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Abstract
Seafloor characteristics can help in the prediction of fish distribution, which is re-
quired for fisheries and conservation management. Despite this, only 5%– 10% of the 
world's seafloor has been mapped at high resolution, as it is a time- consuming and 
expensive process. Multibeam echo- sounders (MBES) can produce high- resolution 
bathymetry and a broad swath coverage of the seafloor, but require greater finan-
cial and technical resources for operation and data analysis than singlebeam echo- 
sounders (SBES). In contrast, SBES provide comparatively limited spatial coverage, as 
only a single measurement is made from directly under the vessel. Thus, producing 
a continuous map requires interpolation to fill gaps between transects. This study 
assesses the performance of demersal fish species distribution models by compar-
ing those derived from interpolated SBES data with full- coverage MBES distribution 
models. A Random Forest classifier was used to model the distribution of Abalistes 
stellatus, Gymnocranius grandoculis, Lagocephalus sceleratus, Loxodon macrorhinus, 
Pristipomoides multidens, and Pristipomoides typus, with depth and depth derivatives 
(slope, aspect, standard deviation of depth, terrain ruggedness index, mean curva-
ture, and topographic position index) as explanatory variables. The results indicated 
that distribution models for A. stellatus, G. grandoculis, L. sceleratus, and L. macrorhinus 
performed poorly for MBES and SBES data with area under the receiver operator 
curves (AUC) below 0.7. Consequently, the distribution of these species could not 
be predicted by seafloor characteristics produced from either echo- sounder type. 
Distribution models for P. multidens and P. typus performed well for MBES and the 
SBES data with an AUC above 0.8. Depth was the most important variable explaining 
the distribution of P. multidens and P. typus in both MBES and SBES models. While 
further research is needed, this study shows that in resource- limited scenarios, SBES 
can produce comparable results to MBES for use in demersal fish management and 
conservation.
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1  | INTRODUC TION

Seafloor geomorphology has been recognized as an important factor 
influencing demersal fish distribution both at broad (kilometers) and 
fine (tens of meters) scales (Demestre et al., 2000; Monk et al., 2011; 
Moore et al., 2011; Pierdomenico et al., 2015). Hence, various ter-
rain parameters, commonly termed depth derivatives (Garcia- Alegre 
et al., 2014), that quantify the geomorphology of the seafloor (e.g., 
slope, aspect, curvature, and rugosity) have been included in distri-
bution models of demersal fish (Becker et al., 2009; Demestre et al., 
2000; Ierodiaconou et al., 2011; Lucieer & Pederson, 2008; Young & 
Carr, 2015; Young et al., 2010).

Broad- scale depth derivatives can help to explain the distribu-
tion of species with a preference for large- scale features (Wilson 
et al., 2007). However, the fine- scale associations within the land-
scape context are also important in structuring demersal species 
distribution (Anderson et al., 2009). Consideration of habitat associ-
ations at different scales is therefore recommended when modeling 
habitat availability for species (Anderson et al., 2009; Garcia- Alegre 
et al., 2014; Jones & Brewer, 2012; Monk et al., 2011; Pittman & 
Brown, 2011).

Despite the importance of the seafloor geomorphology in deter-
mining habitat for fisheries and conservation management applica-
tions, only 5%– 10% of the world's seafloor has been mapped with 
multibeam echo- sounders (MBES; Sandwell et al., 2003; Wright & 
Heyman, 2008). This low percentage is because accurate charac-
terization is usually time- consuming, expensive, and technically 
challenging. MBES collect high- resolution bathymetric informa-
tion, cover a wide swath area, and usually acquire an almost con-
tinuous coverage of the study area. However, they typically require 
greater financial and technical resources for operation and data 
analysis than the simpler and more cost- effective singlebeam echo- 
sounders (SBES). In contrast to MBES, SBES provide limited cover-
age, ensonifying only a small area directly below the echo- sounder. 
Interpolation between SBES transects is therefore required to fill 
the gaps to produce a continuous seafloor map. If useful seafloor 
maps could be produced from SBES interpolated data, the cost to 
produce accurate demersal fish distribution models for conservation 
and management would be significantly reduced.

