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Single-cell RNA-sequencing analyses identify
heterogeneity of CD8+ T cell subpopulations
and novel therapy targets in melanoma
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CD8+ T cells are crucial to establish antitumor immunity, and
their high infiltration associates with favorable prognoses.
However, several CD8+ T cell subpopulations in the tumor
microenvironment may play different roles in prognosis, pro-
gression, and immunotherapy. Here, we analyzed prior pub-
lished single-cell RNA-sequencing (scRNA-seq) melanoma
data to explore the heterogeneity of CD8+ T cell subpopulations
and identified 7 major subpopulations. We found that high
infiltration of exhausted CD8+ T cell subpopulation 2 would
contribute to unfavorable prognoses. In contrast, a large pro-
portion of naive/memory cells and cytotoxic CD8+ T cell sub-
population 3 would lead to favorable prognoses. Notably, the
proportion of the cytotoxic CD8+ T cell subpopulation 3 would
decrease in later-stage melanoma samples, while that of the ex-
hausted CD8+ T cell subpopulation 2 would increase. We also
found that high abnormal activities of metabolic pathways ex-
isted in exhausted CD8+ T cell subpopulation 1. Significantly,
immunosuppressive checkpoints PD-1 and CTLA-4 signaling
pathways were upregulated in exhausted CD8+ T cell subpopu-
lations. In addition, a dynamic transcript landscape of immune
checkpoints among different subpopulations was also depicted
in this study.Moreover, we identified three overexpressed genes
(PMEL, TYRP1, and EDNRB) that were significantly correlated
to poor prognoses and only expressed in exhausted CD8+ T cell
subpopulation 2. Importantly, they showed the highest expres-
sion in melanoma samples compared to other tumors. In
general, we characterized the CD8+ T cell subpopulations in
melanoma and identified that not only genes of immunosup-
pressive checkpoints but also PMEL, TYRP1, and EDNRB could
serve as potential targets for melanoma therapy.
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INTRODUCTION
Within the complex and heterogeneous tumor microenvironment
(TME), CD8+ T cells play an essential role in eliminating tumors.1,2

The kill-tumor functions of CD8+ T cells are based on cell differenti-
ation and infiltration.3 Following the infiltration, naive CD8+ T cells
Molecular
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will initiate the differentiation program into effector, cytotoxic, and
memory CD8+ T cells to achieve anti-tumor function.4,5 Several
research studies revealed that cytotoxic CD8+ T cells in the TME
could enhance anti-tumor outcomes in cervical cancer, breast cancer,
and glioblastoma.6–8 However, a state of CD8+ T cell dysfunction or
exhaustion is frequently observed in tumors.9,10 Chronic antigens will
trigger the exhaustion program, and CD8+ T cells will reduce the
functional effects during the program, which are likely involved in
preventing excessive immune response.11 Therefore, to elucidate
the differentiation program of CD8+ T cells in the TME can help offer
a bird’s-eye view about the dynamic anti-tumor immune response of
CD8+ T cells.

Checkpoint immunotherapy in tumors was established to overcome
T cell exhaustion due to chronic antigen stimulation and immuno-
suppression in the TME.12 It is well known that PD-1, CTLA-4,
LAG-3, and TIM-3/HAVCR2, co-inhibitory or checkpoint mole-
cules, are expressed in tumor-infiltrating lymphocytes in the
TME.13–15 To be more specific, PD-L1 and PD-L2 are the ligands
of PD-1, and the interactions between them will promote tumor pro-
gression and dampen anti-tumor activities of T cells in the periph-
ery.16,17 Similarly, ligand interactions with CTLA-4 are also involved
in the inhibition of T cell activities, despite ambiguity about the exact
mechanisms.18 LAG-3, the third clinical inhibitory receptor pathway,
has the capabilities to dampen the excessive autoimmunology re-
sponses; unfortunately, it can also lead to a condition of T cell exhaus-
tion or dysfunction.19 It is also recognized that Tim-3/HAVCR2, an
essential immune checkpoint protein, is expressed on T cells and
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serves as an inhibitory receptor.20 In addition, TIGIT will also
contribute to inhibitory activities in anti-tumor responses.21 Hence,
understanding inhibitory checkpoint regulation during the differenti-
ation program of CD8+ T cells may provide optimal treatment win-
dows for immunotherapies and identify novel molecules that could
serve as targets to overcome CD8+ T cell exhaustion or dysfunction.

Previous studies widely employed population-level mRNA profiling
to reveal the transcriptome of tissues. However, conventional bulk
RNA sequencing (RNA-seq) only can represent the average expres-
sion levels of all cells. It is not feasible to elucidate the heterogeneities
among different subpopulations based on the transcriptome,
let alone explore the subpopulations’ differentiation programs at a
single-cell level. Nevertheless, as a technical development, single-
cell RNA-sequencing (scRNA-seq) could provide an insight into
the heterogeneities of different subpopulations and reveal the differ-
entiation trajectory using algorithms in various tissues. Here, we un-
veiled the heterogeneities of different CD8+ T cell subpopulations
using the sufficient high-quality scRNA-seq data of melanoma ob-
tained from two previous studies.22,23 Our results revealed relatively
large heterogeneities in CD8+ T cell subpopulations. We mainly
found that different CD8+ T cell subsets would contribute to hetero-
geneous prognoses and pathway activities. We also identified the
altered gene expression of cytotoxicity and immune checkpoints
during CD8+ T cell differentiation. This study also found three novel
potential therapeutic targets for melanoma (PMEL, TYRP1, and
EDNRB).

