pathways provide a paradigm of innate immunity, illustrating how two distinct

pathways link pathogen recognition to distinct but overlapping sets of downstream immune

effectors (Lemaitre and Hoffmann, 2007; Buchon et al., 2014). However, a method of deciphering

the contributions of the different downstream effectors to the specificity of these pathways remained

out of reach, as mutations in these immune effectors were lacking. Our study shows that AMPs con-

tribute greatly to resistance to Gram-negative bacteria. Consistent with this, DAMPs flies are almost

as susceptible as Imd-deficient mutants to most Gram-negative bacteria. In contrast, flies lacking

AMPs were only slightly more susceptible to Gram-positive bacteria and fungal infections compared

to wild-type flies, and this susceptibility rarely approached the susceptibility of Bomanin mutants. It

is possible that additional loss of Cecropins would further increase the sensitivity of DAMPs flies to

bacteria or fungi. This may be due to the cell walls of Gram-negative bacteria being thinner and

more fluid than the rigid cell walls of Gram-positive bacteria (Fayaz et al., 2010), consequently mak-

ing Gram-negative bacteria more prone to the action of pore-forming cationic peptides. It would be

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.44341.012

The following figure supplement is available for figure 5:

Figure supplement 1. Additional validation of the role of Diptericin in resistance to Providencia.

DOI: https://doi.org/10.7554/eLife.44341.013
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Figure 6. Identification of AMPs involved in the susceptibility of DAMPs flies to E.cloacae. (A) Survival of mutants for groups of AMPs reveals that loss of

Imd-responsive Group B peptides (Drosocin, Attacins, and Diptericins) results in a strong susceptibility to infection (p<0.001), while loss of Group A or C

peptides alone resists as wild-type (p>0.1 each). Group AB flies were as susceptible as DAMPs flies, and we observed a synergistic interaction between

Group A and B mutations (A*B: HR =+2.55, p=0.003). (B) Further dissection of the mutations in Group B revealed that loss of Drosocin alone (DroSK4),

or a deficiency lacking both Drosocin and Attacins AttA and AttB (Dro-AttABSK2) recapitulates the susceptibility of Group B flies. (C) By 18hpi, bacterial

loads in individual Drosocin mutants or RelE20 flies are significantly higher than wild-type. (D) Heterozygote flies for DroSK4 and Df(2R)BSC858 (a
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interesting to know if the specificity of AMPs to primarily combatting Gram-negative bacteria is also

true in other species.

Based on our study and Clemmons et al. (2015), we can now explain the susceptibility of Toll

and Imd mutants at the level of the effectors, as we show that mutations affecting Imd-pathway

responsive antibacterial peptide genes are highly susceptible to Gram-negative bacteria while the

Toll-responsive targets Drosomycin, Metchnikowin, and especially the Bomanins, confer resistance

to fungi and Gram-positive bacteria. Thus, the susceptibility of these two pathways to different sets

of microbes not only reflects specificity at the level of recognition, but can now also be translated to

the activities of downstream effectors. It remains to be seen how Bomanins contribute to the micro-

bicidal activity of immune-induced hemolymph, as attempts to synthesize Bomanins have not

revealed direct antimicrobial activity (Lindsay et al., 2018). It should also be noted that many puta-

tive effectors downstream of Toll and Imd remain uncharacterized, and so could also contribute to

host defence beyond these AMPs and Bomanins.

AMPs act additively and synergistically to suppress bacterial growth in
vivo
In the last few years, numerous in vitro studies have focused on the potential for synergistic interac-

tions of AMPs in microbial killing (Rahnamaeian et al., 2015; Yu et al., 2016; Zanchi et al., 2017;

Yan and Hancock, 2001; Nuding et al., 2014; Zerweck et al., 2017; Chen et al., 2005;

Stewart et al., 2014; Zdybicka-Barabas et al., 2012). Our collection of AMP mutant fly lines placed

us in an ideal position to investigate AMP interactions in an in vivo setting. While Toll-responsive

AMPs (Group C: Metchnikowin, Drosomycin) additively contributed to defence against the yeast C.

albicans, we found that certain combinations of AMPs have synergistic contributions to defence

against P. burhodogranariea. Synergistic loss of resistance may arise in two general fashions: first,

co-operation of AMPs using similar mechanisms of action may breach a threshold microbicidal activ-

ity whereupon pathogens are no longer able to resist. This may be the case for the synergistic effect

of Diptericins and Attacins against P. burhodogranariea, as only co-occurring loss of both these

related glycine-rich peptide families (Hedengren et al., 2000) led to complete loss of resistance.