While there are numerous interpolation methods available to 
produce continuous bathymetry data from sparse datasets, no con-
sensus has been reached on which method is the most accurate 
(Bello- Pineda & Hernández- Stefanoni, 2007; Curtarelli et al., 2015), 
yet useful in species distribution modeling. For other applications, 
like navigation, protocols and requirements are well established to 
fulfil legal requirements of scale and accuracy (Mills, 2015).

The performance of different interpolation methods depends 
upon the seabed characteristics, and sampling density and distribu-
tion (Arun, 2013; Erdogan, 2009; Moskalik et al., 2013). In this study, 
the accuracy of three commonly used methods proven to model 
bathymetry effectively were compared, including inverse distance 
weighting (IDW), radial basis function (RBF), and Kriging (Moskalik 
et al., 2013; Sanchez- Carnero et al., 2012). Kriging also included 
testing three variations; ordinary (OK) and universal with a first-  and 
second- degree detrending (UK1 and UK2).

The overall aim of this study was to test the ability of cost- 
effective methods (i.e., SBES- derived depth data) for modeling de-
mersal fish species distributions. This study compared the accuracy 
of demersal fish species distribution models produced using SBES 
bathymetry and depth derivatives at different scales with those de-
rived from MBES data. Specifically, the following were tested: (1) the 
accuracy of the three common interpolation methods (IDW, RBF, 
and Kriging) in producing continuous bathymetry using SBES data; 
(2) the similarity between the resulting interpolated SBES bathym-
etries and depth derivatives with the MBES bathymetry and depth 
derivatives; and (3) accuracy of demersal fish distribution models 
(Random Forest [RF]) constructed using SBES and MBES bathyme-
try and depth derivatives at different scales.

2  | METHODS

2.1 | Study area and data collection

The Ningaloo Reef is located off the coast of northwest Australia. 
It is the longest fringing coral reef in Australia and is recognized as 
a global biodiversity hotspot, home to a wide variety of wildlife, 
including many endangered species (Gazzani & Marinova, 2007; 
Schonberg & Fromont, 2012). Between 2006 and 2009, a multi- 
institutional research program was conducted in the Ningaloo 
Marine Park (NMP) by Western Australia Marine Science Institute 
partners (Waples & Hollander, 2008) and included the collection 
of SBES data (Colquhoun et al., 2007). The assemblage and relative 
abundance of demersal fishes were surveyed using Baited Remote 
Underwater Stereo- Video Systems (stereo- BRUVS) between March 
26 and May 6, 2009 (Colquhoun et al., 2007), following procedures 
described in Harvey et al. (2007). The resulting presence and ab-
sence records of different fishes at each stereo- BRUVS site were 
used in this study.

Multibeam echo- sounders data were collected in particular areas 
of the NMP in 2008, by Geoscience Australia (GA; Brooke et al., 
2009). SBES bathymetric data were collected with a Simrad EQ60 
echo- sounder (38 and 200 kHz frequencies), mounted on the RV 

K E Y W O R D S

bathymetry, demersal fish distribution, habitat model, interpolation, multibeam, singlebeam 
echo- sounder



     |  17875LANDERO FIGUEROA Et AL.

Cape Ferguson and RV Solander vessels for the 2006 and 2008 sur-
veys, respectively, using 500- m transect spacing in both surveys 
(Colquhoun et al., 2007). An area of the NMP located 2.5 km from the 
mainland coast to 7.5 km offshore, where SBES, MBES, and stereo- 
BRUVS data overlapped, was selected as the study site (Figure 1). 
This area extended approximately 35 km parallel to the coast, with 
seafloor depths ranging from approximately 20 to 130 m. The MBES 
bathymetric data covering the area of interest for this study were 
downloaded as a 3- m resolution grid from the GA website (Figure 1).

2.2 | SBES data processing

Depth values from the SBES data were extracted by first using 
the readEKraw MATLAB toolkit to read the Simrad raw data into 
MATLAB (Rick Towler, NOAA Alaska Fisheries Science Centre, 
Seattle, WA, USA). Then, depth was estimated from the differential 

of a mean waveform created from 10 consecutive pings, to im-
prove the signal- to- noise ratio. After averaging, the mean distance 
between depth estimates was 40 m. Depth values were corrected 
for tidal height using the predicted values of tide for Tantabiddi 
(Department of Transport, 2006) and adjusted to be relative to the 
Australian Height Datum (0.30 m above Chart datum). Erroneous 
depth values (either positive or clearly unrealistic in relation to sur-
rounding values) were removed manually.

