
Characterization of MgtC, a Virulence Factor of
Salmonella enterica Serovar Typhi
Patricio Retamal1,2, Mario Castillo-Ruiz1, Guido C. Mora1*

1 Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile, 2 Programa de Doctorado Genética Molecular y Microbiologı́a, Pontificia Universidad
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Abstract

The MgtC is a virulence factor in Salmonella Typhimurium that is required for growth at low-Mg2+ concentrations and
intramacrophage survival. This gene is codified in a conserved region of the Salmonella pathogenicity island 3 (SPI-3), and is
also present in the chromosome of other Salmonella serovars. In this study we characterized the MgtC factor in S. Typhi, a
human specific pathogen, by using mgtC and SPI-3 mutant strains. We found that MgtC is the most important factor
codified in the SPI-3 of S. Typhi for growth in low-Mg2+ media and survival within human cells. In addition, by using reporter
genes we determined that the low-Mg2+ concentration, acidic media and PhoP regulator induce mgtC expression in S.
Typhi. We suggest that MgtC is the most important virulence factor codified in the SPI-3 of S. Typhi.
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Introduction

The Salmonella enterica genome has at least five DNA regions

associated with pathogenicity, referred to as the Salmonella

pathogenicity islands (SPI). One such island, SPI-3, is located in

the selC locus of S. Typhimurium and contains ten ORFs [1], among

which some have been experimentally associated with virulence

functions of this bacterium. This is the case for the mgtCB operon, for

which there is evidence of involvement in intramacrophage survival

and virulence in mice [2,3]. This operon is codified in all Salmonella

serovars in a very conserved SPI-3 region [4]. The mgtC sequence

seems to encode a virulence factor that has been repeatedly

acquired by horizontal gene transfer throughout bacterial evolution,

since it has also been associated with virulence in Mycobacterium

tuberculosis and Brucella suis [5–7]. MgtC is a protein of unknown

function of about 25 kDa in size. In S. enterica serovar Typhimurium

(S. Typhimurium), the experimental evidence suggests that MgtC

participates in adaptation to low-Mg2+ environments, supporting

bacterial invasion and proliferation in macrophages [2]. Although is

co-transcribed with mgtB, which encodes a Mg2+ transporter, MgtC

is not required for MgtB function [8]. Indeed, a recently described

polypeptide encoded by the mgtCB operon, named MgtR, promotes

MgtC degradation by a bacterial protease, acting as a negative

feedback that limits the amount of MgtC under certain conditions

[9]. In addition, it has been shown that the two-component system

PhoP-PhoQ induces the expression of mgtC, in response to low Mg2+

levels and acidic pH [8,10].

Another SPI-3 gene involved in bacterial pathogenicity is misL,

which encodes an autotransporter protein involved in the adhesion

of S. Typhimurium to the extracellular matrix in mice and chicks,

thereby acting as an intestinal colonization factor [11,12]. It has

also been shown that marT, another sequence present in SPI-3,

encodes a transcriptional regulator that induces the expression of

misL [13]. There is no additional information on other SPI-3

ORFs, all of them remaining until now as sequences encoding

conserved hypothetical proteins with unknown function [14].

S. Typhimurium is a wild host range serovar and has been

extensively studied in a murine model of systemic infection to

indirectly elucidate some microbiological and immunological traits

of typhoid fever in humans [15], a life-threatening and systemic

infection caused by the S. enterica serovar Typhi (S. Typhi). The

latter, a human-restricted pathogen, is a facultative intracellular

bacterium responsible for significant morbidity and mortality

worldwide, and there are an estimated 21.5 million cases per year,

most of which occur in developing countries [16].

The aim of this work was to characterize the role of the MgtC

factor in the virulence of S. Typhi by comparing the growth and

survival of mgtC and SPI-3 mutant strains in different stressful

conditions, and determining the signals and transcriptional

regulators that command MgtC expression. We demonstrated

that MgtC is the most important factor in S. Typhi SPI-3 for

bacterial growth in a low-Mg2+ environment and for bacterial

survival inside human cells. In addition, the PhoP regulator

participates in inducing the expression of mgtC in S. Typhi.

Materials and Methods

Bacterial strains and growth conditions
All Salmonella Typhi strains used in this study are derived from

STH2370, a Chilean clinical isolate described previously [15].

