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ABSTRACT

Identifying active prophages is critical for study-
ing coevolution of phage and bacteria, investigat-
ing phage physiology and biochemistry, and engi-
neering designer phages for diverse applications.
We present Prophage Hunter, a tool aimed at hunt-
ing for active prophages from whole genome as-
sembly of bacteria. Combining sequence similarity-
based matching and genetic features-based machine
learning classification, we developed a novel scor-
ing system that exhibits higher accuracy than cur-
rent tools in predicting active prophages on the
validation datasets. The option of skipping similar-
ity matching is also available so that there’s higher
chance for novel phages to be discovered. Prophage
Hunter provides a one-stop web service to extract
prophage genomes from bacterial genomes, evalu-
ate the activity of the prophages, identify phyloge-
netically related phages, and annotate the function
of phage proteins. Prophage Hunter is freely avail-
able at https://pro-hunter.bgi.com/.

INTRODUCTION

Compared with over 199 000 bacterial genomes, fewer
than 11 000 bacteriophage genomes are deposited in NCBI
Genome as of 26 April 2019. The traditional source of
phage information mainly depends on searching for phages
in nature, which is stochastic, and sometimes difficult as
proven for anaerobic bacteria and fastidious bacteria that
grow only in specific nutrients and growth conditions (1,2).

Advances in next-generation sequencing (NGS) technolo-
gies support the easy access, analysis, and identification
of temperate phages. This is because nearly half of the
sequenced bacteria are lysogens, representing a tremen-
dous and previously under-explored source of prophages
(3). Prophages are temperate phages integrated in bacte-
rial genomes. While some prophages are active––they can
be induced by stresses like UV or antibiotics, others are de-
fective due to bacterial defence systems or mutational de-
cay (4). Prophages can participate in a number of bacterial
cellular processes, including antibiotic resistance, stress re-
sponse, and virulence (5). With advances in synthetic biol-
ogy, prophages are also considered as potential therapeutics
for infectious or chronic diseases caused by bacteria (6–11).

Several tools have been developed to predict the existence
of prophage sequences from bacterial NGS data (Table
1). MARVEL predicts phage sequences in metagenomics
bins based on random forest machine learning approach
(12). VirFinder is the first k-mer based program for identi-
fying prokaryotic viral sequences from metagenomic data
(13). PHASTER is a web server for the rapid identifica-
tion and annotation of prophage sequences within bacte-
rial genomes and plasmids (14,15). MetaPhinder identi-
fies assembled genomic fragments (i.e. contigs) of phage
origin in metagenomic data sets by comparison with a
database of whole genome bacteriophage sequences (16).
VirSorter detects prophages in complete microbial genomes
or in fragmented genomic datasets, including incomplete
genomes, SAGs, or metagenomic assemblies (17). PhiSpy
identifies prophages by focusing on the characteristics of
prophages that exhibit no similarity to sequenced genomes
(18). Among these tools, only PHASTER considers the
completeness of a putative prophage region. The evalua-
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tion system of PHASTER, however, simply adds up scores
representing the number of nucleotides, total genes, corner-
stone genes, and phage-like genes while neglecting common
mutational events that prophages experience. Also, like all
other database-driven annotation systems, PHASTER only
recognizes phages whose genes/proteins are close enough to
the record in its database (14,15).

We developed Prophage Hunter, a novel integrative tool
that employs sequence similarity-based searches within
our customized phage parts library and prophage genetic
features-based machine learning classification, to score the
probability of a prophage being active. While incorporat-
ing similarity searches increases prediction accuracy, skip-
ping it might raise the possibility of finding novel phages.
Prophage Hunter provides both options, and allows the
users to choose freely. Prophage Hunter systematically lo-
cates prophage regions within bacterial genomes, and pre-
dicts the activity of prophages. It also identifies the phyloge-
netically most related phage to the target prophages, as well
as annotate the function of proteins throughout the phage
genome. Distinguishing active prophages from inactive
ones contributes to the study of coevolution between phage
and bacteria (19). Also, obtaining active prophages facili-
tates further studies in phage physiology. Thus, Prophage
Hunter may attract a wide range of users from and facili-
tate research in genomics, microbiology, synthetic biology,
and other related areas.