Alternatively, synergy may arise due to complementary mechanisms of action, whereupon one AMP

potentiates the other AMP’s ability to act. For instance, the action of the bumblebee AMP Abaecin,

which binds to the molecular chaperone DnaK to inhibit bacterial DNA replication, is potentiated by

the presence of the pore-forming peptide Hymenoptaecin (Rahnamaeian et al., 2016).

Drosophila Drosocin is highly similar to Abaecin and the related peptide Apidecin, including O-gly-

cosylation of a critical threonine residue (Imler and Bulet, 2005; Hanson et al., 2016), and thus

likely acts in a similar fashion. Furthermore, Drosophila Attacin C is maturated into both a glycine-

rich peptide and a Drosocin-like peptide called MPAC (Rabel et al., 2004). As such, co-occuring loss

of Drosocin, MPAC, and other possible MPAC-like peptides encoded by the Attacin/Diptericin

superfamily may be responsible for the synergistic loss of resistance in Drosocin, Attacin, Diptericin

combined mutants.

AMPs can act with great specificity against certain pathogens
It is commonly thought that the innate immune response lacks the specificity of the adaptive immune

system, which mounts directed defences against specific pathogens. Accordingly for innate immu-

nity, the diversity of immune-inducible AMPs can be justified by the need for generalist and/or co-

operative mechanisms of microbial killing. However, an alternate explanation may be that innate

immunity expresses diverse AMPs in an attempt to hit the pathogen with a ‘silver bullet:’ an AMP

Figure 6 continued

deficiency removing Drosocin, Attacins AttA and AttB, and other genes) are strongly susceptible to E. cloacae infection. (E) Drosocin mutants in an

alternate genetic background (yw) are susceptible to E. cloacae. One-way ANOVA: not significant = ns, and p<0.001 = *** relative to iso w1118.

DOI: https://doi.org/10.7554/eLife.44341.014

The following figure supplement is available for figure 6:

Figure supplement 1. Additional validation of the role of Drosocin in defence against E. cloacae.

DOI: https://doi.org/10.7554/eLife.44341.015
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specifically attuned to defend against that pathogen. Here, we provide a demonstration in an in vivo

setting that such a strategy may actually be employed by the innate immune system. Remarkably,

we recovered not just one, but two examples of exquisite specificity in our laborious but relatively

limited assays.

Diptericin has previously been highlighted for its important role in defence against P.

rettgeri (Unckless et al., 2016), but it was previously unknown whether other AMPs may confer

defence in this infection model. Astoundingly, flies mutant for the other inducible AMPs resisted P.

rettgeri infection as wild-type, while only Diptericin mutants succumbed to infection. This means that

Diptericins do not co-operate with these other AMPs in defence against P. rettgeri and are solely

responsible for defence in this specific host-pathogen interaction. Moreover, +/DptSK1 heterozygote

flies were nonetheless extremely susceptible to infection, demonstrating that a full transcriptional

output over the course of infection is required to effectively prevent pathogen growth. A previous

study has shown that ~7 hpi appears to be the critical time point at which P. rettgeri either grows

unimpeded or the infection is controlled (Duneau et al., 2017). This time point correlates with the

time at which the Diptericin transcriptional output is in full-force (Lemaitre et al., 1997). Thus, a lag

in the transcriptional response in DptSK1/+ flies likely prevents the host from reaching a competent

Diptericin concentration, indicating that Diptericin expression level is a key factor in successful host

defence.

