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Editorial on the Research Topic

Microorganisms for Consolidated 2nd Generation Biorefining

In the last few decades, lignocellulosic biomass has attracted substantial interest as a feedstock for
fermentative production of fuels and other commodity chemicals due to its wide availability and
low cost (Sims et al., 2010). However, lignocellulose has innate complexity and recalcitrance to
biodegradation. In natural environments, effective plant biomass decay is obtained by synergistic
activity of complex microbial communities (Auer et al., 2017; Liu et al., 2021; Rajeswari et al., 2021).
No natural cellulolytic microorganism isolated so far can efficiently produce high-value compounds
at a scale required for commercialization. On an industrial level, this traditionally requires complex
process configurations, namely the need for physical and/or chemical pre-treatment (to lower
biomass recalcitrance) and multiple bioreactors dedicated to cellulase production and/or biomass
saccharification and/or soluble sugar fermentation (Lynd et al., 2002). The requirement formultiple
process steps seriously threatens economic viability of 2nd generation biorefining processes. The
most challenging barriers to developing cost-sustainable lignocellulose biorefining process include:
(1) the need for costly biomass pre-treatment which may additionally generate compounds that
inhibit fermenting microorganisms; (2) dependence on high loads of expensive cellulase mixtures
for biomass saccharification; and (3) issues in efficient co-fermentation of hexose and pentose
sugars (e.g., because of carbon catabolite repression). Substantial research efforts have been devoted
to develop consolidated bioprocessing (CBP) of lignocellulose to high-value products without the
use of exogenous enzymes, namely single-pot fermentation. Motivation for this highly ambitious
fermentative strategy is based on the dramatic reduction of process cost (i.e., 40–77%) with respect
to traditional (less consolidated) configurations (Lynd et al., 2005, 2008). The studies included in
this Research Topic touch on some key research areas for achieving CBP, as summarized below.

A variety of physical and/or chemical pre-treatment methods have been developed to decrease
lignocellulose recalcitrance to biodegradation through separation of biomass components (e.g.,
cellulose, hemicellulose and lignin), improvement of accessibility to enzymes and microorganisms,
and reduction of crystallinity (Zhou and Tian, 2022). However, these processes are typically cost
challenging and, depending on the technology used, subject to the formation of compounds
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that can inhibit microbial growth. These issues, in part, have
been tackled by the development of technologies with lower
impact on costs and fermentation efficiency (Cagnin et al.).
Other studies have been focused on the selection (Cagnin et al.)
and/or engineering (Abdel-Rahman and Sonomoto, 2016) of
microbial strains more resistant to pre-treatment inhibitors.
Steam-explosion is among the most effective lignocellulose
pre-treatment methodologies, yet may produce a number of
inhibitors such as phenolic compounds, furans, and weak
acids (García et al., 2014; Morales et al., 2017; Park et al.,
2020). As included in this special Research Topic collection,
the innate tolerance of seven natural Saccharomyces cerevisiae
strains toward liquors derived from steam explosion of sugarcane
bagasse, common reed, and cardoon was compared to that of
the benchmark industrial S. cerevisiae strain, Ethanol Red (ER),
currently utilized in 2nd generation ethanol plants (Cagnin
et al.). Fermentative performances of the strain with the
highest tolerance to steam-explosion liquors (namely Fm17)
were then compared to those of S. cerevisiae ER. In growth
media containing cardoon or common reed pre-hydrolysates,
strain Fm17 showed ethanol yields 5–15% higher than those
of reference strain ER. Within this specific research area, it is
worth remembering that cost-competitive processes alternative
to pre-treatment have recently been proposed to enhance
biological solubilization of lignocellulosic feedstocks (Balch et al.,
2017; Lynd et al., 2017). These include biomass milling during
fermentation, which is commonly referred to as cotreatment
(Balch et al., 2017; Lynd et al., 2017). This technology promoted
switchgrass fermentation by Clostridium thermocellum, although
it does not seem suitable for other microorganisms such as S.
cerevisiae (Balch et al., 2017).