Unless otherwise stated bacteria were grown at 37uC in Luria

Bertani (LB) broth or in M9 minimal medium supplemented with

either 10 mM or 10 mM MgCl2, 0.2% glucose, tryptophan and

cysteine (50 mg/mL each). When necessary, the pH was adjusted
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to pH 7.0 (NaHPO4/NaH2PO4 25 mM) or 5.0 (citric acid/

sodium citrate 0.1 M) and the following antibiotics were added:

chloramphenicol (Cam; 20 mg/mL), kanamycin (Kan; 50 mg/mL),

ampicillin (Amp; 100 mg/mL) and gentamicin (Gem; 50 mg/mL).

PCR amplifications and construction of mutant strains
PCR amplifications were performed in a standard volume of

25 mL. Reaction mixes contained 16 PCR buffer, 1.5 mM

MgCl2, each deoxynucleoside triphosphate (200 mM), primers

(1 mM), 100 ng of template DNA, and 2 U of Taq (Fermentas)

DNA polymerase. Standard conditions for amplification were an

initial step of 95uC for 5 min, 30 cycles of incubation at 96uC for

40 s, 60uC for 40 s, and 72uC for 2 min, followed by a final

extension step at 72uC for 10 min. Template S. Typhi chromo-

somal DNA was prepared by the phenol chloroform extraction

method [17].

The DmgtC::FRT (DmgtC) mutant strain was constructed using

the lambda Red recombinase system [18]. Briefly, the CamR

cassette (chloramphenicol resistance, codified in the pKD3

plasmid) was amplified using the primers MGW1 (59-ATGGAG-

GAACGTATGTTAATGTTTCCTTATATTTTAAATTTGTA-

GGCTGGAGCTGCTTCG-39) and MGW2 (59-TGACCCAC-

GAGCTCGGCACGAATTTCTTTATAGCCCTGTTCATAT-

GAATATCCTCCTTA-39). Once the DmgtC::cat mutant strain

was obtained, the CamR determinant was removed and substitut-

ed by the ‘‘FRT scar’’ [18], and the resulting colonies were tested

by PCR to confirm the mgtC deletion.

The DSPI-3::FRT mutant (DSPI-3) was constructed with the

same procedure, amplifying the KanR cassette (kanamycin

resistance, codified in the pKD4 plasmid) using the primers

SPW1 (59-AACGCAGGCGCTACGTTTGTCGATGCCGTAA-

CTTTCTGAATGTAGGCTGGAGCTGCTTCG-39) and SPW2

(59-GCTAAATATAGCACGTACTTATTCTTCCAGAAAAAA-

TGGACATATGAATATCCTCCTTA-39). Once the DSPI-3::aph

mutant strain was obtained, the KanR determinant was substituted

by the ‘‘FRT scar’’ as described previously [18].

With the mutant strain EG14598 (S. Typhimurium 14028s

DphoP::cat) [19], a P22 HT105/1 int201 phage lysate was made

[20] and used for generalized transduction over S. Typhi strains.

Phenotypic analysis of the S. Typhi mutant strains
Growth in a Mg2+-limiting environment was evaluated as

described previously [21] with some modifications. Briefly, an

overnight culture grown in M9 minimal media with 10 mM

MgCl2 was washed three times with Mg2+-free medium, diluted 1/

200 in culture media containing either 10 mM or 10 mM MgCl2,

and incubated with shaking at 37uC for different lengths of time.

Growth was measured with a spectrophotometer at an optical

density of 600 nm (OD600).

To evaluate the effect of pH, overnight cultures were grown in

LB broth at pH 7, then washed three times with LB at the desired

pH (5 or 7), diluted 1/200 in the same medium and incubated

with shaking at 37uC for different lengths of time. Growth was

measured with a spectrophotometer at OD600.

The infection assays using monocytic (U937) and epithelial

(HEp-2) human cells were carried out as described previously

[15,22], with the following modifications. Cells were grown in

Dulbecco’s modified Eagle’s medium supplemented with 10%

(vol/vol) fetal bovine serum, seeded into 24-well tissue culture

plates at a concentration of 105 cells per well, and then incubated

at 37uC in 5% CO2 until confluent growth was achieved. Later the

cells were centrifuged and washed three times with PBS.

Approximately 26106 to 56106 CFU of exponential-phase

(OD600, 0.15 to 0.20) anaerobically grown bacteria was pelleted,

washed twice with PBS, and resuspended in 1 mL of PBS.