After filtering and averaging, 11,122 SBES depth records were 
included in the analysis and ranged from 18 to 127 m, with a mean 
depth of 77.26 m. The coefficient of skewness was below the thresh-
old of ±1 (0.14), indicating the data had a symmetrical normal dis-
tribution; thus, no transformation was required for geostatistical 
analysis (Kerry & Oliver, 2007). While the distance between tran-
sects was 500 m, the resolution of the final interpolated surface was 
selected based on the distance between soundings along track, in an 
attempt to keep the higher resolution possible in the axis with higher 

F I G U R E  1   Map indicating (a) the 
study site located in the north section 
of the Ningaloo Marine Park, and (b) the 
locations of single- beam echo- sounder 
survey tracks shown in red and stereo 
BRUVS deployment sites shown with 
black dots
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density of data. The number of soundings included in the calculation 
of each pixel of the final surface was based on the number of neigh-
bors included in the analysis and the radius of search.

2.3 | Spatial interpolation methods

Interpolations of depth data were conducted in the R software pack-
age (R Development Core Team, 2017) using IDW, RBFs, and Kriging, 
following methods detailed in Mitas and Mitasova (1999). During IDW 
analyses, multiple powers (ranging from 0.5 to 6, in 0.5 increments) 
and selected neighborhoods (50, 100, and 150 raster's cells) were 
tested using the gstat package (Pebesma, 2004). As RBF estimation in 
unsampled areas can be dependent on one of five possible base func-
tions (Buhmann, 2003), this study used completely regularized spline 
(CRS) and multiquadratic (M) RBFs, which have been found to be ac-
curate in the production of depth interpolation (Erdogan, 2009). The 
RBF functions use smoothness and robustness parameters to con-
trol the level of smoothness and stability of the interpolation. These 
two parameters were optimized in the geospt package (Melo et al., 
2012), which uses cross- validation to minimize root- mean- square er-
rors (RMSE). The performance of CRS and M with neighbors set at 50, 
100, and 150 raster cells was tested. During Kriging, a semi- variogram 
was created to test spatial autocorrelation and a Gaussian model fit-
ted to the sampling points (Cressie, 1993). Isotropic and anisotropic 
variograms for ordinary and universal Kriging with a first-  and second- 
degree detrending with 100 and 150 neighborhoods were tested 
using the gstat package (Pebesma, 2004).

2.4 | Selection and comparison of best 
interpolation approaches

For each scenario of IDW and RBF, the best method was the one that 
produced the lowest RMSE, using leave- one- out cross- validation 
(Hengl, 2009). In Kriging, the scenario with the lowest absolute dif-
ference between the RMSE and average Kriging standard error (ASE; 
Asa et al., 2012) was chosen as the best model.

The interpolated surfaces from the best performing IDW, RBF, 
and Kriging methods selected were compared with the MBES sur-
face using correlation and regression analyses to assess the re-
lationship between the overall surfaces (interpolated vs. MBES). 
Correlation and regression analyses were undertaken for subsets of 
raster pixel values corresponding to four different buffer distances 
(intervals) perpendicular to the original SBES track (0– 100, 101– 200, 
201– 300, and 301– 400 m). Pixel values of the interpolated SBES 
surface contained in each interval were compared with the MBES 
pixel of the same interval using correlation and regression analy-
ses. Values closer to the original SBES data (i.e., within the 0– 100 m 
interval) were expected to be accurate regardless of interpolation 
techniques, while the accuracy of values further away (301– 400 m 
interval) was expected to depend upon the interpolation technique. 
The significance of the correlation coefficient r and the coefficient of 
determination R2 was also tested.

2.5 | Digital elevation models

A digital elevation model (DEM) in which each pixel corresponds to 
the interpolated values was produced using the interpolation method 
with the lowest RMSE. Additional DEMs were produced at resolu-
tions of 9, 15, and 25 m. To achieve this, a Gaussian filter (5 × 5 kernel) 
was applied to the interpolated bathymetry to reduce the effect of 
noise that can be particularly problematic at the edges of overlapping 
transects (Stephens & Diesing, 2014). The DEM was then resampled 
at the corresponding resolutions using a bilinear method with the ras-
ter package (Hijmans, 2016). DEMs were also produced from MBES 
data, which were filtered in the same way as SBES data.