RESULTS
Identify CD8+ T cell subpopulations in melanoma

59 melanoma samples from smart-seq and 10� Genomics platforms
were included to isolate CD8+ T cells in our research. We first sepa-
rately found clusters for smart-seq and 10� Genomics data using t-
distributed stochastic neighbor embedding (t-SNE) based on all
gene expression levels (Figures 1A and 1B). The results of t-SNE
showed that 12 clusters were identified in smart-seq data (Figure 1A),
while 10� Genomics data included 25 clusters (Figure 1B) in mela-
noma tissues. Then, CD8+ T cell signatures were visualized to identify
the varying degree of expression of specific cell clusters (Figures 1C
and 1D). For smart-seq data, CD8A and CD8Bwere mainly highly ex-
pressed in cluster 0 (Figure 1C). However, 10� Genomics data had a
specificity to several cell clusters (cluster 6, cluster 8, cluster 12, cluster
16, and cluster 17) (Figure 1D). Subsequently, these CD8+ T cell clus-
ters were isolated from the two platforms by Seurat’s built-in algo-
rithm and were integrated using the Harmony algorithm. Finally,
10,861 CD8+ T cells were isolated to perform subsequent steps of an-
alyses. We observed that these CD8+ T cells highly expressed both
CD8+ T cell markers and T cell markers (Figure S1A), and they had
almost no expressions of the CD4+ T cell markers (Figure S1A) and
melanocyte markers (Figure S1B). Thus, we identified that CD4+

T cells and melanocytes were excluded in our analyses (Figure S1).

These CD8+ T cells were then clustered into 7 subpopulations
(Figure 1E). In order to annotate CD8+ T cells, we employed
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previously reported cell markers to distinguish them. The expression
levels of signatures to annotate these subpopulations are shown in
Figures 1H, S2, and S3. Ultimately, four cytotoxic subpopulations,
two exhausted subpopulations, and one naive/memory subpopula-
tion were identified (Figure 1F). The fraction of cells in each subpop-
ulation revealed that cytotoxic subpopulation 4, naive/memory sub-
population, exhausted subpopulation 2, and cytotoxic subpopulation
3 were the most frequent cell subpopulations in melanoma TME
(Figure 1G). We found that naive/memory signatures, including
CCR7, IL7R, TCF7, and LEF1, were only expressed in naive/memory
subpopulations (Figures S2 and S3). However, cytotoxic signatures,
including PRF1, GZMA, GZMK, and NKG7, were widely expressed
in all CD8+ T cell subpopulations (Figures S2 and S3). Among
them, PRF1, GZMK, and NKG7 showed the highest specificity to
cytotoxic CD8+ T cell subpopulations 1 and 3, while PRF1,
GZMA, and GZMK had the lowest expression in exhausted subpop-
ulation 2 (Figures S2 and S3). The results indicated that heteroge-
neous cytotoxicity of CD8+ T cells existed in these subpopulations.
Notably, we also found that immune checkpoints or exhausted
markers (CTLA4, PDCD1, LAG3, HAVCR2, and TIGIT) were widely
expressed in nearly every subpopulation, while only in naive/mem-
ory and cytotoxic subpopulation 1 did these markers have relatively
lower expression (Figures S2 and S3). CXCL13, a chemokine, was
highly expressed in exhausted subpopulation 1 and exhausted sub-
population 2 (Figures S2 and S3), which combine with its receptor
CXCR5 and can promote cancer cell proliferation, migration, and
invasion.24 Similarly, compared with other CD8+ T cell subpopula-
tions, CTLA4 had relatively higher expression in exhausted subpop-
ulation 1 and exhausted subpopulation 2 (Figures S2 and S3). In
addition, cytotoxic subpopulation 3 also showed varying degrees of
high expression for inhibitory checkpoints (CTLA4, PDCD1,
LAG3, HAVCR2, and TIGIT) (Figures S2 and S3). This may reflect
that high cytotoxicity needed to be regulated by inhibitory check-
points to prevent excessive immune responses. These results re-
vealed that different expression levels of cytotoxic and immune
checkpoint molecules in CD8+ T cell subpopulations might
contribute to heterogeneous anti-tumor immune response in mela-
noma TME.

CD8+ T cell subpopulations were correlated with prognoses

Given the heterogeneous cytotoxicity and checkpoints among
different cell subpopulations, we hypothesized that these subpopula-
tions would influence clinical outcomes. We derived signature genes
from scRNA-seq data and utilized these matrixes to deconvolute 471
skin cutaneous melanoma (SKCM) and 1,809 normal bulk RNA-seq
samples. In general, SKCM and normal samples contained naive/
memory, cytotoxic subpopulation 2, cytotoxic subpopulation 3, ex-
hausted subpopulation 1, and exhausted subpopulation 2 (Figures
2A and 2B; Figure S4B). However, cytotoxic subpopulations 1 and
4 were not found in SKCM and normal samples. Among the detected
subpopulations, exhausted subpopulation 2 accounted for the largest
proportions of CD8+ T cells (Figure 2A), while for normal samples,
cytotoxic subpopulation 2 had the largest proportions followed by ex-
hausted subpopulation 2 (Figure S4B).