We also show that Drosocin is specifically required for defence against E. cloacae. This striking

finding validates previous biochemical analyses showing Drosocin in vitro activity against several

Enterobacteriaceae, including E. cloacae (Bulet et al., 1996). As DAMPs flies are more susceptible

than Drosocin single mutants, other AMPs also contribute to Drosocin-mediated control of E. cloa-

cae. As highlighted above, Drosocin is similar to other Proline-rich AMPs (e.g. Abaecin, Pyrrhocori-

cin) that have been shown to target bacterial DnaK (Kragol et al., 2001; Rahnamaeian et al., 2015).

Alone, these peptides still penetrate bacteria cell walls through their uptake by bacterial

permeases (Rahnamaeian et al., 2016; Narayanan et al., 2014). Thus, while Drosocin would benefit

from the presence of pore-forming toxins to enter bacterial cells (Rahnamaeian et al., 2016), the

veritable ‘stake to the heart’ is likely the plunging of Drosocin itself into vital bacterial machinery.

On the role of AMPs in host defence
It has often been questioned why flies should need so many AMPs (Lemaitre and Hoffmann, 2007;

Rolff and Schmid-Hempel, 2016; Unckless and Lazzaro, 2016). A common idea, supported by in

vitro experiments (Rahnamaeian et al., 2015; Yan and Hancock, 2001; Zdybicka-Barabas et al.,

2012) is that AMPs work as cocktails, wherein multiple effectors are needed to kill invading patho-

gens. However, we find support for an alternative hypothesis that suggests AMP diversity may be

due to highly specific interactions between AMPs and subsets of pathogens that they target. Bur-

geoning support for this idea also comes from recent evolutionary studies that show Drosophila and

vertebrate AMPs experience positive selection (Unckless et al., 2015; Unckless and Lazzaro, 2016;

Hanson et al., 2016; Chapman et al., 2018; Hellgren and Sheldon, 2011; Tennessen and Blouin,

2008; Sackton, 2019), a hallmark of host-pathogen evolutionary conflict. Our functional demonstra-

tions of AMP-pathogen specificity, using naturally relevant pathogens (Juneja and Lazzaro, 2009;

Cox and Gilmore, 2007), suggest that such specificity is fairly common, and that certain AMPs can

act as the arbiters of life or death upon infection by certain pathogens. This stands in contrast to the

classical view that the AMP response contains such redundancy that single peptides should have lit-

tle effect on organism-level immunity (Rolff and Schmid-Hempel, 2016; Unckless et al., 2015;

Tzou et al., 2000; Unckless and Lazzaro, 2016). Nevertheless, it seems these immune effectors

play non-redundant roles in defence.

By providing a long-awaited in vivo functional validation for the role of AMPs in host defence, we

also pave the way for a better understanding of the functions of immune effectors. Our approach of

using multiple compound mutants, now possible with the development of new genome editing

approaches, was especially effective to decipher the logic of immune effectors. Understanding the

role of AMPs in innate immunity holds great promise for the development of novel

antibiotics (Chung et al., 2017; Mylonakis et al., 2016; Mahlapuu et al., 2016), insight into autoim-

mune diseases (Schluesener et al., 1993; Gilliet and Lande, 2008; Sun et al., 2015; Kumar et al.,

2016), and given their potential for remarkably specific interactions, perhaps in predicting key

parameters that predispose individuals or populations to certain kinds of infections (Unckless et al.,
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2015; Unckless and Lazzaro, 2016; Chapman et al., 2018). Finally, our set of isogenized AMP

mutant lines provides long-awaited tools to decipher the role of AMPs not only in systemic immu-

nity, but also in local immune responses, and the various roles that AMPs may play in aging, neuro-

degeneration, anti-tumor activity, regulation of the microbiota and more, where disparate evidence

has pointed to their involvement.