2.6 | Seafloor depth and its derivatives

Depth derivatives including slope, aspect, terrain ruggedness index 
(TRI), standard deviation of depth (SD), topographic position index 
(TPI), roughness, and mean curvature (MNC) were calculated using 
a 3 × 3 window analysis at four different resolutions (Table 1). The 
finest scale of analysis was fixed by the resolution of the MBES data 
(3 m), while the other three were chosen based on the spatial de-
pendence of the species distribution. A variogram analysis was used 
to identify the maximum distance at which the species present spa-
tial dependency, which is called the range. The scales were chosen to 
cover the span between the 3- m resolution and the range of the spe-
cies (>4 km) (Holmes et al., 2008). Therefore, the resolutions were 
set at 3, 9, 15, and 25 m. Depth derivatives were produced for SBES 
and MBES DEMs at the four resolutions.

Slope and aspect were calculated in a raster package (Hijmans, 
2016), following methods described by Horn (1981). Aspect was split 
into two variables using trigonometric functions: northness (NS) and 
eastness (WE), where NS is the cosine of aspect and varies from −1 
(south) to 1 (north), and WE is the sine of aspect varying from −1 
(west) to 1 (east), as per Deng et al. (2007).

2.7 | Demersal fish species distribution models

Random Forest, as proposed by Breiman (2001), was used in this 
study to model the distribution of demersal species of fish. RF is a 
machine- learning technique that has been shown to outperform con-
ventional statistical techniques, such as linear and generalized ad-
ditive regression models when used to model the distribution and 
diversity of demersal fish (Knudby et al., 2010; Smolinski & Radtke, 
2017). RF classifier algorithms (Breiman, 2001) were used to model 
the distributions of Starry Triggerfish (Abalistes stellatus), Robinson's 
Seabream (Gymnocranius grandoculis), Silver Toadfish (Lagocephalus 
sceleratus), Sliteye Shark (Loxodon macrorhinus), Goldband Snapper 
(Pristipomoides multidens), and the Sharptooth Snapper (Pristipomoides 
typus), using seafloor depth and its derivatives from SBES and MBES. 
While fishes of high commercial value were prioritized, the low num-
ber of presences of these species in stereo- BRUVS in the study area 
inhibited the production of accurate models. Consequently, species 
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chosen for analyses were not fisheries target species, with the ex-
ception of P. multidens, P. typus that are target species in Western 
Australian commercial and recreational fisheries (Marriott et al., 
2012). The six species distribution models were constructed using 
presence/absence records from stereo- BRUVS data. These species 
are all considered reef- associated, with a habitat generalist's rela-
tively broad distribution (Fitzpatrick et al., 2012; Kalogirou, 2013; 
Randall, 1967), and displayed ≥35 presences in BRUVS data.

Depth derivatives included in the species distribution model are 
listed in Table 1. Four RF (43) models were created for each of the 
six species using MBES data and SBES, including depth and its de-
rivatives (24 models in total) using the R (R Development Core Team, 
2017) package randomForest (Liaw & Wiener, 2002). The perfor-
mance of each model was evaluated using the area under the receiver 
operator curve (AUC), which summarizes the sensitivity and specific-
ity of the model (Manel et al., 2001). Seventy percent of the data was 
used to train the RF, and the rest to test the accuracy of predictions 
from the model. The trained RF was used to predict the probability of 
presence of the species in the 30% reserved for testing and residuals 
then calculated (Zhang et al., 2020). The accuracy of the models was 
tested using a five- fold cross- validation procedure, and significance 
of the difference in mean AUC between the interpolated SBES and 
the MBES models was examined using a T- test. Partial dependence 
plots were used to explore the relationship between the terrain vari-
ables and the presence of the species (Friedman, 2001).

3  | RESULTS

3.1 | Selection and comparison of best interpolation 
approaches

3.1.1 | Inverse distance weighting

The best IDW model produced a power parameter of three and a 
RMSE of 0.39, although similar RMSEs were observed for 3 and 
3.5 powers (Supporting Information). Lower RMSEs were found 
when the number of neighbors was decreased for powers be-
tween 2 and 3.

3.1.2 | Radial basis function

The best RBF model had a multiquadratic function (M) with a RMSE 
of 0.39. CRS had a greater associated error above 0.45. No differ-
ences were observed when the number of neighbors was increased 
(Supporting Information).

