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The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer
interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the
training model can be applied in the embedded chip with small storage space, this paper presents a feature model
construction and optimization method based on multichannel SEMG amplification unit. The feature model is established by
using multidimensional sequential SEMG images by combining convolutional neural network and long-term memory
network to solve the problem of multistate SEMG signal recognition. The experimental results show that under the same
network structure, the SEMG signal with fast Fourier transform and root mean square as feature data processing has a good
recognition rate, and the recognition accuracy of complex gestures is 91.40%, with the size of 1 MB. The model can still

control the artificial hand accurately when the model is small and the precision is high.

1. Introduction

In recent years, surface electromyography (sEMG) has
received great attention in driving prosthetic hand [1]. In
order to realize the motor control using SEMG accurately,
gesture action classification based on machine learning
(ML) method, namely, pattern recognition (PR) and regres-
sion method based on classifier, has been widely studied.
The regression model is mainly used for continuous wrist
motion estimation [2], which can be used for synchronous
control of multidegree of freedom (DOEF), while the PR-
based method uses discrete and sequential methods to dis-
tinguish gesture actions. Some ML-based regression
methods, including linear regression (LR), random forest
(RF), support vector regression (SVR), and artificial neural
network (ANN), have been widely used in offline simulation
and real-time control [3-7]. However, ML technology
requires highly dependent feature extraction [8]. The
appearance of convolutional neural network (CNN) pro-
vides a new method for feature learning and extraction
through layer by layer processing [9, 10].

Jiang et al. propose a new method to extract specific
knowledge from the data of motion time series by singular

value decomposition (SVD) [11]. Bai and others proposed
a recognition optimization method based on the combina-
tion of maximum mutual information channel selection,
wavelet packet feature extraction, and support vector
machine (SVM) and obtained more than 92% accuracy
[12, 13]. Chen et al. proposed a new CNN structure com-
posed of four convolution layers and one maximum pool
layer. The structure is compact, the complexity of the model
is reduced, and the accuracy of SEMG signal classification is
improved [14]. Wei et al. proposed a multistream convolu-
tion neural network framework to improve the accuracy of
gesture recognition by learning the correlation between a
single muscle and a specific gesture [15].

Ding et al. proposed a parallel multiscale convolution
architecture, which uses kernel filters of different sizes to
recognize gesture actions [16]. Sun and others combine the
generated flow model (GFM) with softmax classifier to
classify gestures. The accuracy of classification of 53 different
gestures in Ninapro database 5 is 63.86+5.12% [17].
Although the spatial correlation of multichannel SEMG
signals can be extracted by CNN, CNN ignores the time
information in the continuous contraction of muscles.
Recently, many researchers have begun to apply LSTM to
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the estimation of hand posture based on SEMG. Zhang et al.
use LSTM to classify multimode gesture data collected by
inertial measurement device, Myo armband (Thalmic Labs
Inc.) and pressure sensor, which has achieved good results
[18]. Teban et al. show that LSTM performs better than non-
recursive neural network in the nonlinear mechanism con-
trol of human hand [19]. In He et al’s study, combining
LSTM with ANN, sEMG dynamic and static information is
used to identify SEMG signals [20]. Although many scholars
use convolutional neural network and long-term memory
network to achieve better results in the relationship between
muscles and gesture movement classification of SEMG sig-
nals, the size of the model is not considered. Because of the
cost problem in the current stage, the flash in microproces-
sor is limited, and most of the deep learning training models
are difficult to be applied in embedded hardware.

In order to solve the problem that the deep learning
model generated in the process of gesture recognition, using
SEMG signal is too large to be applied. Inspired by the
advantages and limitations of CNN and LSTM, this paper
proposes a CNN+LSTM hybrid framework. The CNN
+LSTM hybrid model effectively combines the deep feature
extraction of machine learning with sequence regression
and makes full use of the spatiotemporal correlation of
SsEMG, so as to generate a smaller deep learning model with
high accuracy. By using the deep features extracted by CNN
and LSTM unit operation, complex gesture signals can be
predicted accurately. Compared with traditional CNN,
CNN+LSTM has stronger robustness to local distortion,
and the generated prediction model is smaller and accurate.
In this study, ten healthy participants participated in a series
of wrist movement experiments. Experimental results show
that the performance of CNN+LSTM is superior to CNN
and traditional machine learning methods. When complex
hand motion is activated in multidegree of freedom, this
advantage will be more obvious.