Materials and methods

Drosophila genetics and mutant generation
The DrosDel (Ryder et al., 2004) isogenic w1118 (iso w1118) wild type was used as a genetic back-

ground for mutant isogenization. Alternate wild-types used throughout include Oregon R (OR-R),

w1118 from the Vienna Drosophila Resource Centre, and the Canton-S isogenic line Exelexis w1118,

which was kindly provided by Brian McCabe. BomD55C mutants were generously provided by Steven

Wasserman, and BomD55C was isogenized into the iso w1118 background. RelE20 and spzrm7 iso w1118

flies were provided by Luis Teixeira (Hedengren et al., 1999; Ferreira et al., 2014). Prophenoloxi-

dase mutants (DPPO) are described in Dudzic et al. (2015). P-element mediated homologous

recombination according to Baena-Lopez et al. (2013) was used to generate mutants for Mtk

(MtkR1) and Drs (DrsR1). Plasmids were provided by Mickael Poidevin. Attacin C mutants (AttCMi,

#25598), the Diptericin deficiency (Df(2R)Exel6067, #7549), the Drosocin deficiency (Df(2R)BSC858,

#27928), UAS-Diptericin RNAi (DptRNAi, #53923), UAS-Drosocin RNAi (DroRNAi, #67223), and

Actin5C-Gal4 (ActGal4, #4414) were ordered from the Bloomington stock centre (stock #s included).

CRISPR mutations were performed by Shu Kondo according to Kondo and Ueda (Kondo and Ueda,

2013), and full descriptions are given in Figure 1—figure supplement 1. In brief, flies deficient

for Drosocin, Attacin A,and Attacin B (Dro-AttABSK2), and Diptericin A and Diptericin B (DptSK1)

were produced by gene region deletion specific to those AMPs without affecting other genes. Single

mutants for Defensin (DefSK3), Drosocin (DroSK4), and Attacin D (AttDSK1) are small indels resulting in

the production of short (80–107 residues) nonsense peptides. Mutations were isogenized for a mini-

mum of seven generations into the iso w1118 background prior to subsequent recombination. It

should be noted that Group A flies were initially thought to be a double mutant for both Defensin

and the Cecropin cluster, resulting from a combination of DefSK3 and a CRISPR-induced Cecropin

deletion (called CecSK6). It was subsequently shown that CecSK6 is a complex aberration at the

Cecropin locus that retains a wild-type copy of the Cecropin cluster. This re-arranged Cecropin locus

does not contribute significantly to the susceptibility of Group A flies, as Group A was not different

from DefSK3 alone (Log-Rank p=0.818; Figure 4—figure supplement 1A). Thus, group A flies were

considered as single DefSK3 mutants.

Microbial culture conditions
Bacteria were grown overnight on a shaking plate at 200 rpm in their respective growth media and

temperature conditions, and then pelleted by centrifugation at 4˚C. These bacterial pellets were

diluted to the desired optical density at 600 nm (OD) as indicated. The following bacteria were

grown at 37˚C in LB media: Escherichia coli strain 1106, Salmonella typhimurium, Enterobacter cloa-

cae b12, Providencia rettgeri strain Dmel, Providencia burhodogranariea strain B, Providencia stuartii

strain DSM 4539, Providencia sneebia strain Dmel, Providencia alcalifaciens strain Dmel, Providencia

vermicola strain DSM 17385, Bacillus subtilis, and Staphylococcus aureus. Erwinia carotovora caroto-

vora (Ecc15) and Micrococcus luteus were grown overnight in LB at 29˚C. Enterococcus faecalis and

Listeria innocua were cultured in BHI medium at 37˚C. Candida albicans was cultured in YPG medium

at 37˚C. Aspergillus fumigatus was grown at room temperature on Malt Agar, and spores were col-

lected in sterile PBS rinses, pelleted by centrifugation, and then resuspended to the desired OD in

PBS. The entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae were grown on

Malt Agar at room temperature until sporulation.

Systemic infections and survival
Systemic infections were performed by pricking 3- to 5-day-old adult males in the thorax with a 100-

mm-thick insect pin dipped into a concentrated pellet of bacteria or fungal spores. Infected flies

were subsequently maintained at 25˚C for experiments. For infections with B. bassiana and M.