Figure 1. CD8+ T cell subpopulations in melanoma TME

(A and B) The t-SNE projection of all cells from smart-seq (A) and 10�Genomics platforms (B). (C and D) Single-cell transcript levels ofCD8A andCD8B: left for smart-seq (C),

right for 10� Genomics (D). (E and F) The t-SNE plots for CD8+ T cells; a total of 7 subpopulations were identified. (G) The bar graph showed the fraction of CD8+ T cell

subpopulations. (H) Single-cell transcript levels of signature genes were presented by heatmap. Columns represented cells; rows represented genes. CD8+ T cell sub-

populations were labeled by different colors.
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Next, we conducted the Kaplan-Meier survival analysis to charac-
terize the prognostic roles of these subpopulations. As shown in
Figures 2C and 2D, high proportions of naive/memory and cytotoxic
subpopulation 3 were associated with favorable clinical outcomes.
However, exhausted subpopulation 2 could contribute to an unfavor-
able prognosis (Figure 2E). In addition, cytotoxic subpopulation 2
and exhausted subpopulation 1 did not influence SKCM prognoses
(Figure S4A). Importantly, there was more cytotoxic subpopulation
3 in SKCM than in normal samples (Figure S4C). Combined with
the survival analysis results, we could have insight into the specific
anti-melanoma functions of cytotoxic subpopulation 3. Higher pro-
portions of exhausted subpopulation 1 were observed in SKCM, while
Molecular Therapy: Oncolytics Vol. 20 March 2021 107
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Figure 2. Cell composition of CD8+ T cell subpopulations in SKCM RNA-seq samples

(A and B) Boxplot (A) and heatmap (B) showed the proportions of CD8+ T cell subpopulations in SKCM. (C–E) Kruskal-Wallis curves for naive/memory CD8+ T cells (C),

cytotoxic CD8+ T cell (D), and exhausted CD8+ T cell subpopulation 2 (E). (F) The average values of cell proportions in four pathology stages (*p < 0.05; **p < 0.01; ***p <

0.001).
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cytotoxic subpopulation 2 had higher proportions in normal samples
(Figure S4C). There was no difference in the proportions of naive/
memory or exhausted subpopulation 2 between SKCM and normal
samples (Figure S4C). Then, we explored dynamic changes of cyto-
toxic subpopulation 3 and exhausted subpopulation 2 in different pa-
thology stages. Significantly, the results unveiled that the proportions
of cytotoxic subpopulation 3 would decrease with tumor progression,
although they increased in stage III (Figure 2F). For comparison, ex-
hausted subpopulation 2 would elevate cell proportions in later-stage
compared with stage I disease, especially in stage II, which contained
the highest proportions (Figure 2F). These results highlighted that
CD8+ T cell subpopulations correlated with melanoma prognoses
and pathology progression. Also, these results revealed differential
108 Molecular Therapy: Oncolytics Vol. 20 March 2021
proportions of CD8+ T cell subpopulations between melanoma and
normal samples.

Landscape of heterogeneous pathway activity

To explore if pathways existed heterogeneously in different CD8+

T cell subpopulations, we first performed Gene Ontology (GO) anal-
ysis, Kyoto encyclopedia of genes and genomes (KEGG) analysis,
gene set enrichment analysis (GSEA), and pathway activity analyses.
GO analysis revealed that exhausted subpopulation 2 had a distinct
biology process, and few processes were enriched in the subpopula-
tion (Figure 3A). Naive/memory and cytotoxic subpopulation 3 had
similar biology process (Figure 3A). However, KEGG results
(Figure 3B) identified considerable heterogeneity in each CD8+



Figure 3. Metabolic pathway activity of CD8+ T cell subpopulations

(A and B) GO analysis of biology process (A) and KEGG analysis (B). Node size represents numbers of genes. The color intensity is based on the adjusted p value. (C)

Metabolic pathway activities in CD8+ T cell subpopulations. (D) Distributions of metabolic pathway activities in each subpopulation. (E) Topmetabolic pathways enriched in all

subpopulations. Node size represents �log10 p value. The color intensity is based on the scores of normalized enrichment scores (NES).
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T cell. Oxidative phosphorylation was significantly enriched in ex-
hausted subpopulation 1 and exhausted subpopulation 2 (Figure 3B).
Non-alcoholic fatty liver disease, thermogenesis, and cardiac muscle
contraction were only enriched in exhausted subpopulation 2. More-
over, human immunodeficiency virus 1 infection and T cell receptor
signaling pathway were only significantly enriched in cytotoxic
Molecular Therapy: Oncolytics Vol. 20 March 2021 109
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Figure 4. Hallmark and immune checkpoint pathway activity of CD8+ T cell subpopulations

(A) Hallmark and immune checkpoint pathway activities in CD8+ T cell subpopulations. (B) Distributions of hallmark and immune checkpoint pathway activities in different