The rest of this paper is structured as follows. Section 2
introduces the experimental equipment and data acquisi-
tion. Section 3 describes the data processing and the pro-
posed CNN+LSTM hybrid framework and how to lighten
and quantify the model. In Section 4, after optimizing the
training model, the training results of the deep learning
training model are given. The fifth part is the conclusion
and puts forward the future work.

2. Materials and Methods

The data acquisition device in this experiment is a self-
developed sEMG acquisition module, which can accurately
collect human upper limb sEMG signals, the sampling
frequency is 2KHz, and the actual physical map is
shown in Figure 1(a); the experimental data source is
the 10 healthy subjects including 4 females and 6 males,
aged between 23 and 26 years old, with an average age
of 24.3 (£1.03) years, a height of 172.1 (+6.46) cm, and a
weight of 71.3 (+9.58) kg. The subject had not received train-
ing before the test. At the beginning of the experiment, each
subject sat on a comfortable chair and relaxed his arms. The
collected SEMG signals are transmitted to the hardware
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F1GURE 1: sSEMG collector and prosthetic hand control flow chart.

experimental platform through Bluetooth for data prepro-
cessing and model matching, and the hardware experimental
platform can control the steering gear. The actual physical
diagram is shown in Figure 1(b).

The prosthetic hand experimental platform is shown in
Figure 1(c). As shown in Figure 1(c), the 5 fingers of the arti-
ficial hand experimental platform are controlled by 5 servos,
but they do not have the freedom of the wrist joints. In the
later stage, the deep learning model needs to be imported
into the hardware experimental platform for real-time con-
trol. This hardware experiment platform is based on the
microprocessing chip STM32. Its internal flash is 2M,
RAM is 16 M, and the main frequency is up to 480 MHz.
When SRAM is off and in standby mode, the power con-
sumption of the chip is 2.95pyA. When VDD =3.3V and
the temperature is 25°C, the power consumption of the chip
is 263 u/MHz, with good performance, and the microproces-
sor has an excellent price/performance ratio.

Figure 2 shows the location of the electrode and the
actual picture of the position of the electrode. As shown in
Figure 2, 18 electrodes were placed at the proximal forearm
to collect SEMG signals in 6 channels. Each of the three elec-
trodes forms a path, two of which are differential signals and
one of which is reference ground signal. In order to obtain
better differential effect, the two differential electrodes are
placed on both sides and the reference electrode is placed
in the middle. In addition, in order to reduce crosstalk, the
distance between the two differential electrodes is about
30 mm. The EMG signals of extensor digiti minimi, extensor
digitorum, abductor digitorum longum, flexor digitorum
longum, flexor digitorum superficialis, and flexor digitorum
profundus were collected in sequence.
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As shown in Figure 3, in the experiment, participants are
required to implement 16 predefined gesture motion proto-
cols. Each experimenter conducted an experiment in the
order shown in Figure 2, with each action performed three
times, and each action had one minute to rest. Since the
measured sSEMG signal is almost harmless to the subjects,
participants can stop the experiment at any time to prevent
any discomfort. The upper limbs should be placed horizon-
tally on the table, the elbows should be slightly supported,
the palms should be downward, and the fingers should be
slightly bent. All operations start from this static position.
Because the data will be scrambled before deep learning,
the sequence of 16 kinds of gestures will not affect the
results.

The original sSEMG signal is collected by the SEMG sig-
nal acquisition chip in Figure 1(a), and the collected original
sEMG signal will be stored in csv format. The training
platform of the experimental depth model is the Dell
workstation host, equipped with 2080Ti graphics card. The
original sSEMG signal needs to be preprocessed before deep
learning, The processed data is generated into a small deep
learning model through the light CNN+LSTM hybrid struc-
ture and imported into the left platform of Figure 1(b). On
this experimental platform, data processing and feature
extraction are carried out, and the gesture signals are classi-

fied, so as to facilitate the false hand control of the right
platform of Figure 1(b).