3.1.3 | Kriging

Initial variogram analysis showed presence of spatial structure in the 
data indicating it was suitable for geostatistical analysis. An anisot-
ropy was found in the data with a major axis parallel to the coast 
where less variation was observed and a minor axis perpendicular to 
the coast in which much more rapid changes in depth occurred. The 
anisotropy persisted after a first-  (UK1) and second- degree (UK2) 
detrending. When fitting a theoretical model to the empirical vari-
ograms, Gaussian variograms displayed the best fit. The distance at 
which the spatial autocorrelation reached the sill (called the range) 
was between 428 and 720 m (Supporting Information).

The best fit Kriging interpolation was the universal Kriging (ASE- 
RMSE and RMSE of 0.034 and 0.332, respectively) with UK1 de-
trending, using anisotropic variograms. In most cases, interpolation 
using anisotropic variograms had lower RMSEs than those using 
isotropic variograms. Ordinary and universal Kriging with UK1 de-
trending performed similarly, with low values of RMSE. For OK and 
UK1, higher ASEs than RMSEs were estimated when an anisotropic 
variogram was used, indicating an underestimation of the variability. 
Higher RMSEs than ASEs were observed for OK and UK1 when an 
isotropic variogram was used (Supporting Information), indicating an 
overestimate of the variability. Universal Kriging with UK2 detrend-
ing with an isotropic and anisotropic variogram also overestimated 
the variability. A slightly lower value of ASE- RMSE was observed for 
OK and UK1, when an anisotropic variogram was used. Universal 
Kriging with UK2 detrending had, in general, the worst performance, 
with higher values of RMSE and greater difference between ASE 
and RMSE. Kriging produced the lowest RMSE (0.332) and therefore 
best performance of the three interploation techniques compared 
with IDW and RBF (0.398 and 0.397, respectively).

Variable Abbreviation Software Reference

Slope Slope R (raster) Horn (1981)

Aspect

Northness NS R (raster) Horn (1981)

Eastness WE R (raster) Horn (1981)

Standard deviation of depth SD R Lecours et al. (2016)

Terrain ruggedness index TRI R (raster) Wilson et al. (2007)

Topographic position Index TPI R (raster) Wilson et al. (2007)

Roughness Roughness R (raster) Wilson et al. (2007)

Mean curvature MNC Landserf v 2.3 Wood (1996)

Abbreviation: SBES, singlebeam echo- sounders.

TA B L E  1   Depth derivatives produced 
from SBES depth data
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When comparing the SBES interpolated surfaces with the grid-
ded depth surface from the MBES data, a good correlation (all coef-
ficients of determination were >0.99) was found between the MBES 
data and the three SBES interpolated DEMs. Significant linear rela-
tionships between the MBES data and the interpolated data were 
found for all methods (p < .001). A slight decrease in the coefficient 
of determination (R2) was observed when the distance from the orig-
inal SBES track was increased (Supporting Information). UK1 had the 
highest R2 for all intervals of distance, closely followed by RBF. IDW 
had the lowest values of R2 for all the distances and particularly for 
the areas further away from the SBES data (400 m with a R2 de-
crease from 0.997 to 0.990). The MBES and SBES interpolated sur-
faces are comparable with some visible artefacts, particularly for the 
IDW and RBF surfaces (Figure 2).

3.2 | Seafloor depth and its derivatives

In general, a larger variation was found in the depth derivatives, 
based on the MBES data compared with the SBES interpolated data; 
this was particularly true for the derivatives based on the highest 
resolution bathymetry (3 m, Supporting Information). The deriva-
tives based on the interpolated SBES data had similar means and 
SDs to the MBES derivatives at a broader scale (25- m resolution).

A gentle slope (≈1°) was found in the study area directed pre-
dominantly oriented north- west, shown by the predominately posi-
tive NS and negative WE values, with high variation observed at the 

3- m resolution, particularly for the MBES data. In all cases, the MNC 
had slightly negative values associated with concave areas in the 
terrain, although both positive and negative MNCs were observed. 
The SD of depth, TRI, TPI, and roughness presented a mean close 
to zero at the highest resolution, indicating low terrain variability at 
fine scale. Higher means and SDs were observed for the MBES data, 
and the interpolated surfaces, as resolution decreased (i.e., the cell 
size increased).