CD8+ T cell subpopulations. (C) Top hallmark and immune checkpoint pathways enriched in all subpopulations. Node size represents �log10 p value. The color intensity is

based on the scores of NES.
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subpopulation 3. The differences of these pathways in different cell
subpopulations may provide us clues for heterogeneous outcomes.
We then employed metabolic gene sets to score all cell subpopula-
tions, and the deconvolution method was used to normalize
scRNA-seq matrixes.25 Exhausted subpopulation 1 had the most sub-
stantial metabolic pathway activity, including oxidative phosphoryla-
tion, glycolysis/gluconeogenesis, and citrate cycle (TCA cycle)
(Figure 3C). Histidine metabolism and tyrosine metabolism were
significantly upregulated in exhausted subpopulation 2 (Figure 3C).
Fatty acid biosynthesis induced the highest activity in cytotoxic sub-
population 3. Phenylalanine, tyrosine and tryptophan biosynthesis
and glycosaminoglycan biosynthesis-keratan sulfate were signifi-
cantly upregulated in naive/memory and cytotoxic subpopulation 1,
respectively (Figure 3C). Further analysis of the distributions of meta-
bolic pathway activities showed that exhausted subpopulation 1 had
the highest activities (Figure 3D). The results of GSEA revealed that
oxidative phosphorylation and glycolysis/gluconeogenesis showed
highly upregulated activity in exhausted subpopulation 1, which
was consistent with pathway activity analysis (Figure 3E). However,
only oxidative phosphorylation was highly elevated in exhausted sub-
population 2 (Figure 3E). In addition, the upregulation of oxidative
phosphorylation and the TCA cycle were observed in cytotoxic sub-
population 3 (Figure 3E). We also performed principal-component
110 Molecular Therapy: Oncolytics Vol. 20 March 2021
analysis (PCA) of metabolic genes to identify the variance of principal
components (PCs) in different subpopulations (Figure S5A).

To further characterize the heterogeneity of different subpopulations,
we also employed hallmark gene sets, PD-1, and CTLA-4 signaling
pathways to perform pathway activity and GSEA analysis. Similar
to the above-mentioned metabolic analysis, almost all hallmark path-
ways were generally upregulated in exhausted subpopulation 1
(Figures 4A and 4B). Amore plausible explanation was that abnormal
activity of metabolic and hallmark activity might appear in the ex-
hausted subpopulation 1. Notably, both exhausted subpopulations
had a high epithelial-mesenchymal transition (EMT) activity and
Notch signaling (Figure 4A). We also found that immune checkpoint
pathways, PD-1, and CTLA-4 signaling pathways were upregulated in
each cell subpopulation (Figure 4C). Importantly, the highest activ-
ities of the immune checkpoint pathways were mainly enriched in
cytotoxic subpopulation 2, cytotoxic subpopulation 3, exhausted sub-
population 1, and exhausted subpopulation 2 (Figure 4C). These re-
sults indicated that blockade immune checkpoints might be useful
to promote anti-tumor immune responses of CD8+ T cells. The re-
sults may also explain the unfavorable prognostic effect of exhausted
subpopulation 2. In addition, hallmark oxidative phosphorylation
showed highly upregulated activity in exhausted subpopulation 1,



(legend on next page)
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while the ability of gamma interferon response was elevated across all
subpopulations (Figure 4C). The variance of PCs based on hallmark
gene sets is shown in Figure S5B.

Hypoxia, an environmental factor, has a significant impact on other
pathways. Thus, we explored the relationships of hypoxia with meta-
bolic and hallmark pathways. Oxidative phosphorylation, glycolysis/
gluconeogenesis, and TCA cycle were positively correlated with hyp-
oxia (Figure S5C). Significantly, we identified that apoptosis and p53
pathways showed the strongest positive correlation with hypoxia
(Pearson’s R > 0.6, p < 0.001) (Figure S5D). However, hypoxia showed
a weak yet positive correlation with PD-1 and CTLA-4 signaling path-
ways. Together, these results indicated that pathway activity existed
heterogeneously in different CD8+ T cell subpopulations, which
might be associated with differential prognoses of SKCM. Also, hyp-
oxia interfered with certain pathway activity of CD8+ T cell
subpopulations.

Pseudo-time trajectory revealed dynamic changes of immune

checkpoints

We performed a pseudo-time trajectory to explore if the differentia-
tion program of CD8+ T cells will contribute to heterogeneous prog-
noses. As shown in Figure 5A, the pseudo-time differentiation
program was visualized by t-SNE.We found the following trajectories
during CD8+ T cell differentiation: naive/memory CD8+ T cells
tended to convert into exhausted subpopulation 2 (lineage 1) or cyto-
toxic subpopulation 1 (lineage 2) (Figure 5A). The results may explain
why high proportions of exhausted subpopulation 2 would contribute
to a poor prognosis, particularly because exhausted subpopulation 2,
a terminal state of the subpopulations, showed low cytotoxicity and
high immune checkpoint activity (Figures S2 and S3). In addition, ex-
hausted subpopulation 1 with abnormal pathway activity (Figures
3C–3E and 4) may be an intermediate state to differentiate to the ter-
minal exhausted subpopulation 2.