3. Data Processing and Lightweight
CNN+LSTM Hybrid Structure

In the existing deep learning data processing stage, time-
domain analysis is simple and easy to perform in the deep
learning data processing stage, but the disadvantages are
long training time, high hardware requirements, poor real-
time performance, and only time-domain analysis ignores
frequency-domain analysis, It will cause a lot of eigenvalues
to be lost, and it is impossible to perform deep learning
accurately to achieve model matching. This research mainly
combines the time-frequency-domain analysis with the
time-domain analysis of the surface EMG signal. After the
original sSEMG signal is processed in the time-frequency
domain, the amplitude after the time-frequency-domain
transformation is processed to generate the eigenvalue
matrix. The CNN network extracts feature vectors and trains
the extracted feature vectors on the LSTM model to generate
a gesture prediction model. This combination of time and
frequency domains and the use of the CNN+LSTM hybrid
model to generate a model are smaller and more accurate.
After the original SEMG signal is processed as described



above, its characteristic value will be easy to analyze, so as to
generate a predictive model more accurately, which is more
conducive to the control of the prosthetic hand in the later
stage.

3.1. Feature Extraction. The experimental model uses sliding
window technology for feature extraction, the data set is
divided into data segments, and the sliding window with a
length of 100 is used to divide the data. In order to improve
the real-time accuracy, the step size of two consecutive slid-
ing windows is set to one point (5ms). In the process of fea-
ture extraction in the sliding window, in order to reduce the
amount of computation, only the combination of root mean
square (RMS) and fast Fourier transform (FFT) is selected in
time-domain processing. The time-domain features selected
in this experiment are root mean square (RMS), mean accel-
eration (MAV), waveform length (WL), zero cross (ZC), and
slope sign change (SSC). In order to facilitate the study, the
time window is 100, the step size is 100 (no overlap), and the
number of sampling points is 100 in the FFT of time-
frequency domain.

(a) MAV

MAUV is one of the most commonly used parameters in
SsEMG signal analysis. The feature of MAV is the average
of absolute amplitude of SEMG signal in sliding window. It
provides information about the level of muscle contraction.
s(k) is the kth amplitude sample, and N is the sample size.
MAV can be calculated as R.

(b) WL

WL is another method to represent the frequency infor-
mation of surface EMG signal, which represents the wave-
form characteristics of SEMG signal graph.

WL(x;) = k;P‘i,k — Xk |- (2)

(c) SSC

SSC is one of the commonly used parameters in SEMG
signal analysis. It is defined as s in the equation and repre-
sents the number of times the slope symbol changes in the
sliding window.

N-1

S= Y I(s(k) = stk = 1)) x (s(k) = s(k + 1)) (3)

k=2

(d) zC

ZC is the number of zero crossing. This feature calculates
the frequency of surface EMG signal passing through the
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zero point. At the same time, it is set to reduce the influence
of noise in the signal.

ZC = (|xi,k - xi’k_1| > 8). (4)

(e) RMS

RMS represents the average power of the surface
EMG signal, reflecting muscle activity. It is defined as R
in formula (5):

R- %is(k)z. (5)

In this study, the original EMG signal is preprocessed
before deep learning. The original data of EMG signal is
processed by MAV, WL, SSC, ZC, RMS, FFT, and FFT +
RMS, respectively. After processing, the original data will
generate multidimensional characteristic data matrix as the
input of deep learning model. Due to the huge amount of
data, the generated multidimensional characteristic data
matrix is stored in h5 file format, and the file generated by
h5 file with its special data structure has small space. It can
be easily imported into the deep learning model, and the
transmission between each deep learning layer is in the form
of matrix. In order to improve the accuracy of classification,
in addition to using the above feature parameters, this
experiment extracts the preprocessed signal through sliding
window.

3.2. Preprocessing of Data. In the experiment, a third-order
Butterworth high-pass filter (20 Hz) was used to eliminate
motion artifacts [21], and a low-pass filter (2 KHz) was used
to remove high-frequency noise. At the same time, a 50 Hz
notch filter is used to reduce power line noise. Apply min-
max scaling to normalize the surface EMG signal in each
channel [22].