MATERIALS AND METHODS

Features and datasets

A disrupted phage genome could exhibit changes in ge-
netic features including transcription orientation, protein
length, amino acid composition, Watson-Crick ratio, and
transcription strand switch, etc. We used 24 features in our
analysis: (i) Transcriptional orientation, the ratio of the
number of prophage/bacterial genes in the longest stretch
of consecutive genes in the same direction to the total num-
ber of genes in the prophage/bacterial genome, (ii) protein
length, the average length of prophage or bacterial genes, 3–
22) Composition of 20 amino acids, the frequency of each
amino acid in all protein sequences in prophage or bacte-
rial genome, 23) Watson-Crick ratio, the ratio of the num-
ber of genes transcribed from Watson strand to that of genes
transcribed from Crick strand in the prophage or bacterial
genomes, and 24) transcription strand switch, the ratio of
total gene number to the number of transcription strand
switches in the prophage or bacterial genomes.

Of the 3540 phage genomes extracted from the NCBI
Genome database (https://www.ncbi.nlm.nih.gov/genome),
1031 temperate phages were identified using integrase as a
marker (20), and considered as the positive training set for
the machine learning approach of Prophage Hunter. The re-
maining 2509 phage genomic sequences were considered as
the positive validation set. By aligning the 1031 genomic se-
quences to NCBI nt database using BLASTN with param-
eters ‘-task dc-megablast -dust no’ (alignment length ≥ 10
kb and e value ≤ 1e–5 as cutoffs), 718 bacterial hosts were
identified and their genomic sequences were used as the ref-
erence dataset. After removing all possible phage sequences
from the host by BLASTN against the 3540 available phage

genomes, 21 979 clean fragments from the host were gener-
ated whose lengths were equal to the prophages they con-
tained and were used as the negative training set, and 5495
clean fragments were used as negative validation set. The 24
features of the positive/negative training set were calculated
and sent for modelling.

After a temperate phage enters a bacterial cell, the phage
genome could experience mutational events including inser-
tions, deletions or inversions of genome fragments, which
can compromise genome integrity and render the prophage
inactive (4). Thus, based on the reference dataset, prophages
were randomly disturbed in silico with insertions (sequences
inserted from bacterial hosts), deletions (sequences deleted
from prophages) or inversions (sequences inverted within
prophages) equal to half of the size of the prophage re-
gion generating 2154 (718*3) bacterial genomes as the semi-
synthetic dataset. 2154 temperate phage genomes disturbed
as described above are used as the synthetic dataset.

The genomic sequences of K. pneumoniae KP6512, A.
baumannii AB8929, and induced prophages have been
deposited in the CNSA (https://db.cngb.org/cnsa/) of
CNGBdb with accession code CNP0000380.

General workflow

Prophage Hunter combines sequence comparisons to
known phage parts (fuzzy matching), scanning for attach-
ment (att) site (boundary locating), machine learning of ge-
netic features (activity scoring), to predict the probability of
a prophage being active (Figure 1).

Fuzzy matching. To create the phage parts library, 2101
annotated phage genomes were downloaded from RefSeq
database (21) (retrieved 18 January 2018). All CDS were
extracted, and those with 75% nucleotide similarity were
de-duplicated with Cd-hit (22) resulting in 99 465 parts in
total. In the future, non-coding elements such as promot-
ers and loxP-like sites could be used in the same process.
Eleven classes of phage parts were categorized based on
their function, LYS (lysis), INT (integration), REP (repli-
cation), REG (regulation), PAC (packaging), ASB (assem-
bly), INF (infection), EVA (immune evasion), HYP (hypo-
thetical protein), UNS (unsorted), and tRNA (Supplemen-
tary Table S1). These protein sequences were then searched
against Pfam database using InterProScan (23) to obtain
their domains with parameters ‘-dp -f tsv -goterms -appl
Pfam -iprlookup’. Among the above 11 classes, four classes
(ASB, HYP, INF and UNS) were found to be highly corre-
lated with the existence of active prophages, and thus were
used to find the initial prophage region. To do this, assem-
bled bacterial genomic sequences (sequences with length ≤
10 kb were removed) were used as query sequences, and they
were searched against protein sequences of ASB, HYP, INF
and UNS libraries using BLASTX with parameter ‘-seg
no’. The translated sequences with premature stop codon
were removed. Then the filtered sequences were searched
against Pfam database using InterProScan with parame-
ters ‘-dp -f tsv -goterms -appl Pfam -iprlookup’, and only
the sequences that contain domains of protein sequences
of ASB, HYP, INF and UNS libraries were kept. For the
option of ‘skip similarity matching’, the above procedures
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Table 1. General characteristics of Prophage Hunter relative to other phage finding tools