Hanson et al. eLife 2019;8:e44341. DOI: https://doi.org/10.7554/eLife.44341 17 of 24

Research article Immunology and Inflammation

https://doi.org/10.7554/eLife.44341


anisopliae, flies were anesthetized and then shaken on a sporulating plate of fungi for 30 s. At least

two replicate survival experiments were performed for each infection, with 20–35 flies per vial on

standard fly medium without yeast. Survivals were scored twice daily, with additional scoring at sen-

sitive time points. Comparisons of iso w1118 wild-type to DAMPs mutants were made using a Cox-

proportional hazard (CoxPH) model, where independent experiments were included as covariates,

and covariates were removed if not significant (p>0.05). Direct comparisons were performed using

Log-Rank tests in Prism seven software. The effect size and direction is included as the CoxPH haz-

ard ratio (HR) where relevant, with a positive effect indicating increased susceptibility. CoxPH mod-

els were used to test for synergistic contributions of AMPs to survival in R 3.4.4. Total sample size

(N) is given for each experiment as indicated.

Quantification of microbial load
The native Drosophila microbiota does not readily grow overnight on LB, allowing for a simple assay

to estimate bacterial load. Flies were infected with bacteria at the indicated OD as described, and

allowed to recover. At the indicated time post-infection, flies were anesthetized using CO2 and sur-

face sterilized by washing them in 70% ethanol. Ethanol was removed, and then flies were homoge-

nized using a Precellys bead beater at 6500 rpm for 30 s in LB broth, with 300 ml for individual

samples, or 500 ml for pools of 5–7 flies. These homogenates were serially diluted and 150 ml was

plated on LB agar. Bacterial plates were incubated overnight, and colony-forming units (CFUs) were

counted manually. Statistical analyses were performed using One-way ANOVA with Sidak’s correc-

tion. p-Values are reported as <0.05 = *,<0.01 = **, and <0.001 = ***. For C. albicans, BiGGY agar

was used instead to select for Candida colonies from fly homogenates.

Gene expression by qPCR
Flies were infected by pricking flies with a needle dipped in a pellet of either E. coli or M. luteus

(OD600 = 200), and frozen at �20˚C 6 hr and 24 hr post-infection, respectively. Total RNA was then

extracted from pooled samples of five flies each using TRIzol reagent, and re-suspended in MilliQ

dH2O. Reverse transcription was performed using 0.5 mg total RNA in 10 ml reactions using Prime-

Script RT (TAKARA) with random hexamer and oligo dT primers. Quantitative PCR was performed

on a LightCycler 480 (Roche) in 96-well plates using Applied Biosystems SYBR Select Master Mix.

Values represent the mean from three replicate experiments. Error bars represent one standard

deviation from the mean. Primers used in this study can be found in Supplementary file 1. Statistical

analyses were performed using one-way ANOVA with Tukey post-hoc comparisons. p-Values are

reported as not significant = ns,<0.05 = *,<0.01 = **, and <0.001 = ***. qPCR primers and

sources (Kounatidis et al., 2017; Hanson et al., 2016; Iatsenko et al., 2016) are included in

Supplementary file 1.

MALDI-TOF peptide analysis
Two methods were used to collect hemolymph from adult flies: in the first method, pools of five

adult females were pricked twice in the thorax and once in the abdomen. Wounded flies were then

spun down with 15 ml of 0.1% trifluoroacetic acid (TFA) at 21000 RCF at 4˚C in a mini-column fitted

with a 10 mm pore to prevent contamination by circulating hemocytes. These samples were frozen at

�20˚C until analysis, and three biological replicates were performed with four technical replicates. In

the second method, approximately 20 nl of fresh hemolymph was extracted from individual adult

males using a Nanoject, and immediately added to 1 ml of 1% TFA, and the matrix was added after

drying. Peptide expression was visualized as described in Uttenweiler-Joseph et al. (1998). Both

methods produced similar results, and representative expression profiles are given.

Melanization and hemocyte characterization, image acquisition
Melanization assays (Dudzic et al., 2018) and peanut agglutinin (PNA) clot staining (Scherfer et al.,

2004) was performed as previously described. In brief, flies or L3 larvae were pricked, and the level

of melanization was assessed at the wound site. We used FACS sorting to count circulating hemo-

cytes. For sessile crystal cell visualization, L3 larvae were cooked in dH2O at 70˚C for 20 min, and

crystal cells were visualized on a Leica DFC300FX camera using Leica Application Suite and counted

manually.
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