Because the sEMG signal is a nonstationary signal, the
pretreatment method of sSEMG is usually time-domain anal-
ysis. In this paper, the method of combining time-frequency
and time domain is adopted in the data preprocessing stage,
the fast Fourier transform is used to make the sSEMG fast
Fourier transform first, and then, the sEMG signal is proc-
essed twice by the way of time-domain processing. Fourier
transform allows frequency-based signal analysis. However,
in essence, when the signal is a nonstationary signal, Fourier
transform cannot work normally. Therefore, it is limited to
analyze these signals by Fourier transform. One of the tech-
nologies to solve this problem is fast Fourier transform
(FFT), which is called the efficient and fast calculation
method of computing discrete Fourier transform (DFT) by
computer. The basic idea of FFT is to decompose the
original N-point sequence into a series of short sequences
in turn. The symmetry and periodic properties of the expo-
nential factors in DFT are fully utilized, and then, the corre-
sponding DFT of these short sequences is calculated and
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FIGURE 4: (a) SEMG of 1-3 pathway after palmar extension twice (left) and surface electromyography after fast Fourier transform (right).
(b) SEMG of 4-6 pathway after palmar extension twice (left) and surface electromyography after fast Fourier transform (right).

combined appropriately to delete the repeated calculation,
reduce the multiplication operation, and simplify the struc-
ture. The formula of DFT is

f(x)=ay+ Z (an cos ? +b, sin (6)

mrx>
n=1 L

In the original signal processing stage, in order to retain
the characteristics of the original SEMG signal to the greatest
extent, the fast Fourier transform is used to extract the
time-frequency characteristics of the sEMG signal. The
data collector of this experiment is 2 KHz. In the fast Fourier
transform, 100 signal values are selected each time, the
window length of FFT is 100, and the step length is 100.
The results of some original signals and FFT are shown in
Figure 4.

3.3. Construction and Training of 2D CNN+LSTM. As
shown in Figure 5, the 2D CNN+LSTM model includes
two steps: the first step is to realize CNN feature extraction.
First, CNN is used to extract deep feature vectors from
multichannel sSEMG signals. In the second step, LSTM unit
is used to generate gesture prediction model. Firstly, the
continuous deep feature vectors are arranged into a series
of feature sequences, for example, [f;, fo o nof ), where f,
is the first feature map feature generated after the first con-
volution of convolution neural network after the first sam-
pling, and f, is the second feature map feature generated
after the second convolution of convolution neural network
after the second sampling, where f, is the nth feature map
feature generated after the nth convolution, denoted as [f]
in Figure 5, and parameter # is the number of feature vectors
in a feature sequence, which represents the time steps of
recursive regression. LSTM is used to convert [f, f, - ---f,]
into gesture action [g,, g,, -~ g,], where g, is gesture action 1
shown in Figure 3 and g, is gesture action 2 shown in

Figure 3. In this study, k = 16, and the final output is used as
the final observation target of the sequence. The following will
introduce in detail the CNN feature extraction and LSTM ges-
ture prediction, as well as the training process of the hybrid
model.

3.3.1. Deep Feature Extraction Based on CNN. Construction
of sSEMG matrix: as shown in the first step of Figure 6, firstly,
the multichannel SEMG signal is divided into several seg-
ments by using the sliding window method with the window
of 200, and then, a segment of the signal is arranged into
200 x six x 1 matrix. This corresponds to the length of the
sliding window and the number of sensor channels. The
amplitude of each spectrum can be obtained by fast Fourier
transform (FFT) of each channel. The amplitude of each
spectrum can be regarded as a time series. After time-
domain processing of MAV, the sSEMG matrix based on
multifeature data can be obtained as the input of CNN.

CNN architecture: as shown in Figure 6, the CNN is
composed of 2 convolution blocks (Conv blocks). The Conv
block has a convolutional layer and a max pooling layer. The
convolutional layer uses boundary padding with a kernel
size of 4. There are 40 kernels in the first convolution block
and 20 kernels in the second convolution block.

3.3.2. LSTM-Based Sequential Regression. Topology of LSTM:
LSTM is a network used to encode context information of
time series with feedback loop. It contains the period of
network activation input from the previous time point to
influence the prediction of the current time point [23].