Prophage Hunter MARVEL VirFinder PHASTER MetaPhinder VirSorter PhiSpy

Last updated 2019 2018 2017 2016 2016 2015 2012
Target Prophage Phage Virus Prophage Phage Virus Prophage
Similarity matching
with databases

Yes Yes No Yes Yes Yes Yes

Genome
features-based

Yes Yes Yes No No Yes Yes

Machine learning
classifier

Logistic
regression

Random forest Logistic
regression

No No No Random forest

Prediction depth active/ambiguous
/inactive

phage/negative phage/negative intact/
questionable
/incomplete

Phage/negative phage/negative phage/negative

att site prediction Yes No No Yes No No Yes
Protein annotation Yes No No Yes No No Yes
Local analysis No Yes Yes No Yes Yes Yes
Programing skills
required

No Yes Yes No Yes No Yes

Interactive Yes N/A N/A Yes Yes Yes N/A

were omitted. Instead, sliding windows of 10 kb was gener-
ated across the genome and the 24 features mentioned above
were calculated for each window. Only the windows scoring
>0.8 were kept, clustered and proceeded to the subsequent
‘boundary locating’.

Boundary locating. Bacterial genomic DNA sequences
that contain the above four classes of genes were used to
form initial clusters if the intergenic distance was less than
5 kb. Clusters that do not contain any of INF, ASB, PAC
or integrase were removed. The 20 kb upstream and down-
stream sequences of each cluster were extracted to exam-
ine putative att sites using BLASTN with parameters ‘-task
blastn-short -evalue 1000’. For all clusters, we used inte-
grases as anchors because they were located downstream of
the genuine att site. Only the putative att sites with length
≥12 bp were kept, and the attL-attR pair with the best se-
quence alignment (the highest bit score) was considered as
the boundary of prophage region.

Activity scoring. A method based on logistic regression
was defined to differentiate between host and prophage se-
quences. Specifically, we design an ensemble bagging ap-
proach which averages a set of linear regression models with
lasso regularization to predict the probability of a sequence
being phage, and a score closer to 1 indicates a higher prob-
ability of the prophage being active. Here, we train on a
dataset containing 1031 active prophage sequences and 21
979 host sequences with the above 24 features. To account
for the highly imbalanced nature of this dataset, we under-
sample (sample without replacement) from the majority
class, such that the training sets have a 50–50 split between
host and phage observations. To implement this model, we
train 50 logistic regression models on 50 randomly selected
training sets. The training sets each contain all phage obser-
vations and a subset of 1031 host observations. This allows
us to take into account variation among the host observa-
tions while ensuring a balanced dataset.

Program and web implementation

The above scripts/pipelines were written using a combi-
nation of Perl, Python and R. In addition, public bioin-
formatics tools such as BLAST (24), InterProScan (23),
GeneMark (25), StringTie (26) and Cuffcompare (27) were
also embedded. The Prophage Hunter web server was
constructed using the classical LAMP framework (Linux,
Apache, MySQL and PHP). For further exploration of
the results of active prophage, an interactive light weight
genome browser based on Tnt Board (http://tntvis.github.
io/tnt.genome/) was built. In the genome browser, one can
zoom in or zoom out to easily overview the distribution of
predicted phages and their activity scores (shown in color
scales), and predicted genes (both strands). The genome
browser and the result table is interlocked for fast infor-
mation focusing. Clicking phage candidates in the genome
browser will trigger the table filtering of detailed informa-
tion and clicking table items will enlarge its position in the
genome browser. This web server is compatible with most
modern web browsers like Mozilla Firefox, Google Chrome,
Safari and Microsoft edge. For more details about usages
and results explanations, please check the ‘Tutorial’ section
in the Prophage Hunter web server at https://pro-hunter.
bgi.com/.