Derivatives based on the interpolated bathymetries presented 
different levels of artefacts associated with inaccuracies in the inter-
polation process. Pronounced artefacts were observed in all deriva-
tives, particularly those based on the IDW interpolated bathymetry 
(see Figure 3, for example maps of derived roughness).

3.3 | Demersal fish species distribution models

Demersal fish distribution modeling performance was species- 
dependent. The distribution of A. stellatus, G. grandoculis, L. scel-
eratus, and L. macrorhinus was poorly modeled by the MBES and 
interpolated SBES data (Supporting Information) with mean AUCs 
below 0.7 (Hosmer et al., 2013). The distribution of P. multidens 
and P. typus was well modeled using the variables included in the 
analysis, with AUCs above 0.8 for both the MBES and SBES inter-
polated models. No significant differences were observed between 
the mean AUCs of the models produced using MBES data compared 
with the SBES models (p < .05).

F I G U R E  2   Sun- illuminated bathymetry of the study site using a 3D projection for (a) MBES and the best SBES data interpolations in this 
study using: (b) universal Kriging with first degree of detrending, (c) inverse distance weighting, and (d) radial basis function
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3.4 | Variables importance

Even though accuracy of the models for A. stellatus, G. grandoculis, 
L. sceleratus, and L. macrorhinus was below the acceptable level, 
the analysis of the variables' importance can provide insight of the 
factors affecting their distribution. For G. grandoculis and L. sceler-
atus, depth was the most important variable in the MBES and SBES 
models (Supporting Information). TRI and MNC at a fine to medium 
scale were also important in the L. sceleratus MBES model; yet, in 
the SBES models, these variables had only a marginal contribu-
tion. Variables related to terrain variability (e.g., SD and TRI) were 
important in the A. stellatus model, at both broad and fine scales, 
for both the MBES and SBES models. The slope orientation in both 
the northness and eastness components was also important in the 
MBES model but at specific scales of analysis, with eastness being 
more important at the finest scale (3- m resolution), while north-
ness was relevant at medium to large scales (9– 25- m resolution). 
For the L. macrorhinus model, depth had slightly higher importance 
followed by roughness, SD, TRI, and slope, at both fine and broad 
resolutions for the MBES and the SBES UK1 model. Mean curva-
ture was important at a broad scale (25 m), while northness was 
relevant at a fine scale (3– 9 m).

Depth was the most critical variable in modeling the distribution 
of both P. multidens and P. typus for the MBES data, and the models 
based on the interpolated SBES data (Supporting Information). For 
P. multidens, roughness, slope, SD, and TRI, followed depth in im-
portance at both fine and broad scales; MNC had also a significant 
contribution but only at a medium scale (15 m). In the P. typus model, 
the eastness component of slope orientation was important at a fine 
scale (3 m), with the rest of the variables having a lower contribution 
in the MBES model. For the interpolated SBES models, no clear pat-
tern was observed with variables having similar levels of contribu-
tion at a fine or broad scale.

3.5 | Probability of occurrence of P. typus

Pristipomoides multidens and P. typus have very similar habitat dis-
tributions, with a preference for deeper areas (Parrish, 1987b; 
Sih et al., 2017). The probability of occurrence of P. typus showed 
higher probabilities of occurrence in deeper areas and lower in the 
rest of the study area for both MBES and SBES models (Figure 4, 
P. typus shown only, due to similarities of distribution maps of the 
two species). Similar spatial patterns were observed for all the 
models; however, the SBES models presented visually recogniz-
able artefacts in the probability of occurrence derived from errors 
in the interpolations (Figure 4). In particular, artefacts in the SBES 
RBF model were more evident in the areas of high probability of 
occurrence. Spatial clustering of residuals was observed in all mod-
els of P. typus, including the MBES model, with underprediction 
in the deeper areas and overprediction in the shallows observed 
(Figure 5). Overprediction in the shallower areas was less pro-
nunced in the MBES model compared with the interpolated models.