LSTM architecture: as shown in the third step of
Figure 5. The LSTM used in this paper consists of one LSTM
operation unit. The operation unit has a flatten layer for
dimension reduction, a dropout layer, and a full connection
layer, and the leaky relu layer is used to solve the dying relu
problem [24].
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3.3.3. CNN+LSTM Training. In this study, the idea of
training CNN+LSTM model at the same time is adopted.
The main reason is that this strategy in training CNN
and LSTM can save more computer space and improve
operation efficiency. In addition, a component (CNN or
LSTM) can be changed at the same time before training
the model, which is more flexible in practical application.
Specifically, CNN and LSTM are tuned in two steps.
Firstly, a regression layer is added to the proposed CNN
architecture to complete supervised learning. In this step,
the input of the model is SEMG data. Secondly, deep fea-
ture vectors are extracted from the processed matrix of the
second convolution block of CNN, and on this basis, fea-
ture sequences are constructed to train LSTM for sequence
regression. The specific hybrid model architecture is shown
in Figure 6.

CNN network training setting: the training method in
this network is random momentum gradient descent
method (SGDM). The verification frequency is set to twice
per epoch. The maximum batch size is set to 128 because
lower batch values increase training time. These layers and
parameters are selected empirically.

LSTM network training setup: in this study, the duration
of regression sequence was set to 1 second. In practice, the
trade-off between the amount of time-dependent informa-
tion and the amount of computation is realized. Adaptive
moment estimation (ADAM) is used to train LSTM in 32
small batches in 200 periods. The dynamic learning rate
was initialized to 0.01 and decreased by 80% after every 20
cycles. Therefore, only one LSTM layer and 50 hidden units
are used in this study. For regularization, an exfoliation layer
with 20% exfoliation rate is added.
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Gesture classification based on surface electromyography
includes intraexperiment and interexperiment evaluation. In
order to realize the in experiment evaluation, the data in a
test of each protocol is divided into three parts. The first
two parts are used for model training, and the last part is
used for testing. In order to avoid data leakage, it should
be split before data preprocessing. In the interexperiment
evaluation, one complete experiment is used for model
training and the other is used for testing in the same proto-
col. This method can better verify the robustness of the
model to the time-varying surface EMG signal. In this study,
the deep learning model uses the crossentropy function as
the loss function to ensure that the loss size is 0.01 in the
training stage of the data set and 0.1 in the verification set.

3.4. Implementation and Size Evaluation of CNN+LSTM
Lightweight Model. In the deep learning model training of
this experiment, compared with the traditional deep learning
process, the CNN training process is improved. Taking the
deep learning model as 2D CNNs+LSTM as an example,
after twice convolution neural network feature extraction,
it is not directly connected with the full link layer but
directly transforms the processing results into the dimension
of the feature matrix by using reshape unit and takes the
processed results as the input of LSTM. This method can
effectively reduce the intermediate variables generated by
the full link layer in the process of convolutional neural net-
work, can quickly perform calculations, and make the
trained model smaller, thereby saving hardware space.

The calculation of parameters of deep learning model
can estimate the size of the model generated by deep learn-
ing; N° represents the size of the input layer and is defined as

N°=N, * Cy = Hy = W,. (7)

N, represents the number of input images; C, and H,
represent the length and width of convolution kernel,
respectively; and W, represents the number of output
graphics. In the first convolution operation N, = 1.

In order to estimate the size of the experimental model,
we take the deep learning model 2D CNN+LSTM as an
example. As shown in Figure 5, when the input is 200 * 6
* 1, the convolution core size in the first layer convolution
neural network is 40 = 6, and the output is set to 128 feature
maps. The second convolution kernel is 20 * 6, and the out-
put is set to 8 feature maps. Because in LSTM training, it is
necessary to convert the three-dimensional data into two-
dimensional data, that is, to the size of 181 = 8, select the size
of LSTM as 32 for training. According to formula (7), the
size of the first layer convolutional neural network is
30720. According to formula (7), the size of the second layer
convolution neural network is 122880. The size after dimen-
sion transformation is 1448. The input size of LSTM net-
work is 46336. The variables produced in the training
process are 128, 20, and 32. The total parameter size of deep
learning training is 201564, and the number of bytes is
787.36 kb. Compared with the actual training model, the size
of the model is 909 kb, which is basically close, because there
may be additional characteristic parameters in the model.