RESULTS

Validating the machine learning approach of Prophage
Hunter

For each of the 50 models, we first used cross validation
on the training set to optimize λ, the lasso penalty term.
We used the ‘one-standard-error’ rule to select λ. We then
applied the algorithm to the positive and negative valida-
tion set composed of the observations independent from the
training set. With this implementation, we attained an aver-
age training set accuracy of 0.99, sensitivity of 0.99, speci-
ficity of 0.99, negative set accuracy of 0.98, and positive set
accuracy of 0.97 (Supplementary Table S2).

We also tested the performance of our modelling in dis-
criminating mutational events using the synthetic dataset
containing 718 disturbed prophage genomic sequences, and
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Figure 1. Overview of Prophage Hunter workflow Four classes of phage parts––ASB, HYP, INF and UNS––were used to form initial clusters within
bacterial genomic sequences if the intergenic distance was less than 5 kb. Clusters that contain none of INF, ASB, PAC or integrase were discarded. The 20
kb upstream and downstream sequences of each cluster were scanned to locate putative att sites. Only the att sites with length ≥12 bp were kept, and the
attL-attR pair with the highest bit score was considered as the boundary of the prophage region. A scoring system based on machine learning of prophage
genetic features was defined to potentially differentiate between inactive and active prophage sequences. PL indicates protein length––the average length
of prophage or bacterial genes. TO indicates transcriptional orientation––the ratio of the number of prophage/bacterial genes in the longest stretch of
consecutive genes in the same direction to the total number of genes in the prophage/bacterial genome, the ratio of the number of genes transcribed from
Watson strand to that of genes transcribed from Crick strand in the prophage or bacterial genomes, and the ratio of total gene number to the number
of transcription strand switches in the prophage or bacterial genomes. AAC indicates amino acids composition––the frequency of each amino acid in
all protein sequences in prophage or bacterial genome. A score closer to 1 indicates a higher probability of the prophage being active, we set a putative
prophage region scoring >0.8 as active, 0.5–0.8 as ambiguous, and <0.5 as inactive. The start and end position of the prophage, the probability of the
prophage being active, the phylogenetically most related phage, and the functional annotations of phage proteins are output.

compared it with the three most recently updated tools.
MetaPhinder (16) is based on similarity matching with a
phage database, while VirFinder (13) is based on machine
learning of k-mer features to indicate whether a contig is
phage or not. In this study, we set a putative prophage
region scoring >0.8 as active prophage, 0.5–0.8 as am-
biguous, and <0.5 as inactive for Prophage Hunter. TN

(true negative) represents ‘not phage’ for MetaPhinder and
VirFinder, and ‘ambiguous/inactive’ for Prophage Hunter.
FP (false positive) represents ‘phage’ for MetaPhinder and
VirFinder, and ‘active’ for Prophage Hunter. The prediction
accuracy is defined as TN/(TN+FP), which indicates the
proportion of mutational events successfully discriminated
by the tools. Prophage Hunter modelling demonstrated
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Figure 2. Evaluating the performance of Prophage Hunter. (A) The
prediction accuracy of Prophage Hunter modelling was compared to
MetaPhinder and VirFinder using the synthetic dataset, comprising 2154
(718*3) temperate phage genomes randomly disturbed by insertions, dele-
tions, or inversions respectively. Reference indicates non-disturbed phage
genomes. (B) The prediction accuracy of Prophage Hunter integrative
pipeline was tested on reference dataset comprising 718 bacterial genomes
carrying prophages, and on semi-synthetic dataset comprising bacterial
genomes carrying 2154 (718*3) disturbed prophages. The prediction ac-
curacy is defined as TN/(TN + FP) for the synthetic and semi-synthetic
datasets, and TP/(TP + FN) for the reference dataset.

an accuracy of 79% in discriminating insertions which is
higher than VirFinder and MetaPhinder, ∼10-fold higher
accuracy in discriminating deletions and inversions than
MetaPhinder, and slightly lower accuracy in discriminating
deletions and inversions than VirFinder (Figure 2A). Both
MetaPhinder and VirFinder displayed reasonably high ac-
curacy in predicting non-disturbed reference genomes, sug-
gesting the performance is not biased towards the datasets
tested (Figure 2A).

