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Objective: To construct and validate a radiomics nomogram for preoperative prediction
of survival stratification in glioblastoma (GBM) patients with standard treatment according
to radiomics features extracted from multiparameter magnetic resonance imaging (MRI),
which could facilitate clinical decision-making.

Methods: A total of 125 eligible GBM patients (53 in the short and 72 in the long survival
group, separated by an overall survival of 12 months) were randomly divided into a training
cohort (n = 87) and a validation cohort (n = 38). Radiomics features were extracted from
the MRI of each patient. The T-test and the least absolute shrinkage and selection
operator algorithm (LASSO) were used for feature selection. Next, three feature classifier
models were established based on the selected features and evaluated by the area
under curve (AUC). A radiomics score (Radscore) was then constructed by these
features for each patient. Combined with clinical features, a radiomics nomogram was
constructed with independent risk factors selected by the logistic regression model. The
performance of the nomogram was assessed by AUC, calibration, discrimination, and
clinical usefulness.

Results: There were 5,216 radiomics features extracted from each patient, and 5,060 of
them were stable features judged by the intraclass correlation coefficients (ICCs). 21
features were included in the construction of the radiomics score. Of three feature
classifier models, support vector machines (SVM) had the best classification effect. The
radiomics nomogram was constructed in the training cohort and exhibited promising
calibration and discrimination with AUCs of 0.877 and 0.919 in the training and validation
cohorts, respectively. The favorable decision curve analysis (DCA) indicated the clinical
usefulness of the radiomics nomogram.

Conclusions: The presented radiomics nomogram, as a non-invasive tool, achieved
satisfactory preoperative prediction of the individualized survival stratification of GBM patients.
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INTRODUCTION

Glioblastoma (GBM) is the most frequent primary malignant
tumor of the central nervous system with the characteristics of
highly aggressive growth, high recurrence rate, and poor
prognosis, defined as Grade IV glioma or glioblastoma
multiforme according to the 2016 World Health Organization
classification of brain tumors (1). The current standard
treatment includes maximal safe surgical resection followed by
concomitant radiotherapy and adjuvant chemotherapy with
temozolomide, then maintenance with 6–12 months of
temozolomide as single-agent therapy (2, 3). Despite receiving
standard treatment, the median overall survival (OS) of GBM
patients remains 10–14 months (4, 5). Therefore, it is necessary
to establish a more reasonable and personalized preoperative
prediction approach for survival stratification so that
neurosurgeons can make the evaluation, targeted treatment,
follow-up management, and better education for GBM patients.

Recent investigative studies have identified several prognostic
factors commonly used to predict the prognoses of GBM
patients, such as the age of diagnosis, laterality, radiotherapy,
chemotherapy (6), Karnofsky performance status (KPS), the
extent of resection (total/gross, subtotal, or other), O6-
methylguanine-DNA methyltransferase (MGMT) gene status
(7), and isocitrate dehydrogenase (IDH) mutation status (8).
Additionally, magnetic resonance imaging (MRI), as a non-
invasive and non-radioactive inspection method, has indicated
great potential in predicting the prognosis of GBM patients based
on providing a comprehensive macro-image of the whole tumor
(9, 10). Recently, as a potentially non-invasive high-throughput
method of acquiring tumor characteristics, radiomics has been
used in many tumors, including the pancreatic ductal
adenocarcinomas, colorectal cancer, and pituitary adenomas
(11–13).

In this research, the main purpose was to develop and then
independently validate a nomogram based on radiomics score
(Radscore) for preoperative prediction of individual OS
stratification probabilities for GBM patients who would
receive standard treatment. Moreover, three feature classifiers
were established to evaluate the value of the selected
radiomics features for differentiating survival stratification of
GBM patients.
METHODS

Patients
This retrospective study included 125 patients with newly
diagnosed GBM undergoing open craniotomy at the First
Affiliated Hospital of Zhengzhou University from January 2018
to January 2020 according to the following criteria. The inclusion
criteria were as follows: 1) patients with GBM confirmed by
pathological report; 2) patients with complete data of medical
and imaging records before surgery; and 3) patients with
standard treatment, i.e., maximal safe surgical resection
followed by radiotherapy plus adjuvant chemotherapy with
Frontiers in Oncology | www.frontiersin.org 2
temozolomide, then maintenance with 6–12 months of
temozolomide as single-agent therapy. The exclusion criteria
were as follows: 1) patients with biopsy only; 2) patients without
complete medical records; 3) patients with incomplete image
data and image artifacts; and 4) patients with radiotherapy or
chemotherapy alone after surgery. The medical ethics committee
of the First Affiliated Hospital of Zhengzhou University
approved this retrospective study.