4. Discussion

This experiment mainly conducts research from three
aspects, discussing the selection of traditional machine
learning feature values, the size of the trained model, and
the accuracy of complex gesture training. First, in order to
solve the problem that the traditional deep learning training
time is too long and the model is too large to be convenient
for application, this paper conducts an experimental analysis
on the selection of deep learning feature values, then uses the
selected feature values to compare the accuracy and model of
different deep learning models. The size of the research is
carried out to obtain a smaller high-precision training
model; finally, the deep learning model trained in the exper-
iment is combined with the prosthetic hand control experi-
mental platform to realize the real-time control of the
prosthetic hand.

4.1. Select the Comparison between Different Eigenvalues.
The characteristic data selected in this experiment are the
mean absolute value of SEMG amplitude (MAV), the cumu-
lative length of sEMG waveform (WL), the number of
changes of SEMG amplitude slope (SSC), the area center
value of SEMG signal (ZC), the average power of sSEMG sig-
nal (RMS), and the fast Fourier transform (FFT) of sSEMG
signal. The combination of fast Fourier transform (FFT)
and root mean square (RMS) of amplitude (FFT+RMS) of
surface EMG signal means that the real time-domain features
are RMS, MAV, WL, ZC, and SSC; the time-frequency-
domain feature data is FFT; and the time-frequency-domain
feature data is combined with the time-domain feature data
(FFT+RMS). In order to facilitate the study, the time window
is 100, the step size is 100 (no overlap), and the number of
sampling points is 100 in the FFT of time-frequency domain.
In the selection of deep learning model, 1D CNN+1D LSTM
is selected as the training model. In this training model, the
convolution core of CNN is 40 * 6, and the size of LSTM is
32. Figure 7 shows the test set accuracy of different character-
istic data under the same training model and the same acqui-
sition window.

As shown in Figure 7, the training results of time-
domain eigenvalues are lower than those of time-frequency
eigenvalues, and the combination of time-frequency and
time-domain eigenvalues is better as the training results of
feature values. That is, the characteristic value of RMS is
carried out after FFT transformation of the original sSEMG
signal. The training accuracy of the model is higher than that
of the original surface EMG signal after time-domain
transformation and only time-frequency transformation.
The main reason is that the time-domain transformation
only considers the characteristic value of sEMG signal in
time domain, but ignores the frequency-domain characteris-
tic; in the process of SEMG signal processing, the time-
frequency-domain transform does not lose the frequency-
domain characteristic of the signal, and the speed is faster
and the effect is better. The amplitude is processed in time
domain, and the amplitude characteristics of the surface
EMG signal are fully utilized, which provides a good number
for the further study model.
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4.2. Comparison of Accuracy of Different Depth Learning
Models. In this experiment, four deep learning models are
selected for comparison: CNN, CNN+LSTM, 2D CNN+
LSTM, and 2D CNN+2D LSTMs. The selected characteristic
data are MAV, WL, SSC, ZC, RMS, FFT, and FFT+RMS.
The training results of each model are shown in Figure 8.
The red solid line indicates the accuracy of CNN input test
set with different characteristic data, and the convolution
kernel of CNN in this training model is 40 * 6. The green
solid line indicates the test set accuracy of CNN+LSTM
inputting different characteristic data. In this training model,
the convolution kernel of CNN is 40 * 6, and the size of
LSTM is 32. The blue solid line indicates the accuracy of
the test set of 2D CNN+LSTM input different characteristic
data. In this training model, the first layer convolution ker-
nel of CNN is 40 * 6, the second layer convolution kernel
is 20 * 6, and the LSTM is 32. The yellow solid line repre-
sents the test set accuracy of 2D CNN+2D LSTM with differ-
ent input characteristic data. In this training model, the first
layer convolution core of CNN is 40 * 6, the second layer
convolution core is 20 * 6, the first layer LSTM is 32, and
the second layer LSTM is 16.