We randomly chose 30 disturbed prophages from the syn-
thetic dataset with insertions, deletions, and inversions re-
spectively, and submitted them to PHASTER web server.
To the extent of the tested synthetic dataset, Prophage
Hunter modelling was comparable to PHASTER in dis-
criminating inversions and deletions, and showed higher ac-
curacy in discriminating insertions than PHASTER (Sup-

plementary Table S3). Altogether, these results suggest the
modelling of Prophage Hunter alone outperforms the three
tools in differentiating prophages inactivated by the muta-
tional events tested, except VirFinder displayed moderately
better performance in discriminating deletions and inver-
sions than Prophage Hunter modelling.

Evaluating the performance of Prophage Hunter integrative
pipeline

We validated the performance of Prophage Hunter integra-
tive pipeline in predicting active prophages using the refer-
ence dataset, and in discriminating inactive prophages using
the semi-synthetic dataset. Prophage Hunter showed an ac-
curacy of 84.3% with the reference dataset, 24.1% with in-
sertions, 29.7% with deletions, and 19.5% with inversions,
respectively (Figure 2B).

Because VirFinder and MetaPhinder––built for relatively
short sequences e.g. metagenomics contigs––did not iden-
tify the start and end of a prophage region (13,16), the two
tools were not suitable to test the semi-synthetic dataset
comprising bacterial whole genome assemblies. We then
compared Prophage Hunter’s ability in discriminating in-
active prophages with PHASTER. To the extent of the
tested semi-synthetic dataset, Prophage Hunter integrative
pipeline was comparable to PHASTER in discriminating
deletions, and showed higher accuracy in discriminating in-
sertions and inversions than PHASTER (Supplementary
Table S4).

Finally, we tested Prophage Hunter on B. licheniformis
DSM13, and compared the results with experimental evi-
dence published previously (28). Indeed, Prophage Hunter
predicted B. licheniformis DSM13 contain three active
prophages and one ambiguous prophage, and the re-
gions are consistent with the experimental data, while
PHASTER’s prediction included one false negative and one
false positive (Figure 3A).

Case Study: Hunting for active prophages in the clinical iso-
lates of Klebsiella pneumoniae and Acinetobacter baumannii

To hunt for active prophages with clinical significance,
we applied Prophage Hunter on clinical isolates of K.
pneumoniae and A. baumannii. Gram-negative bacteria, in-
cluding multidrug resistant A. baumannii and extended-
spectrum beta-lactamases (ESBL) producing Enterobac-
teriaceae, have been associated to severe healthcare-
associated infections, and K. pneumoniae and A. baumanni
are among the most commonly isolated microorganisms in
intensive care unit (ICU)-acquired infections in different
parts of the world (29–32). Prophage Hunter suggested both
K. pneumoniae KP6512 and A. baumannii AB8929 strains
contained active prophages (Figure 3B, C). We then per-
formed mitomycin C induction experiments using KP6512
and AB8929, and sequenced the induced prophages. For
KP6512, four active prophages were predicted by Prophage
Hunter, three were predicted by PHASTER, and one was
successfully induced (Figure 3B). For AB8929, four active
prophages were predicted by Prophage Hunter, none were
predicted by PHASTER, and two were successfully induced
(Figure 3C). Overall, although possible false positives––due
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Figure 3. Identifying prophages in (A) B. licheniformis DSM13, (B) K.
pneumoniae KP6512, and (C) A. baumannii AB8929. Prophages identi-
fied by experiments, Prophage Hunter, and PHASTER are indicated by
blue rectangles on the top, medium and bottom of each panel respectively.
Inducible, active and intact prophages are highlighted by azure strips,
whereas non-inducible, inactive and incomplete prophages are highlighted
by gray strips. The results were visualized using Integrative Genomics
Viewer (IGV, version 2.4.19) (34).

to inaccurate prediction or unsuccessful prophage induc-
tion by mitomycin C––existed, Prophage Hunter outper-
formed PHASTER and managed to hunt all the inducible
prophages in the two cases.