Development of lignocellulose CBP has been pursued
through two main approaches: (i) engineering microbial
strains that feature both (hemi)cellulolytic and high-value
compound producing properties (Soucaille et al., 2010; Gandini
et al., 2017; Tian et al., 2019; Wen et al., 2019; Mazzoli,
2020); (ii) assembly artificial microbial consortia consisting
of (hemi)cellulolytic and high-value compound producing
microorganisms (Wen et al., 2014; Shahab et al., 2018; Jiang
et al., 2020; Lu et al., 2020; Schlembach et al., 2020). In
regards metabolic engineering of recombinant microorganisms
for CBP of lignocellulose, studies refer to two main paradigms,
native and recombinant cellulolytic strategies (Lynd et al.,
2002, 2005; Alper and Stephanopoulos, 2009). Native cellulolytic
strategies focus on the introduction and/or improvement of
high-value chemical production in native (hemi)cellulolytic
microorganisms (e.g., Clostridium cellulovorans, Clostridium
thermocellum, Myceliophthora thermophila) (Li et al., 2019;
Mazzoli and Olson, 2020; Bao et al., 2021). Recombinant
cellulolytic strategies intend to equip high-value product
forming microorganisms with the ability to directly ferment
(hemi)cellulose (e.g. Yarrowia lipolytica, S. cerevisiae) (Willson
et al., 2016; Guo et al., 2018; Stern et al., 2018; Tang et al., 2018;
Anandharaj et al., 2020). In addition, promising results have
recently been reported by fusion of protoplasts of cellulolytic and
compound-producing (i.e., butanol) microorganisms (Begum
and Dahman, 2015; Syed and Dahman, 2015) or by biomass

fermentation by using natural lignocellulose-degradingmicrobial
communities such as the microbiota of herbivore rumen or
termite gut (Auer et al., 2017; Liu et al., 2021; Rajeswari et al.,
2021).

Recombinant cellulolytic strategies have been severely
hampered by some major issues: (i) the extreme complexity and
sophistication of native cellulase systems (Xu et al., 2015; Leis
et al., 2017; Bule et al., 2018; Galera-Prat et al., 2020) (together
with the high recalcitrance of lignocellulosic substrates) makes
it difficult to mimic their efficiency through minimal artificial
enzyme mixtures/complexes; (ii) insufficient understanding of
the mechanisms promoting cellulase secretion (Yan and Wu,
2013, 2014; De Paula et al., 2019) as well as species-specific
protein secretion mechanisms challenge rational engineering
of recombinant cellulolytic strains. Heterologous expression
of cellulases has frequently been associated with cell toxicity
(Mingardon et al., 2011; Kovács et al., 2013; Tarraran et al., 2021),
and/or cellulase proteolysis by the host (Mingardon et al., 2005,
2011), and/or low levels of cellulase activity (Van Rensburg et al.,
2012) and/or the activation of the unfolded protein response
(Ilmén et al., 2011), and/or metabolic burden (Ding et al., 2018).
Metabolic burden refers to perturbation of host metabolism by
heterologous protein expression and is generally attributed to
energetic costs and competition for gene transcription/protein
translation cell machinery associated with production of
heterologous cellulases which generally cause a decrease in
growth efficiency (Van Rensburg et al., 2012). The study by Wei
et al. addressed the metabolic burden caused by co-expression
of three fungal cellulases in the oleaginous yeast Y. lipolytica. Y.
lipolytica has traditionally been used for industrial production
of nutritional products, organic acid and erythritol, but recently
has also emerged as potential biofuel cell factory (lipids, fatty
alcohols). Coexpression of these enzymes in Y. lipolytica led
to reduction of cell growth and lipid accumulation (Wei et al.,
2019). Inactivation of Snf1, an AMP-activated serine threonine
protein kinase that generally represses energy-demanding
biosynthesis of lipids and proteins, and overexpression of genes
involved in lipid biosynthesis promoted increased growth rate,
lipid accumulation, and cellulase activity of the recombinant
Y. lipolytica (Wei et al.). This strategy reported in this study
included in the present Research Topic may therefore represent
a general tool for improving the robustness of Y. lipolytica and
other microbial platforms for CBP of lignocellulosic biomass.