As shown in Figure 8, when MAV, WL, SSC, ZC, RMS,
FFT, and FFT+RMS are selected as eigenvalues, the training
effect of time-frequency-domain eigenvalue FFT+RMS is
better than that of time-domain eigenvalue and frequency-
domain eigenvalue, and the deep learning training model
of 2D CNNs+2D LSTMs is generally better than the other
three training models. When FFT+RMS is used as the eigen-
value, the training accuracy of each model is higher than that
of only using a single eigenvalue. Comparing the accuracy of
the whole model training, using FFT+RMS as eigenvalues
for deep learning, no matter what kind of deep learning
model structure is used, it is higher than using only time-
domain eigenvalues and frequency-domain eigenvalues.

Based on the above experimental results, we can draw a
conclusion: in the selection of eigenvalues, the time-
frequency-domain eigenvalues are more accurate than the
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FIGURE 8: Training accuracy of each eigenvalue under different
training models.

time-domain eigenvalues, and the highest accuracy rate is
obtained when the eigenvalues are combined with fast Fou-
rier transform and root mean square; in the selection of deep
learning model, the accuracy rate is not ideal when the
model is only single-layer CNN; the subsequent experiment
is carried out in the single-layer CNN model. In order to fur-
ther improve the accuracy, we continue to add a layer of
CNN model on the basis of CNN+LSTM, which is used to
extract feature signals and train, and the experimental accu-
racy continues to increase, however, when the experiment is
in the later stage of 2 CNNs+LSTM. After adding a layer of
LSTM model on the basis of LSTM, the accuracy of the
experiment has increased, but the improvement is not too
large. The 2D CNN+2D LSTM model has the highest accu-
racy in different depth learning models.

4.3. Size Comparison of Different Eigenvalue Generation
Models. In this experiment, we need to import the training
model generated by deep learning into the hardware plat-
form, so as to model match the hand EMG signal and realize
the control of the prosthetic hand. The flash of the prosthetic
hand control hardware platform is 2m, which requires that
the experimental model generated through deep learning
should be less than 2m. In order to import the training
model into the experimental platform, the size of the exper-
imental model generated by different preprocessed feature
data is compared, as shown in Figure 9, which is the com-
parison diagram of the size of the experimental models gen-
erated in different depth learning models by combining
time-domain eigenvalues and time-domain eigenvalues
(FFT+RMS). Red represents the size of the experimental
model generated by each time-domain eigenvalue, and blue
represents the size of the model generated by combining
time-domain eigenvalues and time-domain eigenvalues in
different sampling windows.
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According to the comparison results in Figure 9, the
training model generated by using time-domain feature data
in different depth learning training structures is larger than
that of time-frequency-domain and time-domain combina-
tion. Moreover, the training precision of the model trained
by time-domain feature data when the deep learning struc-
ture is CNN is shown in Figure 8. When the feature data is
MAV, WL, SSC, ZC, and RMS, the accuracy of test sets is
79.63%, 80.52%, 79.41%, 83.25%, and 82.79%; that is, when
the depth learning model is CNN, the average value of
selecting time-domain characteristic data is 81.12%, and
when the model structure of the deep learning model is
CNN+LSTM, 2CNN+LSTM, and 2CNN+2LSTM, the model
size is greater than 1.5 M, which is not suitable for importing
to the artificial hand control hardware platform, so accord-
ing to the above analysis, The experimental model of time-
domain feature data generation cannot be applied on this
experimental platform.

According to the comparison results in Figure 9, when
using the combination of time-frequency domain and
time-domain (FFT+RMS) as eigenvalues, the overall train-
ing model of deep learning is small. When the deep learning
structure is CNN, the accuracy is 87.47%, and the model size
is about 0.5 MB; when the deep learning structure is CNN
+LSTM, the accuracy is 89.57%, and the model size is about
0.7 MB; but the accuracy of the above two deep learning
models is low. Although it is high, the accuracy is not ideal
for real-time control. When the structure of deep learning
model is 2D CNN+LSTM, the accuracy is 91.25%, and the
model size is about 1 MB. Compared with the first two deep
learning models, the accuracy is higher, and the model is less
than 2MB. Although the accuracy of deep learning model
structure is 2D CNN+2D LSTM and the model is more than
2 M, it cannot be applied on hardware platform. In conclusion,
the deep learning model of the real-time prosthetic hand con-

trol experimental platform is 2D CNN+LSTM, and its model
size is about 1 MB; the training accuracy is high. Figure 10
shows the confidence matrix of 16 gesture training results with
the deep learning model of 2D CNN+LSTM.