Aliquots (100 mL) of bacteria were added to cells at a multiplicity

of infection of 50:1(U937) and 100:1 (HEp-2). After 1 h of

infection, cells were centrifuged and washed three times with PBS,

and the medium was replaced with Dulbecco’s modified Eagle’s

medium supplemented with 10% (vol/vol) fetal bovine serum

containing gentamicin (200 mg/mL). After additional incubation

for 1 and 23 h (times 2 and 24 h respectively) U937 and HEp-2

cells were washed three times with PBS and lysed with 0.5%

deoxycholate, and the titers of intracellular bacteria were

determined by serial dilution of cell lysates on agar plates. The

percentage of survival was calculated at 2 h considering the initial

inoculate as 100%, and at 24 considering the CFU counted at 2 h

as 100%.

b-Galactosidase assay
The mgtC promoter activity was evaluated by a transcriptional

fusion to the Lac reporter, as described previously [23,24] using

the pCE36 plasmid. b-Galactosidase activity was measured by a

modification of the Miller’s method [25]. Fifty microliters of the

bacterial culture were suspended in 950 mL of Z buffer (60 mM

Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4,

50 mM b-mercaptoethanol, pH 7.0). Bacteria were permeabilized

with 10 mL chloroform and 10 mL 0.1% SDS, incubated at 30uC
for 10 min, and 200 mL of o-nitrophenyl-b-D-galactopyranoside

(4 mg/mL) was added. Reactions were stopped by addition of

500 mL 1 M Na2CO3. b-Galactosidase activity was calculated in

Miller units, using the formula 1036(OD42021.756OD550)/

(mL6min6OD600).

RNA isolation and RT-PCR
Total RNA was extracted and purified using Trizol and was

treated with RNase-free DNase I (amplification grade; Gibco-

BRL). RT-PCR was performed with 500 ng of DNase-treated

RNA using the Superscript reverse transcriptase (Invitrogen).

Amplification was performed for 30 cycles (94uC for 40 s, 55uC for

40 s, and 72uC for 1.5 min, followed by a 10 min extension at

72uC). The primers used were RTMGC1 (59-TCGGCG-

TGTTATGCGGCTTA-39), RTMGC2 (59-AGCCCTGTTCC-

TGAGCGGGG-39) and RTMGB2 (59-CACGGCGTAACGG-

GAGCCAG-39) corresponding to an internal region of the mgtC

(RTMGC1 and RTMGC2) and mgtC-mgtB (RTMGC1-

RTMGB2) sequences. In addition, the universal primers 8F and

1498R were used to amplify 16S rRNA [15]. Genomic DNA

served as a positive control, and DNase-treated RNA that had not

been reverse transcribed was used as a negative control. The PCR

product was electrophoresed on 1% agarose gels and stained with

ethidium bromide.

MgtC epitope tagging and immunoblot assay
A translational fusion of three copies of FLAG epitope (36FLAG)

with the MgtC sequence was constructed using the method

described by Uzzau et al. [26]. The 36FLAG epitope codified on

the pSUB11 plasmid was amplified using the primers FMG1 (59-

CGATAATATCACCGCAATTCACTGGAGCATTGATAGT-

CAAGACTACAAAGACCATGACGG-39) and FMG2 (59-ACT-

GACCCCTGCCAGTGCCATCAGAACGTAAATAAACGGG-

CATATGAATATCCTCCTTAG-39). Once inserted immediately

preceding the translation stop signal, the mgtC-36flag fusion was

confirmed by PCR and the functionality of the protein was verified

by the growth of the strain in low-Mg2+ medium.

The MgtC epitope tagging was detected by an immunoblot

assay using the anti-FLAG M2 monoclonal antibody (Sigma), as

previously described [24]. After the samples were resuspended in
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1 mL of 100 mM Tris–HCl (pH 8) and sonicated, the total

protein was quantified by the Bradford method. The SDS-PAGE

was made using 10 ng of total protein per sample.

Statistical analysis
Statistical analysis was performed using the one way ANOVA

and Student’s t-test for independent samples. Values of P,0.05

were considered significant. These tests were performed using

Microsoft ExcelH software.

Results

1. MgtC is required for S. Typhi growth in a low-Mg+2

medium
To elucidate the role of mgtC in S. Typhi, we investigated growth

in low-Mg+2 minimal media as evaluated previously in S.

Typhimurium [2,8]. The Mg2+ concentrations used were 10 mM

or 10 mM, representing the intracellular and extracellular

environment respectively [2,27]. At the 10 mM concentration,

the DmgtC mutant strain grew significantly less than the wild type

strain (p,0.05), reestablishing its phenotype when complemented

with mgtC cloned in pBBR-5 plasmid. In contrast, at 10 mM Mg2+

there was no difference among the tested strains (Fig. 1A and 1B).

These results are in accordance with reports of the role of MgtC in

the virulence of S. Typhimurium [2,8] and other bacteria [5,6].

2. MgtC is required for growth of S. Typhi within
epithelial and monocytic human cells

To verify the role of MgtC in the intracellular survival of S.