There were 4 clinical features and 2 conventional imaging
features collected for each patient, including age at diagnosis,
gender, preoperative Karnofsky performance status (pKPS),
preoperative epilepsy status (pEPI), located lobe (frontal,
temporal, parietal, occipital, insular, corpus callosum), and
hemisphere (left, right, bilateral). Regular follow-up was
applied to every patient until death or June 2021 through the
clinic or phone, once every month for the first 6 months after
surgery, and every 3–6 months thereafter. Each patient was
separated into short or long survival group according to the
OS of 12 months. Then, the patients were divided randomly into
training cohort (n = 87, 70%) used for model construction and
validation cohort (n = 38, 30%) used for model evaluation.

MRI Acquisition and Preprocessing
Four imaging sequences were selected from the head MRI
undergone before surgery of each patient, i.e., T1-weighted
contrast-enhanced imaging (T1C), T1-weighted imaging (T1),
T2-weighted imaging (T2), and T2-weighted fluid-attenuated
inversion recovery imaging (T2F). The imaging was performed
on five models of MRI scanners from two manufacturers, i.e.,
Verio, Prisma, TrioTim, and Skyra of Siemens and Discovery
MR750 of GE Medical Systems. The T1 sequence was acquired
with the following range of parameters: repetition time (TR)/
echo time (TE), 163–1,750.03 ms/2.46–25.176 ms; slice
thickness, 5 mm; spacing between slices, 6.5–6.75 mm. The
T1C sequence was acquired with the following range of
parameters: TR/TE, 21–3,900 ms/2.32–92 ms; slice thickness,
0.9–5 mm; spacing between slices, 6.50–6.75 mm. The T2
sequence was acquired with the following range of parameters:
TR/TE, 3,800–5,673.8213 ms/92–117 ms; slice thickness, 5 mm;
spacing between slices, 6.5–6.75 mm. The T2F sequence was
acquired with the following range of parameters: TR/TE, 5,000–
8,400 ms/81–157.732 ms; slice thickness, 5 mm; spacing between
slices, 6.5–6.75 mm.

Image preprocessing was performed by 3D Slicer software
(v4.11.0). First, skull-stripping was executed by the Swiss Skull
Stripper module, and T1, T2, and T2F sequence images were
registered to T1C sequence images. Next, N4 bias field correction
was applied to correct the intensity unevenness of each sequence.
Ultimately, image normalization (normalizeScale = 100) and
image resampling (ResamplePixelSpacing = [3, 3, 3]) were
performed in Python environment by the PyRadiomics package.

Tumor Delineation and Radiomics
Feature Extraction
The region of interest (ROI) was delineated on T1C using 3D
Slicer software separately by two neurosurgeons, who were
February 2022 | Volume 12 | Article 758622
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blinded to the clinical data and had over 5 years of
clinical experience.

The radiomics feature extraction was executed in the Python
environment with the PyRadiomics package, which was an open-
source python package for the extraction of Radiomics features
from medical imaging. The Supplementary Material Data S1
supplied the detail parameter settings of feature extraction. There
were seven image types (Original, Wavelet, Laplacian of
Gaussian (LoG sigma [3.0, 5.0]), Square, SquareRoot,
Logarithm, Exponential) and six feature classes (shape, first-
order statistics, gray-level co-occurrence matrix (glcm), gray-
level run length matrix (glrlm), gray-level size zone matrix
(glszm), gray-level dependence matrix (gldm)) adopted for
each sequence.