In the lineage 1 program, cytotoxic signatures (PRF1, GZMA, GZMK,
and NKG7) would be upregulated during the process of naive/mem-
ory CD8+ T cells differentiating to cytotoxic subpopulation 3, and
then these signatures tended to be downregulated until the least
expression in exhausted subpopulation 2 (Figure 5B; Figure S6B). A
similar tendency was observed in immune checkpoints (PDCD1,
TIM-3/HAVCR2, and LAG3) and costimulatory molecules (CD27)
(Figure 5C). However, exhausted-like signatures (CTLA4, TIGIT,
and TNFRSF9) and a synergist checkpoint CD7 showed an upward
tendency. Other immune checkpoints (CD244, TMIGD2, CD226,
and KLRG1) did not show dynamic evolution over time in both lin-
eages (Figures S6A and S6C). For the lineage 2 program, PRF1,
GZMA, and NKG7 had an overall upward trend, while GZMK was
on the decline (Figure S6B). Almost all inhibitory checkpoints were
Figure 5. The pseudo-time trajectory for cell subpopulations

(A) The t-SNE plot for cell differentiation trajectory. Naive/memory subpopulation was

exhausted subpopulation 2. (B and C) Expression profiles of lineage 1 for cytotoxic gen
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downregulated in lineage 2 process, apart from TIM-3/HAVCR2, TI-
GIT, and synergist checkpoint CD7 (Figure S6C). These results ex-
pounded the pseudo-time trajectory of CD8+ T cells in melanoma
and the time-dependent changes of immune checkpoints.

Heterogeneous interacted pairs and transcription factors in

CD8+ T cell subpopulations

Given the heterogeneity for different CD8+ T cell subpopulations, we
analyzed their communication network to identify key ligand-recep-
tor pairs and cell subpopulations, which dominated the interaction.
We found that exhausted CD8+ T cell subpopulation 1 played a domi-
nant role in interacted pairs (Figures 6A and 6B). There were 83
significant ligand-receptor pairs among different CD8+ T cell subpop-
ulations. Among them, the top 5 frequent ligand-receptor pairs
were CCL5_CCR5, CD74_MIF, CD74_COPA, CCL4_CCR5, and
HLA�E_KLRK1 (Figure 6C). The heatmap (Figure S7) showed the
specific distribution of Top 50 frequent ligand-receptor pairs. These
ligand-receptor pairs mainly interacted in exhausted CD8+ T cell sub-
population 1, suggesting its important crosstalk roles with other
subpopulations (Figure S7). Therefore, exhausted CD8+ T cell sub-
population 1 may have a high degree of dysfunction.

A previously reported study has identified that transcription factors
(TFs) can shape T cell phenotype and regulate gene expression.26

Thus, we employed SCENIC to explore underlying differential TFs
within CD8+ T cell subpopulations. We found that several TFs ex-
pressed in specific subpopulations, such as high expression of
KLF6, FOS, FOSB, JUNB, and CREM in the naive/memory subpopu-
lation (Figure 6D). Also, STAT1 and CREM were observed in ex-
hausted subpopulation 1 and exhausted subpopulation 2, respectively
(Figure 6D). STAT1 and POLR2A (the gene that encodes RNA poly-
merase II complex) were both upregulated in cytotoxic subpopulation
3, and there was higher activity of POLR2A in cytotoxic subpopula-
tion 2 (Figure 6D). TF analysis results may reveal the evidential facts
that high activity of multiple TFs in the naive/memory subpopulation
provided essential regulations for initial differentiation. Collectively,
these analyses identified the dominant subpopulation (exhausted
CD8+ T cell subpopulation 1), frequent ligand-receptor pairs, and dif-
ferential regulation of TFs for CD8+ T cell subpopulations.

PMEL, TYRP1, and EDNRB were novel therapeutic targets

Given the poor prognosis in SKCM caused by high proportions of ex-
hausted subpopulation 2, we analyzed the highest expression genes in
this subpopulation to screen out the potential therapy targets
(Figure 7A). Then, Kaplan-Meier survival analysis was conducted
to explore the prognostic values of screened genes (Figure 7B).
Finally, we screened out PMEL, TYRP1, and EDNRB, which may
serve as novel targets, and high activity of them was significantly asso-
ciated with a poor prognosis in SKCM (Figure 7B). Notably, PMEL,
the initial subpopulation, which differentiates into cytotoxic subpopulation 1 and

es (B) and immune checkpoints (C).



Figure 6. Cell-cell interactions and TFs within different subpopulations

(A) A network of cell-cell interactions. (B) A heatmap showed the counts of ligand-receptor pairs among different subpopulations. (C) Average counts of top 50 interactions

across each subpopulation. (D) Expression levels of TFs.
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TYRP1, and EDNRB only highly expressed in exhausted subpopula-
tion 2 (Figures S8A and S9A), suggesting their important role in prog-
noses. In addition, the three genes also showed high activity in bulk
RNA-seq samples of SKCM (Figure 7C). We also explored if
PMEL, TYRP1, and EDNRB would dynamically express in different
pathology stages. The results showed that only TYRP1 might be
involved in SKCMprogression. Importantly, it would show higher ac-
tivity in later stages than stage I; the highest expression was observed
in stage II (Figure 7D).