DISCUSSION

Prophages are highly abundant in bacterial genomes and
are more readily available than lytic phages. With Prophage
Hunter, we can take advantage of the growing bacte-
rial NGS data to mine prophage information. Predicting
prophage activity may lead to the finding of CRISPR-like
systems or other novel defence systems of bacteria against
phages (19,33). Prophage Hunter will also guide the induc-
tion and isolation of temperate phages from bacteria, thus
enabling further investigation of phage physiology, as well
as the development of designer phages for therapeutic pur-
poses (6–11).

Prophage Hunter was not meant for replacing any other
similar tools, instead, it was created to meet certain re-
search needs that may have been neglected by previous
tools. Prophage Hunter can be further improved in several
aspects. First, phage proteins may not show high homol-
ogy to the phage parts in Prophage Hunter library and thus
novel phages can be overlooked. To overcome this, the users
can choose to omit the similarity searches but might at the
same time attenuate the prediction accuracy (Supplemen-
tary Tables S3 and S4). Second, the positive training set
used in modelling is limited––1031 prophages and highly
skewed towards Caudovirales, and the prediction accuracy
was not tested for phages other than Caudovirales. Third,
the activity of a prophage can be affected by other events
and thus correlated with other genetic features not con-
sidered by Prophage Hunter. Therefore, continuous efforts
on tools like this could be to augment the active prophage
database as more researchers combine prophage prediction
and experimental validation across a broader range of hosts,
search for more signatures of phages compared with bacte-
ria, and study further in the processes leading to prophage
inactivation. Since predicting prophage activity is largely
affected by the integrity and quality of input genome se-
quences, with future progress in metagenomics sequencing
and assembling technology, it will be exciting to look into
the status of prophages in the microbiome.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank China National GeneBank for sequencing the
genomic DNA of bacterial isolates and phages, and Dr
Tong Chen from EHBIO gene technology (http://www.
ehbio.com/) and his colleagues, Pu Xue and Yu Liu, for pro-
viding technical support on the web implementation. Our
special gratitude goes to Yiran––M.X.’s baby who was born
around the same time this project started––for kindly shar-
ing her mommy with the study.

FUNDINGS

National Key R&D Program of China [2018YFC1200501];
National Natural Science Foundation of China
[31601073]; Shenzhen Municipal Government of
China [JCYJ20160531194327655]. Funding for open
access charge: National Key R&D Program of China
[2018YFC1200501]; National Natural Science Foundation
of China [31601073].
Conflict of interest statement. None declared.

REFERENCES
1. Hargreaves,K.R. and Clokie,M.R. (2014) Clostridium difficile

phages: still difficult? Front. Microbiol., 5, 184.
2. Dutilh,B.E., Cassman,N., McNair,K., Sanchez,S.E., Silva,G.G.,

Boling,L., Barr,J.J., Speth,D.R., Seguritan,V., Aziz,R.K. et al. (2014)
A highly abundant bacteriophage discovered in the unknown
sequences of human faecal metagenomes. Nat. Commun., 5, 4498.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz380#supplementary-data
http://www.ehbio.com/


W80 Nucleic Acids Research, 2019, Vol. 47, Web Server issue

3. Touchon,M., Bernheim,A. and Rocha,E.P. (2016) Genetic and
life-history traits associated with the distribution of prophages in
bacteria. ISME J., 10, 2744–2754.

4. Canchaya,C., Proux,C., Fournous,G., Bruttin,A. and Brussow,H.
(2003) Prophage genomics. Microbiol. Mol. Biol. Rev., 67, 238–276.