Improvement of cellulase secretion in heterologous hosts has
been pursued utilizing different approaches (Mazzoli et al., 2012;
Tarraran and Mazzoli, 2018) such as engineering the cellulase
signal peptide (Wieczorek and Martin, 2010; Stern et al., 2018)
and/or inactivating housekeeping proteases of the host (Arai
et al., 2007; Wieczorek and Martin, 2010). It is worth noting
that, based on the limited understanding of cellulase secretion
mechanisms (Yan and Wu, 2013, 2014; De Paula et al., 2019),
the number of rational strategies to promote their export is
reduced. Grafting a carbohydrate binding module (CBM3a) and
one/two X2 domain(s) (whose precise function is not known)
to the N-terminus of C. cellulolyticum Cel48F/Cel9G was able to
promote their secretion inC. acetobutylicum (Chanal et al., 2011).
However, the molecular mechanisms underlying this observation
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are not known. Owing to the complexity of protein secretion
systems, differences among microbial species, and peculiarities
and native cellulase-producing microorganisms (which can
secrete very high amounts of cellulases) (You et al., 2012), most
studies reported so far have been based on a trial-and-error
approach in order to find the most compatible enzymes for a
host (Ilmén et al., 2011; Mingardon et al., 2011). Alternatively,
the study by Gronchi et al. included in the present Research
Topic focuses on the potential to isolate new natural strains
with enhanced protein secretion ability. Here, the yeast strain S.
cerevisiae L20 showed superior ability to secrete heterologous α-
amylase and glucoamylase. Genome analysis revealed that most
variations in gene copy number in S. cerevisiae L20 with respect
to the reference S. cerevisiae strain were related to membrane
transporters and secretion pathway proteins (Gronchi et al.). This
strain shows high potential also for enhanced secretion of other
hydrolases, such as lignocellulose depolymerizing enzymes and
encourages similar investigations on other microbial models.

For the viability of industrial fermentation processes using
native cellulolytic host, product titer, yield, and productivity
should be improved. For instance, for economic sustainability
of fermentative production of carboxylic acids 50–100 g/L
titer, 1–3 g/L/h productivity, and >0.5 g/g yield are generally
required (Warnecke and Gill, 2005; Wang et al., 2016). However,
product toxicity frequently threatens our ability to meet these
parameters, especially in regards to titer and productivity, such
as for n-butanol (Huang et al., 2010; Nicolaou et al., 2010;
Mazzoli, 2021). n-butanol is among the chemicals which have
been targeted as products from fermentation of lignocellulose,
owing to its high potential as a drop-in fuel (Gu et al.,
2011; Jiang et al., 2015). Because of its four-carbon chain,
n-butanol has properties more similar to that of gasoline
with respect to ethanol (only a two carbon chain) such as
high combustion energy and low volatility and corrosivity
(Dürre, 2007). However, butanol fermentation suffers frommuch
higher butanol toxicity for microorganisms compared to ethanol
(Heipieper et al., 2007). Currently, Clostridium cellulovorans is
the most successful paradigm of butanol-pathway engineering
in a cellulolytic microorganism (Wen et al., 2020; Bao et al.,
2021). Unfortunately, C. cellulovorans can only tolerate very low
butanol concentrations (up to 8 g L−1, i.e.,≈1% v/v) (Yang et al.,
2015; Costa et al.). Detailed understanding of the mechanisms of
butanol cell toxicity and microbial responses to butanol stress is
a tool for developing targeted metabolic engineering strategies
able to improve butanol tolerance in a microorganism. As for
similar investigations on other microbial models, the proteomic
analysis on butanol-challenged C. cellulovorans included in this

Research Topic (Costa et al.) showed the complexity of cellular
adaptive mechanisms triggered by solvent exposure. From a
general standpoint, butanol elicits similar responses in different
microorganisms, such as the so called homeoviscous adaptation
(namely, a modification of the cell membrane composition
to balance the increased fluidity caused by solvents), the
overexpression of heat shock proteins, the downregulation of
protein translation (to attenuate the effects of butanol on protein
denaturation), and the adaptation of biochemical systems for
pH and energy homeostasis (Costa et al.). However, a more
detailed analysis reveals a number of gaps in understanding the
mechanisms underpinning these observations or inconsistencies
likely related to species-specificities. Therefore, a detailed global
understanding of microbial response to butanol stress will be
crucial to substantially improve butanol tolerance by targeted
metabolic engineering and currently remains elusive. It is clear
that adaptation to solvents involves the whole microbial cell,
similar to responses to other major physical-chemical stresses
(e.g., heat shock, pH) (Mazzoli, 2021). Genome wide engineering
techniques (Si et al., 2017) or engineering global gene regulators
involved in stress response (e.g., small non-coding RNAs, or RNA
chaperones) (Venkataramanan et al., 2013; Jones et al., 2016; Sun
et al., 2017; Liu et al., 2019, 2020; Liang et al., 2021) could be more
suitable tools to developing butanol hypertolerant strains.

In summary, this Research Topic provides excellent examples
to perform CBP of cellulosic biomass using native and
heterologous cellulolytic hosts. With these research efforts,
CBP can be a promising option to improve existing industrial
facilities for the production of cost-competitive cellulosic fuels
and chemicals.
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