Next, transcriptional levels of the novel targets were investigated
across various tumors by the FIREBROWSE database. Conspicu-
ously, all novel targets had the highest variation in SKCM and uveal
melanoma (UVM), revealing a tight connection between the novel
targets and melanoma (Figure 7E; Figures S8B and S8C). Given the
specific high expressions of the novel targets in melanoma samples
and exhausted subpopulation 2, we explored if different scRNA-seq
data of the T cells and CD8+ T cells in the tumor microenvironment
of melanoma also had the property. Thus, we obtained the single-cell
data of T cells,27 which were well clustered, to verify the accuracy of
our results. In line with the above results, we observed that PMEL and
TYRP1 were highly expressed in one CD8+ T cell cluster and were not
highly expressed in a certain CD4+ T cell cluster (Figures S9B–S9D).
However, we did not observe high EDNRB expression in the certain
CD8+ T cell cluster. This may be due to low cell abundance—only
263 CD8+ T cells in cluster 3 (Figure S9B)—while there were 1,971
CD8+ T cells in exhausted subpopulation 2 (Figure 1F). Taken
together, we identified that PMEL, TYRP1, and EDNRB, which
were tightly associated with melanoma, would contribute to poor
clinical outcomes and may serve as novel therapeutic targets.

DISCUSSION
Several recent studies have analyzed tumor infiltration in melanoma
and other tumors.22,23,27–29 These studies have provided some clues
about the transcriptional roles in the regulation of T cells. However,
the heterogeneity of CD8+ T cell subpopulations has not been fully
described. Therefore, we collected scRNA-seq data of melanoma to
analyze specific roles of CD8+ T cell subpopulations in prognoses
and explore the source of heterogeneity. Exhausted CD8+ T cells ex-
pressed exhausted signatures and immune checkpoints along with
producing CXCL13, suggesting an underlying feature of interaction
with intertumoral cell subpopulations.30 Cytotoxic CD8+ T cells
also elevated the activity of immune checkpoints to balance cytotox-
icity in TME. Understanding the dynamic activity of immune check-
points during CD8+ T cell differentiation can help pave the way for
immune checkpoint blockade.
Molecular Therapy: Oncolytics Vol. 20 March 2021 113
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Figure 7. The novel therapeutic targets were screened out and validated

(A) Top expression genes within exhausted subpopulation 2. Gene symbols were labeled for adjusted p value < 0.05 and log2 fold change > 1. (B) Kruskal-Wallis curves were

plotted to validate the survival values of PMEL, TYRP1, and EDNRB. (C) Gene expression of the novel targets within SKCM and normal RNA-seq samples. The ordinate

showed values of log2(TPM + 1). (D) Average log2(TPM + 1) values among four pathology stages (*p < 0.05; **p < 0.01; ***p < 0.001). (E) The expression values of TYRP1

across 37 tumors and normal samples (download from FIREBROWSE database).
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In this study, we annotated seven CD8+ T cell subpopulations in the
melanoma TME and found that naive/memory and cytotoxic sub-
population 3 were associated with a favorable clinical outcome. How-
ever, exhausted subpopulation 2, a terminal state of CD8+ T cell
subgroups, led to a poor prognosis. Differential activities of cytotox-
icity and immune checkpoint molecules were only one side to explain
the heterogeneous prognoses (Figures 5B and 5C; Figures S2, S3, and
S6). On the other hand, differential pathways may account for het-
erogeneous regulations among all subpopulations (Figure S5; Figures
3 and 4,). Abnormal pathway activity in exhausted subpopulation 1
reflected a high dysfunction state during the process of subpopula-
tion conversion to terminal-like CD8+ T cells (Figures 3 and 4). In
addition, many other poorly investigated metabolic pathways, such
as histidine metabolism, phenylalanine, tyrosine and tryptophan
114 Molecular Therapy: Oncolytics Vol. 20 March 2021
biosynthesis, and glycosaminoglycan biosynthesis-keratan sulfate
showed high activities in specific cell subpopulations, which may pro-
vide novel insights into these pathways (Figure 3C). Remarkably,
high activities of EMT and Notch signaling were observed in ex-
hausted subpopulations (Figure 4A). EMT had an inhibitory effect
for intratumoral CD8+ T cells, related to tumor progression and
poor prognosis in non-small cell lung cancer.31–34 Furthermore,
EMT could elevate the expression of CTLA4.35 A recent study based
on a murine model of colorectal cancer found that Notch signaling in
the TME would contribute to a poor prognosis, highly penetrant
metastasis, and potential targets for therapy.36 Abnormal pathway
activity of EMT and Notch signaling in exhausted CD8+ T cells
may enhance dysfunction of these cells; thus, high exhausted subpop-
ulation 2 infiltration would be unfavorable for melanoma prognoses
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(Figures 2E and 2F). Importantly, since pathways and molecules of
immune checkpoints showed a dynamic change during CD8+

T cell differentiation (Figures 4C and 5C), the optimal treatment
time of immune checkpoint blockade may be obtained in our study
(the optimal time was when there were the most subpopulations of
exhausted CD8+ T cells with the high expression of immune
checkpoints).