OS Status-Related Radiomics
Feature Selection
Three feature selection steps were performed to avoid overfitting
before establishing the model. First, the stable features, which
were defined by intraclass correlation coefficients (ICCs) >0.8,
were selected between the two groups of ROIs drawn by the two
neurosurgeons (14). Next, the t-test was applied to each stable
feature between short and long survival cases. Then, the least
absolute shrinkage and selection operator (LASSO) regression
algorithm was applied to analyze these features whose p-values
were less than 0.05 in the t-test. The optimal l value in LASSO
was automatically selected by 10-fold cross-validation with a
maximum area under the curve (AUC) criterion, where the final
value of l yielded the maximum AUC.
Frontiers in Oncology | www.frontiersin.org 3
Construction and Assessment of the
Radiomics Nomogram
To understand the ability of these OS status-related radiomics
features to discriminate the OS state, three supervised machine
learning algorithms were applied in the training cohort, including
random forest (RF) algorithm, support vector machine (SVM)
algorithm, and logistic regression (LR) algorithm, and tested in
the validation cohort. The performance of training and validation
cohorts was evaluated by AUC. Then, these features with non-zero
coefficients were used to construct the Radscore for each patient.
Finally, the radiomics nomogram based on Radscore from the
training cohort was established by logistic regression and assessed
by the validation cohort. For the two cohorts, the discriminative
ability of the radiomics nomogram was quantitatively measured
using AUC, and the calibration curves were plotted based on
observed probabilities and the nomogram-estimated probabilities
(15). To evaluate the clinical utility of the radiomics nomogram, the
decision curve analysis (DCA) was executed by calculating the net
benefits at different thresholdprobabilities in the combined training
and validation cohorts (16). The flowchart of this research is shown
in Figure 1.

Statistical Analysis
The continuous variables were analyzed by Student’s t-test or
Mann–Whitney U-test, and chi-square test, Yates’ correction, or
Fisher’s exact probabilities were performed in the categorical
characteristics. Generally, a two-sided p-value < 0.05 was
considered statistically significant. All data analyses were
performed in Python (v3.7.6) and R software (v4.0.5).
FIGURE 1 | The flowchart of the study.
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RESULTS

Patient Summary
A total of 320 newly diagnosed GBM patients were collected.
According to the inclusion and exclusion criteria, we included
177 patients whose image quality met the criteria and 52 patients
without standard treatment were excluded. 125 patients were
finally included in our study (87 cases in the training cohort and
38 cases in the validation cohort). The clinical features,
conventional imaging features, and Radscores of patients in the
training cohort, validation cohort and total cohort, are
summarized in Table 1. There were no significant differences
between the short OS and long OS groups in age, gender, pEPI,
pKPS, located lobe (frontal, temporal, parietal, occipital, insular,
corpus callosum), and hemisphere (left, right, bilateral).
However, it was worth noting that Radscore had significant
differences in the short OS and long OS groups (p < 0.001).

Radiomics Feature Analysis and
Radscore Calculation
In this study, a total of 1,304 radiomics features for each
sequence were extracted, including 14 shape features, 18 first-
order statistics features, 68 texture features, 172 LoG features,
688 wavelet features, 86 square features, 86 square-root features,
86 logarithm features, and 86 exponential features. A total of
5,216 radiomics features were calculated from four imaging
sequences for each patient. Among them, 5,080 radiomics
features were stable after being screened by ICCs. After that,
777 radiomics features were selected by t-test. Ultimately, the
optimal regulation weight l (l = 0.029470517025518096) was
Frontiers in Oncology | www.frontiersin.org 4
determined for the LASSO algorithm, and 21 features with non-
zero coefficients were selected for OS stratification of GBM
patients. The detailed names and weights of the 25 radiomics
features are shown in Table 2 and Figure 2. It could be seen that
the T1C sequence had a greater impact on OS stratification.

There were three supervised machine learning algorithms
models constructed to determine the ability of these OS status-
related radiomics features to discriminate the OS stratification.
The detail performances of the three models are shown in
Table 3. The SVM model performed best among the three
models. The AUC, sensitivity, accuracy, and F1 score were
0.75, 0.93, 0.71, and 0.72 in the validation cohort, respectively.