Typhi, we tested the DmgtC strain in infection assays using both

HEp-2 epithelial and U937 monocytic cell lines. Two post-

infection times were evaluated, 2 h and 24 h, representing the

early and late survival abilities respectively. As expected, MgtC is

required for infection of monocytic cells, with significant

differences (p,0.05) among wild type and DmgtC strains

(Fig. 2A). Remarkably, inside HEp-2 epithelial cells there was a

significant impairment (p,0.05) in the invasive phenotype of the

DmgtC mutant strain (Fig. 2B), suggesting that MgtC participates

during the infection of this kind of human cell.

3. MgtC reestablishes the wild type phenotype of a SPI-3
mutant strain both in low Mg2+ media and inside
monocytic cells

Previously it has been shown that MgtC can restore the wild

type intramacrophage survival phenotype of a S. Typhimurium

mgtCB mutant strain [2]. In S. Typhi we wanted to determine

whether MgtC is required for intracellular survival and growth at

low-Mg2+ concentrations in the context of a SPI-3 deletion.

Therefore, we constructed the DSPI-3 mutant strain, the

complemented DSPI-3/pBmgtC (mgtC+) and DSPI-3/pBBR5

(mgtC2) strains, and repeated the assays of growth in low Mg2+

media (Fig. 3A) and survival inside human monocytic cells

(Fig. 3B). The results suggest that MgtC can restore the

phenotypes observed in a SPI-3 mutant strain by itself and can

be considered the most important product codified on the S. Typhi

SPI-3 island for bacterial response to those experimental

conditions.

4. The PhoP regulator controls mgtC expression in a low
Mg2+ and acidic environment

In S. Typhimurium, the PhoP-PhoQ two-component system

regulates the expression of many genes when bacteria are exposed

to the intracellular environment, including SPI-2 and SPI-3

associated effectors [10,19]. The signals sensed by this regulatory

system are the extracellular pH and Mg2+ concentrations. PhoQ is

the sensor component that phosphorylates the PhoP regulator,

which then modifies gene expression. By using a STH2370

DphoP::cat mutant strain (DphoP), we examined whether PhoP

regulates MgtC in S. Typhi. The results obtained by b-

galactosidase and RT-PCR assays show that mgtC transcription

is induced in a phoP-dependent manner by either low Mg2+

(10 mM, data not shown) or pH 5 (Fig. 4A and 4B). Moreover,

immunoblot assay shows an increase in the MgtC levels under the

same conditions (Fig. 4C and 4D), a finding that differs from the

Figure 1. MgtC is necessary for growth at a low-Mg2+ concentration. Strains WT (STH2370 wild type), DmgtC (mgtC2), DmgtC/pBmgtC
(mgtC+) and DmgtC/pBBR-5 (mgtC2) were grown in M9 minimal medium supplemented with 10 mM (A) or 10 mM (B) MgCl2. The OD600 was
measured at the indicated times. Values represent the mean of three independent experiments 6SD (*p,0.05).
doi:10.1371/journal.pone.0005551.g001
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reported situation in S. Typhimurium where MgtC translation is

not detected in many hours [8,9].

Discussion

In previous reports the Salmonella SPI-3 island has been

associated with intramacrophage invasion by supporting survival

when Mg2+ is scarce, a condition that seems a common strategy of

the host to avoid the growth of intracellular bacteria [1,2,8]. Mg2+

is a divalent ion essential for living organisms that works as a

regulator and co-factor in many proteins, stabilizing membranes,

ribosomes and other cellular structures [28]. Salmonella contains

several transport systems, both inducible and constitutive, that

have functional complementarities with the aim of adjusting the

Mg2+ concentration in different environmental conditions [29,30].

In addition, these systems are controlled by transcriptional and

post-transcriptional regulatory networks to maintain strict control

of the Mg2+ balance [31,32], stabilizing its concentrations as

required for biological processes in Salmonella. In this context,

MgtC seems to be the most important SPI-3 factor that supports

the survival and growth of Salmonella in low-Mg2+ concentrations,

as observed in previous reports for S. Typhimurium and in this

work with S. Typhi. This factor is codified in a SPI-3 conserved

region [4] and probably exerts the same, although yet unknown,

function in all Salmonella serovars.

