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Abstract: Daptomycin is an important antibiotic for the treatment of infections caused by
Staphylococcus aureus. The emergence of daptomycin resistance in S. aureus is associated with
treatment failure and persistent infections with poor clinical outcomes. Here, we investigated host
innate immune responses against clinically derived, daptomycin-resistant (DAP-R) and -susceptible
S. aureus paired isolates using a zebrafish infection model. We showed that the control of DAP-R
S. aureus infections was attenuated in vivo due to cross-resistance to host cationic antimicrobial
peptides. These data provide mechanistic understanding into persistent infections caused by DAP-R
S. aureus and provide crucial insights into the adaptive evolution of this troublesome pathogen.

Keywords: S. aureus; daptomycin; antimicrobial peptides; persistent infection

1. Introduction

Staphylococcus aureus continues to be one of the most important human bacterial
pathogens, with the capacity to cause a broad range of infections, including S. aureus
bacteremia (SAB) [1–3]. Treatments of SAB caused by methicillin-resistant S. aureus
(MRSA) have increasingly relied on last-line antibiotics, particularly vancomycin and
daptomycin [4–6]. Daptomycin is a cyclic lipopeptide that targets bacterial membranes to
execute bactericidal effects [7,8]. The mechanisms of daptomycin actions are proposed to
be similar to host cationic antimicrobial peptides (CAMPs) [7,8]. Notably, the emergence
of daptomycin resistance has been associated with persistent and complicated staphylo-
coccal infections in patients [4,9]. Recent studies have also shown that clinically derived
daptomycin-resistant (DAP-R) isolates caused persistent infections in Galleria mellonella in-
fections and murine septicemia models [10–13]. The correlation between daptomycin resis-
tance and prolonged bacterial survival in the infected host demands further investigation.

CAMPs are important constituents of the innate immune system in mammals that
influence multifaceted biological processes [14,15]. CAMPs process antimicrobial activities
against microorganisms, including bacterial pathogens. Most CAMPs are cationic in
nature with positive charges ranging from +2 to +9, which are thought to target negatively
charged bacterial membranes via electrostatic interactions [14,15]. Perturbations of bacterial
membranes are considered to be the main bactericidal mechanisms of CAMPs [14,15]. In
addition to antimicrobial properties, CAMPs can also prompt the adaptive immune system
via the chemoattraction of immature dendritic cells and memory T cells [16]. CAMPs have
been shown to be important innate host defenses against bacterial infection, including
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S. aureus [17–19]. Of note, cross-resistance to host CAMPs has been reported in clinically
derived DAP-R S. aureus isolates in in vitro studies [20,21]. However, it is unclear that the
cross-resistance to CAMPs contributes to persistent infections caused by DAP-R S. aureus
strains in a whole-animal infection model.

The use of the vertebrate model system Danio rerio (zebrafish) has recently revealed
essential aspects of the interactions between host and pathogens [22,23]. Zebrafish share a
remarkably similar immune system to humans, including innate and adaptive immunity,
and have been used to study host immune responses against bacterial pathogens [23]. For
instance, efforts in zebrafish have shown the evolutionary conserved role for nerve growth
factor β and its receptor tyrosine kinase TrkA signaling in pathogen-specific host immunity
against S. aureus [23]. Our recent study shows that S. aureus can evade neutrophil chemo-
taxis in zebrafish by reducing bacterial membrane phosphatidylglycerol through point
mutations in the phospholipid biosynthesis gene cls2, encoding cardiolipin synthase [22].

In the present study, we investigated the impact of DAP-R S. aureus infection on host
antimicrobial peptide responses in vivo, which provides insights into persistent staphylo-
coccal infections.

2. Results

We collected S. aureus isolates from a patient with a complicated and persistent
bloodstream infection that was treated with daptomycin but failed therapy, including a
DAP-S parental strain, A8819, and its corresponding DAP-R daughter strain, A8817, that
emerged after clinical failure [9]. To investigate the relationship between daptomycin
resistance and persistent infections, we first measured the capacity of human whole blood
to kill the paired DAP-S and DAP-R isolates ex vivo. DAP-R strain A8817 was significantly
resistant to the killing of innate immune responses in blood compared to its parental DAP-S
strain A8819 (Figure 1A). To further assess the virulence of these strains in vivo, we utilized
the vertebrate zebrafish (Danio rerio) model system [23]. DAP-S strain A8819 caused lethal
disease in zebrafish following a bloodstream infection, whilst its daughter strain, A8817,
was significantly attenuated for virulence (Figure 1B). These data were consistent with
what we and others have previously shown with multiple clinical, daptomycin-exposed
pairs in a murine septicemia model [10–12].