5. Argov,T., Azulay,G., Pasechnek,A., Stadnyuk,O., Ran-Sapir,S.,
Borovok,I., Sigal,N. and Herskovits,A.A. (2017) Temperate
bacteriophages as regulators of host behavior. Curr. Opin. Microbiol.,
38, 81–87.

6. Monteiro,R., Pires,D.P., Costa,A.R. and Azeredo,J. (2018) Phage
therapy: going temperate? Trends Microbiol., 27, 368–378.

7. Kilcher,S. and Loessner,M.J. (2018) Engineering bacteriophages as
versatile biologics. Trends Microbiol., 27, 355–367.

8. Park,J.Y., Moon,B.Y., Park,J.W., Thornton,J.A., Park,Y.H. and
Seo,K.S. (2017) Genetic engineering of a temperate phage-based
delivery system for CRISPR/Cas9 antimicrobials against
Staphylococcus aureus. Sci. Rep., 7, 44929.

9. Yosef,I., Manor,M., Kiro,R. and Qimron,U. (2015) Temperate and
lytic bacteriophages programmed to sensitize and kill
antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. U.S.A., 112,
7267–7272.

10. Kilcher,S., Studer,P., Muessner,C., Klumpp,J. and Loessner,M.J.
(2018) Cross-genus rebooting of custom-made, synthetic
bacteriophage genomes in L-form bacteria. Proc. Natl. Acad. Sci.
U.S.A., 115, 567–572.

11. Zhang,H., Fouts,D.E., DePew,J. and Stevens,R.H. (2013) Genetic
modifications to temperate Enterococcus faecalis phage Ef11 that
abolish the establishment of lysogeny and sensitivity to repressor, and
increase host range and productivity of lytic infection. Microbiology,
159, 1023–1035.

12. Amgarten,D., Braga,L.P.P., da Silva,A.M. and Setubal,J.C. (2018)
MARVEL, a tool for prediction of bacteriophage sequences in
metagenomic bins. Front. Genet., 9, 304.

13. Ren,J., Ahlgren,N.A., Lu,Y.Y., Fuhrman,J.A. and Sun,F. (2017)
VirFinder: a novel k-mer based tool for identifying viral sequences
from assembled metagenomic data. Microbiome, 5, 69.

14. Arndt,D., Grant,J.R., Marcu,A., Sajed,T., Pon,A., Liang,Y. and
Wishart,D.S. (2016) PHASTER: a better, faster version of the
PHAST phage search tool. Nucleic Acids Res., 44, W16–W21.

15. Zhou,Y., Liang,Y., Lynch,K.H., Dennis,J.J. and Wishart,D.S. (2011)
PHAST: a fast phage search tool. Nucleic Acids Res., 39,
W347–W352.

16. Jurtz,V.I., Villarroel,J., Lund,O., Voldby Larsen,M. and Nielsen,M.
(2016) MetaPhinder-Identifying bacteriophage sequences in
metagenomic data sets. PLoS One, 11, e0163111.

17. Roux,S., Enault,F., Hurwitz,B.L. and Sullivan,M.B. (2015) VirSorter:
mining viral signal from microbial genomic data. PeerJ., 3, e985.

18. Akhter,S., Aziz,R.K. and Edwards,R.A. (2012) PhiSpy: a novel
algorithm for finding prophages in bacterial genomes that combines
similarity- and composition-based strategies. Nucleic Acids Res., 40,
e126.

19. Ofir,G. and Sorek,R. (2018) Contemporary phage biology: from
classic models to new insights. Cell, 172, 1260–1270.

20. Howard-Varona,C., Hargreaves,K.R., Abedon,S.T. and
Sullivan,M.B. (2017) Lysogeny in nature: mechanisms, impact and
ecology of temperate phages. ISME J., 11, 1511–1520.

21. O’Leary,N.A., Wright,M.W., Brister,J.R., Ciufo,S., Haddad,D.,
McVeigh,R., Rajput,B., Robbertse,B., Smith-White,B., Ako-Adjei,D.

et al. (2016) Reference sequence (RefSeq) database at NCBI: current
status, taxonomic expansion, and functional annotation. Nucleic
Acids Res., 44, D733–D745.