The confidence matrix in Figure 10 shows that the accu-
racy of the second, third, fourth, and twelfth gesture models
is 100%, and the accuracy of the fifth, sixth, ninth, tenth, and
thirteenth gesture models is about 98%. The accuracy rate of
category 16 is over 96%, and that of category 1, 11, 14, and
15 is over 84%. Only the accuracy rate of categories 7 and
8 is about 60%. It can be seen from the above figure that
the accuracy of this training method in pinching the index
finger and middle finger needs to be improved, but for other
types of gesture models, the accuracy is more than 84%.

For the problem of low accuracy of the seventh and
eighth categories, as shown in the position pasted by the
electrode sheet in Figure 1(a), the electrode sheet detects
the sSEMG signal of the extensor finger at the second posi-
tion, and the extensor finger could cause the extension of
the index finger and middle finger at the same time, which
makes it difficult to distinguish the sEMG signals of the
index finger and middle finger, resulting in low accuracy of
the seventh and eighth categories.

4.4. Using Training Model to Control Prosthetic Hand. In this
experiment, the model of 2D CNN+LSTM is used to control
the artificial hand by introducing the model into the
developed hardware experimental platform. The model can
match the hardware experimental platform in size and accu-
racy. The artificial hand experiment platform can control the
complex finger movements accurately. The movement pat-
tern of each part of fingers is shown in Figure 11.

As shown in Figure 11, the depth training model trained
by 2D CNN+LSTM network structure can analyze sEMG
signals in offline mode and accurately control the finger
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joints of the prosthetic hand. Because the wrist movement is
included in the training model, the prosthetic hand experi-
mental platform does not have wrist freedom, and the pros-
thetic hand control can only carry out finger movement.

In this group of experiments, the results of different pro-
cessing of SEMG signals are used as the characteristic data of
deep learning, and the accuracy of the trained model is com-
pared according to different characteristic data. Under the
same deep learning model structure, the combination of fast
Fourier transform and average power as the input of feature
data is about 3.85% higher than other feature data, especially
for sSEMG data containing finger motion. This advantage
comes from the strong ability of fast Fourier transform to
obtain the time-domain and frequency-domain information
of muscle activity from the original sSEMG signal, Secondly,
with the increase of deep learning network structure, the
time required for learning and recognition will increase rap-
idly, and the hardware space occupied by the model also
increases. Therefore, there is a compromise between recog-
nition accuracy and model size. Due to the limited flash size
on the hardware system platform in the current market, it is
necessary to find a deep learning model with high accuracy
and small model. When 2D CNNs+LSTM is used as the
training model, the accuracy is 2.25% higher than other
training models, and the generated training model is small,
which can be applied on the developed hardware test plat-
form. In the later stage of the experiment, the generated
experimental model is used to control the prosthetic hand
experimental platform, and good experimental results are
obtained. Gesture recognition and control technology based
on two-dimensional artificial neural network (CNN) and
long-term and short-term memory network (LSTM) tech-
nology will be a promising control technology. In addition,
compared with the deep neural network used in other stud-
ies, the 2D CNN+LSTM structure used in this study is rela-
tively simple and easy to apply.

5. Conclusion and Prospect

In this paper, a light SEMG gesture recognition algorithm
based on convolutional neural network and long-term and
short-term memory network is proposed. We use self-
made sensors to obtain surface EMG signals, apply different
processing methods to extract features, and compare the
training accuracy of different depth learning models. In the
deep learning model training, a light CNN+LSTM training
method is constructed. The training model has high accu-
racy, the size is about 1 MB, and it can control the prosthetic
hand in embedded hardware. At the same time, the recogni-
tion accuracy of the model is 91.25%, which is higher than
the existing recognition algorithms.

In the later experiments, we will consider increasing
the number of channels to solve the problem of low recog-
nition of the seventh and eighth types of gestures, con-
tinue to optimize the algorithm, strive to improve the
accuracy of each gesture in deep learning, and keep the
training model small, so that it can be better applied on
the hardware platform.
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