We hypothesized that resistance to host CAMPs may contribute to persistent infections
caused by DAP-R S. aureus. We first assessed this in vitro using human neutrophil peptide
1 (hNP-1). We showed that hNP-1 was bactericidal against DAP-S isolate A8819, with the
most profound effects observed at 40 µg/mL over 2 h (Figure 1C). However, hNP-1 had
little effect on the survival of the DAP-R isolate A8817 (Figure 1C). To determine the impact
of this cross-resistance to daptomycin and CAMPs in vivo, zebrafish were incubated in
dorsomorphin, which inhibits a key antimicrobial peptide known as hepcidin [24,25], prior
to bacterial infection and for the duration of the experiment. We expected that if CAMPs
were important in vivo, dorsomorphin would lead to augmented virulence of A8819, but
would have no effect on A8817 infection due to its resistance and independence of CAMPs.
Treatment with dorsomorphin significantly enhanced the virulence of A8819 (Figure 2A).
This treatment had no effect on DAP-R A8817 infection (Figure 2B). To support these
findings further, we also silenced hepcidin mRNA using a targeted morpholino. Injection
of the hepcidin morpholino significantly increased the virulence of A8819 compared to
the treatment with a standard negative control morpholino, whereas the virulence of the
DAP-R strain A8817 remained unaffected by the knockdown of hepcidin (Figure 2C).
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Figure 1. Impact of daptomycin resistance on in vivo virulence and host immune responses. (A) Sur-
vival of the clinical DAP-R isolate A8817 and its parental DAP-S strain A8819 over 3 h in human
blood (n = 4; * p < 0.05, Mann–Whitney test). (B) Survival of zebrafish following bloodstream infection
with live S. aureus isolates (n = 30 embryos, three biological replicates; P value is a comparison of
A8819 and A8817 by log-rank test). (C) Survival of the clinical DAP-R isolate A8817 and its parental
DAP-S strain A8819 over 2 h in the presence of 20 µg/mL and 40 µg/mL hNP-1 (n = 3; for A8817
versus A8819, * p < 0.05 and ** p < 0.01 at indicated time points for same dosages, Student’s t-tests).
Error bars represent the mean ± SEM. hNP-1: human neutrophil peptide 1.
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Figure 2. Impact of daptomycin resistance on infection control by antimicrobial peptides in vivo.
Survival of zebrafish infected with (A) A8819 and (B) A8817 after treatments with dorsomorphin or
dimethyl sulfoxide (DMSO, solvent for dorsomorphin). (C) Survival of zebrafish infected with A8819
and A8817 after injections with hepcidin morpholino oligos (MO) or scrambled morpholino oligos
(control). (n = 25 embryos, three biological replicates; p value is a comparison of dorsomorphin and
DMSO for (A), hepcidin morpholino and the negative control for A8819 for (C) by log-rank test).
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3. Discussion

Emerging resistance to last-line anti-staphylococcal agents has raised concerns re-
garding therapeutic options. In particular, infections caused by DAP-R S. aureus are often
persistent, complicated and difficult to eradicate [4,9]. Here, we report that S. aureus became
equipped with the ability to evade host innate immune responses during the evolution of
daptomycin resistance. This immune evasion involved cross-resistance to important host
antimicrobials, CAMPs. Together, the ability to circumvent crucial innate defenses provides
important insights into the complex and persistent infections observed, yet unexplained,
with DAP-R S. aureus infections in patients.