In this work, the decreased ability to survive within human

monocytic cells observed with a S. Typhi DSPI-3 strain could be

overcome with an mgtC-containing plasmid, which restored the

wild type phenotype at 2 and 24 hours post-infection. This means

that MgtC is a virulence factor playing a major role that is not

Figure 3. MgtC can restore the WT phenotype in a SPI-3 mutant strain. Strains WT (STH2370 wild type), DSPI-3 (SPI-32), DSPI-3/pBmgtC
(mgtC+) and DSPI-3/pBBR-5 (SPI-32). (A) For growth in 10 mM MgCl2 strains were incubated in M9 minimal medium and the OD600 was measured at
the indicated times. (B) U937 cells were infected at a MOI of 50:1. Colonies were counted at time 2 h and 24 h and expressed as a percentage of
intracellular survival. Values represent the mean of at least three independent experiments 6SD (*p,0.05).
doi:10.1371/journal.pone.0005551.g003

Figure 2. MgtC has an important role in the growth of S. Typhi within human cells. Infection assays in U937 (A) and HEp-2 (B) human cells
using WT (STH2370 wild type), DmgtC (mgtC2), DmgtC/pBmgtC (mgtC+) and DmgtC/pBBR-5 (mgtC2) strains. Culture cells were infected at a MOI of
50:1 (U937) and 100:1 (HEp-2), respectively. Colonies were counted at time 2 h and 24 h and expressed as a percentage of intracellular survival.
Values represent the mean of at least three independent experiments 6SD (*p,005).
doi:10.1371/journal.pone.0005551.g002
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supplied by any other bacterial factor codified either inside SPI-3

or in the entire chromosome of Salmonella.

A characteristic phenotype associated with S. Typhi MgtC was

demonstrated by the early survival phenotype inside HEp-2

epithelial cells, in which the S. Typhi mgtC mutant strain showed a

significant lower survival (p,0.05) than the wild type strain

(Fig. 2B). This difference has not been reported previously in any

Salmonella serovar and suggests that S. Typhi requires the MgtC

function from the initial infective phase, when it colonizes the

intestinal epithelium. Whether this requirement responds to

particular conditions during bacterial entry or when bacteria are

inside human epithelial cells are questions that remain to be

elucidated.

However, these findings are indicating that both epithelial and

monocytic human cells represent a variety of conditions that

require the MgtC function for the bacterial survival. This

hypothetical ‘‘multi-requirement’’ of MgtC is in accordance to

several reports suggesting a connection of this virulence factor with

the structural stability of Mg2+ channels in the bacterial cell

membrane [7], linked to survival in Mn+2 depleted environments,

or modifying the membrane potential of the host cell and affecting

the host-pathogen interaction [33,34]. Since single amino acid

substitutions can affect one role of MgtC without affecting others

[35], it seems possible to assume a diversity of functions in which

this internal membrane protein participates during infection. In

addition, MgtC is important in other bacterial species that are able

to invade, live and proliferate within host cells, as for Mycobacterium

tuberculosis, Brucella melitensis and Yersinia pestis [5,7].

The expression assays showed that mgtC transcription and

translation are induced at low Mg2+ concentrations and acidic pH,

and that PhoP is the global regulator that participates in this

process. These signals stimulate the expression of many genes

associated with pathogenicity by inducing the PhoP-PhoQ system

[10], and MgtC of S. Typhi is one of these. In addition, mgtC and

mgtB are co-transcribed in S. Typhi (data not shown), suggesting

the almost identical functionality of these sequences between S.

Typhimurium and S. Typhi, and probably in all Salmonella serovars

that contain the mgtCB operon in their chromosomes. Previously it

has been shown in S. Typhimurium that MgtR induces the

degradation of MgtC but not of MgtB, resulting in a downreg-

ulation of MgtC when the operon is expressed [9]. Our results

suggest that in S. Typhi this regulation could be different, since

MgtC is detected after acidic or low magnesium stimuli.

In conclusion, in this work we determined that MgtC in S.

Typhi represents a mechanism of pathogenicity codified inside the

SPI-3 that has a relevant role in the intracellular survival of

bacteria, induced by the PhoP global regulator in response to a

low-Mg2+ concentration and acidic pH. These findings suggest

that MgtC is a key factor in most, if not all, pathogenic Salmonella

serovars.
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OD600 ranging from 0.3 to 0.6. The expression of mgtC was evaluated using three methods: A, b-Galactosidase assay with strains carrying the reporter
lacZ gene downstream of the mgtC promoter. Values represent the mean of at least three independent experiments 6SD (*p,0.05). B, RT-PCR assay.
C, Immunoblot method using a STH2370 MgtC-36Flag epitope-tagged strain grown on LB broth at both pH 5 and pH 7. D, Immunoblot method
using strains carrying the MgtC-36Flag epitope tag and grown in acidic LB medium (pH 5) for 5 h.
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