4  | DISCUSSION

4.1 | Selection and comparison of best interpolation 
approaches

In this study, universal Kriging with a first- order detrending (UK1) 
was found to be the method of choice to interpolate the SBES 
depth data, over IDW and RBF. This was based on the surface 
produced by UK1 having the lowest RMSE in the leave- one- out 
cross- validation test and the highest correlation with the MBES 
data. Similar results of Kriging outperforming IDW and RBF have 
been reported before when modeling elevation data (Arun, 2013; 
Bello- Pineda & Hernández- Stefanoni, 2007; Curtarelli et al., 2015; 
Moskalik et al., 2013; Zimmermann & Kienast, 1999). The better 
performance of Kriging in this study could have been related to 
the sampling design, as geostatistical methods are best suited for 
modeling irregularly distributed data (Curtarelli et al., 2015). The 
data analysed here were not equally spaced, as there was a high 
density of data in the transects but also significant areas with-
out any data between the transects. One of the disadvantages 
of Kriging is that some knowledge of geostatistics is needed to 
produce the best possible result. For instance, an exploration of 
the (variogram) model needs to be carried out to determine which 
theoretical variogram should be used and whether a detrending 
process or the use of an anisotropic variogram is required. To as-
sist this process, there is well- established software and guidance 
available to carry these steps out (Glenn et al., 2016).

4.2 | Seafloor depth and its derivatives

Sampling areas with sparse data in the form of SBES lines produce 
track line artefacts when interpolated (Hell & Jakobsson, 2011). 
These artefacts affect the depth derivatives that reflect not only 
real variations in the DEM but also false variations. In this study, all 
the interpolation methods produced artefacts, which affected the 
depth derivatives. Hell and Jakobsson (2011) proposed gridding 
with minimum curvature splines in tension at multiple grid reso-
lutions overcame this issue by using a high- resolution grid in the 
areas with high volumes of data and lower resolution in no data 
areas. This method could reduce the artefacts produced in this 
study, although a practical limitation of the Hell and Jakobsson 
(2011) approach is the large computational requirements. Changes 
in resolution have different effects in the depth derivatives, re-
lated to the specific terrain being studied (Deng et al., 2007). 
Slope, for example, has the general pattern of a decrease as the 
resolution decreases (Wilson et al., 2007). This general pattern 
was observed in this study, with a significant reduction in the 
variability of the slope at the lowest resolution of analysis. The 
opposite was observed for the derivatives measuring terrain vari-
ability (TRI, roughness, and SD), with an increase of variability for 
the lower resolutions (Friedman et al., 2012). The inclusion of dif-
ferent resolutions of derivatives can increase the possibilities of 
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having relevant information at the correct scale for the species 
under study. However, the fine- resolution derivatives based on 
the SBES data failed to capture the fine- scale variability observed 
in the high- resolution MBES derivatives. Therefore, species whose 
distribution is influenced by terrain variability at a fine scale are 
less likely to be well modeled by SBES interpolated data.

4.3 | Demersal fish species distribution models

The performance of the distribution models was species- 
dependent, but no significant difference was observed between 
the accuracy of the models constructed using MBES and SBES 
data. The species included in this study are demersal carnivores 

with a certain degree of generalist and/or opportunistic feeding 
behavior (Carpenter & Niem, 1998; Gutteridge et al., 2011; Randall, 
1967; Rousou et al., 2014). Four of them including G. grandoculis, 
L. macrorhinus, P. multidens, and P. typus belong to families that have 
been found in a variety of benthic habitats and classified as habitat 
generalist with relatively broad cross- shelf distribution in a previ-
ous study in the NMP (Fitzpatrick et al., 2012). However, the dif-
ference between habitat- generalist and habitat- specialist species is 
related to the frequency of occurrence of the species in the study 
area (Jarnevich et al., 2015). In the present study, three species in-
cluding A. stellatus, G. grandoculis, and L. sceleratus had a generalist 
behavior with high prevalence in the sampling points (>40%); the 
models of these species had poor performance for both MBES data 
and SBES data. Previous studies, have found that generalist species 