Furthermore, cell-cell interaction analysis revealed top ligand-recep-
tor pairs among all subpopulations. CCL5/CCR5 axis was the most
frequent interactive ligand-receptor pairs in our study (Figure 6C),
which promotes vascular endothelial growth factor-mediated tumor
angiogenesis in the osteosarcoma TME.37 Inhibition of CD74/MIF
will elevate the level of reactive oxygen species to induce cancer
cell death in colon carcinomatosis.38 The enhancement of the
CCL4/CCR5 axis will promote glioblastoma invasion.39 Impor-
tantly, these ligand-receptor pairs were mainly distributed across
cytotoxic subpopulations 1, 2, 4, and exhausted subpopulation 1
(Figure S7). TFs such as STAT1 with the highest activity in ex-
hausted subpopulation 1 (Figure 6D) can induce breast tumor pro-
liferation and promote immunosuppressive TME.40 Therefore, these
interacted pairs and TFs may also be potential therapeutic targets
for melanoma.

It has been demonstrated that elevated activity of TYRP1 in metastatic
melanoma will result in an unfavorable clinical outcome, which can
also sequester miR-16 to induce a change of transcriptional program
that drives melanoma expansion.41 Moreover, preventing miR-16
sequestration on TYRP1 would reduce tumor growth in vivo.41 It
was found that PMEL was highly expressed in melanoma tissues,
and target PMEL can induce apoptosis of melanoma cells in vitro.42

EDNRB, a marker of melanoma progression, was overexpressed in
metastatic melanoma.43–45 Also, blockading EDNRB was effective to
reduce the proliferation of melanoma in vitro and in vivo.46 These
genes are highly expressed in melanoma tissues, but the transcript
levels in CD8+ T cells remain unclear. Here, we identified that these
genes were also overexpressed in a certain CD8+ T cell subpopulation
(Figures S8A and S9). Thus, these genes may also influence the func-
tions of CD8+ T cells, for example reducing tumor-killing ability. This
may provide new potential therapy targets of melanoma, in which the
tumor-killing ability of CD8+ T cells is enhanced by blocking these
genes and relative proteins.

In conclusion, we characterized the heterogeneity among different
CD8+ T cell subpopulations based on melanoma scRNA-seq data.
Comprehensive analyses enabled us to understand the heterogenous
functions of different CD8+ T cell subpopulations in the melanoma
TME. Furthermore, we provided a dynamic gene expression land-
scape for immune checkpoints to optimize the treatment time win-
dow for immunotherapy. Most importantly, we identified that
PMEL, TYRP1, and EDNRB could serve as potential therapeutic tar-
gets for melanoma. However, further experiments, such as knocking
out and overexpressing of these genes in CD8+ T cells, are still needed
to validate the hypotheses inferred from our work.
MATERIALS AND METHODS
scRNA-seq and RNA-seq data

The scRNA-seq data were downloaded from the GEO database
(Smart-seq data, GEO: GSE120575 and 10� Genomics data, GEO:
GSE139829). We also downloaded scRNA-seq data of T cells
(Smart-seq data, GEO: GSE72056) to validate the single-cell tran-
script levels of the novel targets. T cells were classified by Tirosh
et al.27 in those data. The RNA-seq data of 471 skin cutaneous mela-
nomas and 1,809 normal samples were downloaded from TCGA and
GTEx databases.
Cell subpopulation identification

We employed 48 smart-seq and 11 10�Genomics melanoma samples
to performCD8+ T cell analyses. Seurat’s (version 3.1.5) standard pro-
cesswas conducted. In brief, we removed low-quality cells according to
the standard, which is cellswith fewer than 200 uniquemolecular iden-
tifiers (UMIs) or mitochondrial gene expression exceeding 60%. Gene
expression was then normalized using the default parameter of the
Seurat package. FindVariableFeatures and ScaleData functions were
used in the default parameter. Subsequently, PCA (dims = 20) and
FindClusters (resolution= 0.4)were performed to identify cell clusters.
Then, t-SNE was used to visualize the single cells. These parameters
were also used in the following analyses of single-cell datasets.We clas-
sified CD8+ T cell subpopulations using straightforward analysis, in
which single cells expressed high CD8A and CD8B (CD8+ T cell
markers). Also, markers of T cells (CD3D, CD3E, and CD3G), CD4+

T cells (CD4), and melanocytes (DCT, BNC2, CRABP1, PTGDS, FIL-
IP1L, DKK3, and AHNAK2) were used to validate if there were mixed
CD4+ T cells and melanocytes in CD8+ T cells. These markers vali-
dated that CD8+ T cells (with high expressions in CD8+ T cell markers
and T cell markers) were accurately classified in our study.We isolated
3,525 and 7,336 CD8+ T cells from Smart-seq and 10� Genomics,
respectively. The Harmony algorithm (version 1.0) can accurately
integrate single-cell data from different technology platforms and
batches.47 Thus, we integrated a total of 10,861 CD8+ T cells from
smart-seq and 10� Genomics platforms using the Harmony algo-
rithm. Then, following the Seurat standard process, 7 CD8+ T cell sub-
populations were identified. These subpopulations were annotated
with data generated from the FindAllMarkers function in the Seurat
package. Previously reported marker genes were used to annotate
the following CD8+ T cell subpopulations: naive/memory CD8+