22. Li,W. and Godzik,A. (2006) Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences.
Bioinformatics (Oxford, England), 22, 1658–1659.

23. Jones,P., Binns,D., Chang,H.Y., Fraser,M., Li,W., McAnulla,C.,
McWilliam,H., Maslen,J., Mitchell,A., Nuka,G. et al. (2014)
InterProScan 5: genome-scale protein function classification.
Bioinformatics (Oxford, England), 30, 1236–1240.

24. Camacho,C., Coulouris,G., Avagyan,V., Ma,N., Papadopoulos,J.,
Bealer,K. and Madden,T.L. (2009) BLAST+: architecture and
applications. BMC Bioinformatics, 10, 421.

25. Besemer,J., Lomsadze,A. and Borodovsky,M. (2001) GeneMarkS: a
self-training method for prediction of gene starts in microbial
genomes. Implications for finding sequence motifs in regulatory
regions. Nucleic Acids Res., 29, 2607–2618.

26. Pertea,M., Pertea,G.M., Antonescu,C.M., Chang,T.C., Mendell,J.T.
and Salzberg,S.L. (2015) StringTie enables improved reconstruction
of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33,
290–295.

27. Trapnell,C., Hendrickson,D.G., Sauvageau,M., Goff,L., Rinn,J.L.
and Pachter,L. (2013) Differential analysis of gene regulation at
transcript resolution with RNA-seq. Nat. Biotechnol., 31, 46–53.

28. Hertel,R., Rodriguez,D.P., Hollensteiner,J., Dietrich,S., Leimbach,A.,
Hoppert,M., Liesegang,H. and Volland,S. (2015) Genome-based
identification of active prophage regions by next generation
sequencing in Bacillus licheniformis DSM13. PLoS One, 10,
e0120759.

29. Robenshtok,E., Paul,M., Leibovici,L., Fraser,A., Pitlik,S., Ostfeld,I.,
Samra,Z., Perez,S., Lev,B. and Weinberger,M. (2006) The
significance of Acinetobacter baumannii bacteraemia compared with
Klebsiella pneumoniae bacteraemia: risk factors and outcomes. J.
Hosp. Infect., 64, 282–287.

30. Perez,F., Endimiani,A., Ray,A.J., Decker,B.K., Wallace,C.J.,
Hujer,K.M., Ecker,D.J., Adams,M.D., Toltzis,P., Dul,M.J. et al.
(2010) Carbapenem-resistant Acinetobacter baumannii and
Klebsiella pneumoniae across a hospital system: impact of post-acute
care facilities on dissemination. J. Antimicrob. Chemother., 65,
1807–1818.

31. Azimi,L., Lari,A.R., Talebi,M., Owlia,P., Alaghehbandan,R.,
Asghari,B. and Lari,E.R. (2015) Inhibitory-based method for
detection of Klebsiella pneumoniae carbapenemase Acinetobacter
baumannii isolated from burn patients. Indian J. Pathol. Microbiol.,
58, 192–195.

32. Agodi,A., Barchitta,M., Quattrocchi,A., Maugeri,A., Aldisio,E.,
Marchese,A.E., Mattaliano,A.R. and Tsakris,A. (2015) Antibiotic
trends of Klebsiella pneumoniae and Acinetobacter baumannii
resistance indicators in an intensive care unit of Southern Italy,
2008–2013. Antimicrob. Resist. Infect. Control., 4, 43.

33. Dedrick,R.M., Jacobs-Sera,D., Bustamante,C.A., Garlena,R.A.,
Mavrich,T.N., Pope,W.H., Reyes,J.C., Russell,D.A., Adair,T.,
Alvey,R. et al. (2017) Prophage-mediated defence against viral attack
and viral counter-defence. Nat. Microbiol., 2, 16251.

34. Thorvaldsdottir,H., Robinson,J.T. and Mesirov,J.P. (2013) Integrative
Genomics Viewer (IGV): high-performance genomics data
visualization and exploration. Brief. Bioinform., 14, 178–192.