F I G U R E  3   Sun- illuminated 3D projection of the roughness derivate from the MBES and interpolated SBES data using universal Kriging 
with a first- degree detrending (UK1), inverse distance weighting (IDW), and radial basis function (RBF). The four resolutions included in the 
analysis are shown
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are harder to model, while specialist species are usually better 
modeled using environmental variables (Franklin et al., 2009). In 
this study, this pattern was found to be particularly true in the two 
extremes of the prevalence scale with A. stellatus having the high-
est prevalence (>70%) and its models having the lowest accuracy 
(AUCs <0.5), while P. multidens had a low prevalence (<30%) and 
had the highest accuracy (AUCs >0.9). The generalist behavior of 
A. stellatus, G. grandoculis, and L. sceleratus might be due to the ex-
tent and the temporal resolution of the study; for example, some 
species might use specific feeding habitats at night while using dif-
ferent habitats during the day (Harvey et al., 2012). Loxodon mac-
rorhinus, on the other hand, had the lowest prevalence in the study 
site, but its distribution was poorly modeled by depth and its de-
rivatives; a possible explanation for these results can be that water 
column variables rather than not terrain variables are more closely 
related to its distribution. A previous study by Gutteridge et al. 
(2011) found that L. macrorhinus prefers areas with clear water 
when compared with other areas with less water clarity; therefore, 
the inclusion of water column variables could improve the perfor-
mance of the models for this species.

The RF models showed that both P. multidens and P. typus prefer 
deep waters with some level of bottom complexity. These results 
are in accordance with previous studies that showed P. multidens is a 
schooling deeper- water (40– 245 m) demersal species found in rocky 
reefs, coral reef areas, and loose rock/pebble/gravel areas close to 
steep drop- offs (Allen, 1985).

For P. typus, the preference of deeper areas has been supported 
by other studies, which indicate a preference for non- flat seafloors 
(Parrish, 1987a) and specific depth ranges (Fry et al., 2006). Fry et al. 
(2006) found a preference of P. typus for deeper areas with more 
fish caught in depth ranges between 125 and 150 m. In a more re-
cent study on the Great Barrier Reef, a series of stereo- BRUVS were 
deployed along the shelf- edge and found P. typus was only present 
in sampling stations between 115 and 250 m (Sih et al., 2017). The 
high importance of depth to explain P. typus distribution may not be 
the primary factor driving its distribution, per se. Depth is a variable 
correlated with a combination of biotic and abiotic environmental 
conditions that might be more related to the distribution of P. typus 
(Sih et al., 2017). The preference of P. typus for deep and non- flat 
areas was identified by the MBES model and was captured by the 

F I G U R E  4   Maps of probability of 
occurrence of Pristipomoides typus 
based on depth and depth derivatives 
of the MBES and the three interpolation 
techniques tested: Universal Kriging with 
first degree of detrending (UK1), inverse 
distance weighting (IDW) and radial basis 
function (RBF)

F I G U R E  5   Spatial distribution of the 
residuals of the Random Forest predicting 
the testing portion of the Pristipomoides 
typus data. Positive values corresponds to 
under predictions while negative values 
represent over predictions
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model based on the interpolated DEM. For the MBES model and 
the interpolated model, the medium and broader scale variables had 
higher importance in the construction of the models. There was a 
general trend across models for an association between the pres-
ence of P. typus and areas with increased complexity. The final pre-
diction of the probability of occurrence for P. multidens and P. typus, 
based on the MBES and interpolated models, was similar. However, 
under-  and overestimation of probability of occurrence were present 
in all the models, while spatial clustering of the residuals was more 
evident in the RBF interpolated model.

5  | CONCLUSION

Interpolated SBES depth data can be used to provide useful species 
distribution models for broad- scale habitat associated specialists, 
when compared with MBES models, with the highest performing 
SBES model derived using Kriging. Thus, while MBES data should 
be collected where possible, surveys that are financially restricted 
may benefit from the less labor-  and cost- intensive option of SBES. 
The possibility of producing models with comparable accuracy to the 
MBES data can be particularly useful for shallow turbid areas where 
satellite derivative bathymetry is not suitable and the use of MBES 
offers little advantage because of its narrow coverage. This is not 
without caveats, however, as SBES interpolated models are expected 
to perform poorly for species affected by fine- scale variation of the 
terrain, because of its failure to capture fine- scale variation of the 
terrain complexity. Models based on interpolated SBES data can 
produce accurate models for species strongly influenced, directly or 
indirectly, by depth. Further studies including a wide range of species 
and terrains with different levels of complexity are needed to con-
firm the findings of the present study. Different species with specific 
levels of habitat specialization and relationship with the environmen-
tal variables might respond differently. The inclusion of other vari-
ables like seafloor backscatter, as a descriptor of substrate type, may 
help to increase the accuracy of the models for some species.
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