CAMPs are significant native components of innate host defense and provide pro-
tection against infections caused by bacterial pathogens, including S. aureus, Group A
Streptococcus, and Salmonella typhimurium [17,18,26]. Resistance to CAMPs in vivo has been
shown to promote persistent bacterial infections with Group A Streptococcus, with strains
resistant to cathelicidin causing more severe and prolonged skin infections in a murine
model [17]. However, the impact of CAMP resistance in vivo has not been shown with
S. aureus thus far. Similar to previous studies [20,21], our current research showed that
daptomycin resistance in S. aureus led to cross-resistance to host CAMPs in vitro. How-
ever, here we also showed the impact of daptomycin resistance on disease and CAMP
sensitivity and control in vivo. We showed that CAMPs were important in controlling
S. aureus infection, a phenotype dependent on CAMP sensitivity. Infection with DAP-R
A8817 was unaffected by the presence or absence of the zebrafish CAMP hepcidin, whereas
infection with the paired DAP-S strain A8819 caused greater mortality when hepcidin
was inhibited. Future analyses are still required to investigate the mechanisms behind
the cross-resistance to CAMPs and the reduced virulence of the DAP-R strain A8817 in
animal infection models. In summary, the DAP-R strain was disarming the host of its
most effective first-line immune defenders, providing important insights into the stealthy
behavior of pathogenic S. aureus.

4. Materials and Methods
4.1. Culture of Bacterial Strains and Human Neutrophil Peptide 1 (hNP-1) Killing Assay

Clinically derived DAP-S S. aureus isolates A8819 and its DAP-R daughter strain
A8817 were used as previously described [9]. S. aureus cells were cultured at 37 ◦C with
constant shaking in BactoTM Brain Heart Infusion broth (BHI) (BD, Franklin Lakes, NJ,
USA). For bactericidal activity of hNP-1, S. aureus cells were diluted into 10 mM KH2PO4,
pH 7.4, containing 1% BHI broth and hNP-1 (20 µg/mL or 40 µg/mL) (Peptide Institute,
INC, Osaka, Japan) to achieve a final inoculum of 106 CFU/mL and then incubated at
37 ◦C for 2 h. At the indicated time point, viable cells were quantified by plating the cell
suspension on BHI agar plates after serial dilutions.

4.2. Ex Vivo Human Whole Blood Killing Assay

Bacterial suspensions in 50 µL PBS were mixed with 50 µL human blood to achieve
final bacterial density at 2 × 104 CFU/mL in a 96-well plate. The plate was incubated at
37 ◦C for 3 h under continuous shaking. The number of bacterial CFU was determined
after incubation by plating serial 10-fold dilutions.

4.3. Zebrafish Infection, Leukocyte Enumeration and Survival Analyses

Wild-type Tübingen and Tg(lyz:DsRed)nz50 zebrafish embryos were maintained in
the Monash University AquaCore facility according to standard protocols [22]. Zebrafish
embryos (48 h post-fertilization, hpf) were injected with S. aureus (1000 CFU/embryo) in
common cardinal vein for a bloodstream infection for survival analyses. Five embryos were
homogenized immediately after infection each time and plated on BHI agar to confirm
bacterial inoculums. Ten embryos per treatment were monitored daily for survival up
to 96 h post-infection (hpi) and dead embryos were recorded at each time point in three
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independent experiments. Zebrafish work was approved by the Monash University Animal
Ethics Committee (MAS/2010/18).

4.4. Inhibition of the Antimicrobial Peptide Hepcidin In Vivo

The major zebrafish antimicrobial peptide hepcidin [25] was inhibited using two
approaches. First, chemical inhibition was performed by incubating embryos in egg wa-
ter containing 40 µM dorsomorphin from 30 hpf until the conclusion of the experiment.
Embryos treated with egg water containing 0.3% DMSO, which was used to solubilize
dorsomorphin, were used as a control. Dorsomorphin inhibits the bone morphogenetic
protein signaling pathway, which is required for producing hepcidin [24]. Second, we
inhibited hepcidin expression using antisense morpholino oligomers (MO) (CACGTTA-
GAAAGCTTCATCTTCAGT) directed at hamp (Gene Tools, LLC, Eugene OR). Yolks of
one-cell embryos were injected with 1 nL of 25 mM hampATG MO in distilled water per
embryo. A standard negative control MO (CCTCTTACCTCAGTTACAATTTATA) was
used as a negative control.

4.5. Statistical Analysis

Statistics were generated using GraphPad Prism version 6.0, GraphPad Software, La
Jolla California USA, www.graphpad.com. Statistical tests were performed as indicated in
the figure legends. p < 0.05 was considered significant for all analyses.
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