T cells (CCR7, IL7R, TCF7, SELL, SATB1, GPR183, LTB, LEF1, and
S100A10), cytotoxic CD8+ T cells (PRF1, GZMA, GZMK, and
NKG7), and exhausted CD8+ T cells (CXCL13, HSPB1, IRF4, LAYN,
GIMAP6, HSPH1, CXCR6, CTLA4, PDCD1, LAG3, HAVCR2, and
TIGIT).
Cell components of CD8+ T cell subpopulations in bulk RNA-seq

The CIBERSORT algorithm (https://cibersort.stanford.edu/) was
developed to calculate the proportions of different cell types in bulk
RNA-seq data based on the signature matrix. In order to detect cell
components of CD8+ T cell subpopulations in the bulk RNA-seq,
the expression matrix was normalized using transcripts per million
Molecular Therapy: Oncolytics Vol. 20 March 2021 115
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(TPM). Then, log2(TPM + 1) values were calculated to scale the bulk
RNA-seq matrix. For the signature matrix of each CD8+ T cell sub-
population, we employed Seurat FindMarkers function to obtain
significantly overexpressed genes (adjusted p value < 0.05, log2 fold
change > 0.25). Finally, cell proportions were identified using default
parameters of CIBERSORT.

To explore the relationship between CD8+ T cell subpopulations and
melanoma patients’ prognoses, we divided TCGA tumor samples into
two subgroups: high-proportion CD8+ T cell subpopulations 50% and
low-proportion CD8+ T cell subpopulations 50%. Subsequently, Ka-
plan-Meier curves were generated to identify the influence of CD8+

T cell subpopulations on prognoses using survival (version 3.2) and
survminer (version 0.4.7) package in R. Also, we divided tumor sam-
ples into four pathology stages according to the information of
TCGA. Then dynamic changes of CD8+ T cell subpopulations were
identified in different pathology stages. Also, differential proportions
of infiltrating cell subpopulations between normal and tumor samples
were analyzed using ggstatsplot (version 0.5.0) package.

Pathway activity analysis

After characterizing prognostic effectors of CD8+ T cell subpopula-
tions, we performed GO analysis, KEGG analysis, and GSEA to eluci-
date the mechanisms of different clinical outcomes at single-cell
levels. GO and KEGG analyses were done by ClusterProfiler (version
3.14.3) package, while the GSEA analysis was conducted using the
javaGSEA (https://www.gsea-msigdb.org/gsea/downloads.jsp). We
also scored pathway activities of subpopulations using a recent algo-
rithm.48 For the analyses of GSEA and pathway activities, metabolic
and hallmark gene sets were downloaded from the GSEA database.
Pearson’s correlation analysis between hypoxia and other pathways
was conducted to identify the influence of hypoxia.

Pseudo-time trajectory, cell-cell interaction, and single-cell

regulatory network analysis

We performed trajectory analysis using the slingshot (version 1.4.0)
package for all CD8+ T cell subpopulations, setting the naive/memory
subpopulation as the start subpopulation. Default parameters of the
slingshot package were used during the process of analysis. After a
pseudo-time trajectory, we analyzed the expression levels of cytotox-
icity and checkpoint molecules during the process that naive/memory
subpopulations differentiated to the exhausted subpopulation. To
investigate the cell-cell interaction, CellphoneDB (version 2.0), a Py-
thon-based package, was used to identify the interacted pairs with
default parameters. In addition, the gene regulatory network of the
cell subpopulations was calculated using SCIENIC (version 1.1.2.2)
package.

Novel targets analysis

In order to screen out novel targets for therapy, the overexpressed
genes (adjusted p value < 0.05, log2 fold change > 1) in exhausted
CD8+ T cell subpopulation 2 were analyzed by Kaplan-Meier survival
analysis with GEPIA database (http://gepia.cancer-pku.cn/detail.
php?gene=CUL3). Then, the expression levels of screened targets
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were validated in tumor and normal samples using ggstatsplot pack-
age. The data of TCGA and GTEx were normalized using TPM.
log2(TPM + 1) values were calculated to scale the bulk RNA-seq ma-
trix. The data were then mixed, and batch effects were corrected by
the removeBatchEffect function in limma package (version 3.42.2).
FIREBROWSE database (http://firebrowse.org/) was used to identify
the expression values of screened targets in various tumor samples.
Subsequently, we isolated 2,043 T cells from the data to validate the
novel targets. These T cells were classified by Tirosh et al.,27 and
they sorted these cells using fluorescence-activated cell sorting
(FACS), which can exclude other cells. We also visualized these
T cells using t-SNE, and scatterplots were performed to show the sin-
gle-cell expression of the novel markers, T cell markers, CD8+ T cell
markers, and melanocyte markers.

Statistical analysis

Differentially expressed genes among different subpopulations, GO,
KEGG, and GSEA analyses were statistically analyzed using default
methods in respective packages or software. A random permutation
test generated statistical significance of pathway activities. A Student’s
t test was used to detect differential cell frequency between normal
and tumor samples; the statistical analysis was also used to test the
expression levels in tumor and normal samples. A log-rank test was
used to test the significance of Kaplan-Meier curves. Kruskal-Wallis
test was used to detect dynamic changes in cell proportions and
gene expression levels within different pathology stages.
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