Then, the Radscore for each patient in training and
validation cohorts was constructed for further analysis, which
was calculated by multiplying each feature coefficient by the
corresponding feature value and summing. The corresponding
fitting formula is listed in Supplementary Material Data S2.
Patients with long OS showed higher Radscores than patients
with short OS in both the training and validation cohorts
(Figure 3). In the training cohort, the average values of
Radscore were significant differences in the short OS and long
OS groups (-0.167 vs. 0.128, p < 0.001). Similarly, the mean
Radscore of long OS was 0.165, which was significantly
higher than that of short OS (-0.207, p < 0.001) in the
validation cohort.

Radiomics Nomogram Establishment
and Evaluation
To establish the radiomics nomogram, the logistic regression
based on Radscore, clinical features, and conventional imaging
TABLE 1 | Characteristics of GBM patients in the training cohort and validation cohort.

Variable Training cohort (n = 87) Validation cohort (n = 38) Total cohort (n = 125)

Short OS Long OS p-value Short OS Long OS p-value Short OS Long OS p-value

Age/year (mean ± SD) 56.70 ± 14.70 52.82 ± 10.58 0.207 50.17 ± 17.36 50.53 ± 12.96 0.946 53.87 ± 16.08 52.35 ± 11.06 0.555
Gender 0.571 0.945 0.540
Male 16 34 12 8 28 42
Female 14 23 11 7 25 30

pEPI 0.624 0.143 0.199
Yes 5 12 2 4 7 16
No 25 45 21 11 46 56

pKPS 74.33 ± 14.31 72.28 ± 15.59 0.550 74.35 ± 12.73 74.00 ± 12.42 0.934 74.34 ± 13.52 72.64 ± 14.92 0.514
Located lobe
Frontal 14 17 0.158 7 5 1.000 21 22 0.292
Temporal 7 17 0.618 4 7 0.073 11 24 0.122
Parietal 1 11 0.084 5 2 0.681 6 13 0.300
Occipital 3 2 0.452 1 0 1.000 4 2 0.418
Insular 5 6 0.502 4 1 0.630 9 7 0.230
Corpus callosum 0 4 0.344 2 0 0.510 2 4 0.970

Hemisphere
Left 16 32 0.802 11 7 0.793 27 39 0.721
Right 13 21 0.555 10 8 0.793 23 29 0.727
Bilateral 1 4 0.828 2 0 0.667 3 4 0.713

Radscore
Mean -0.167 0.128 <0.001 -0.207 0.165 <0.001 -0.185 -0.136 <0.001
Range (-0.411,0.182) (-0.405,0.609) (-0.528,0.150) (-0.057,0.613) (-0.528,0.182) (-0.405,0.613)

Median OS/month 16 NA 11.5 NA 15 NA
F
ebruary 2022 | V
olume 12 | Article
SD, standard deviation; NA, not applicable.
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features was applied to find independent predictors of OS
stratification by univariate and multivariable logistic regression.
The results of logistic regression are presented in Table 4, which
demonstrated that only Radscore was the significant
independent predictor for OS stratification.
Frontiers in Oncology | www.frontiersin.org 5
Then, the radiomics nomogram was constructed according to
the multivariable logistic regression (Figure 4). The ROC curve,
which was based on the probability of long OS according to the
Radscore, was used to evaluate the sensitivity and specificity of
the nomogram. The AUCs of the nomogram were 0.877 and
FIGURE 2 | The weights of radiomics features selected. It could be seen that the T1C sequence had a greater impact on OS stratification.
TABLE 2 | Description of the radiomics features selected.

Sequence Image type Feature class Feature name

T2 HLH wavelet glszm LargeAreaLowGrayLevelEmphasis
T2 SquareRoot firstorder RootMeanSquared
T2 Logarithm firstorder 10Percentile
T1C log(sigma=5.0mm) firstorder Maximum
T1C LHL wavelet glcm Correlation
T1C LHH wavelet firstorder Median
T1C LHH wavelet glcm Correlation
T1C HLL wavelet glcm lmc2
T1C HLL wavelet glrlm LongRunHighGrayLevelEmphasis
T1C HLL wavelet gldm LargeDependenceHighGrayLevelEmphasis
T1C Logarithm firstorder RootMeanSquared
T1C Logarithm glcm Autocorrelation
T1C Logarithm glcm lmc2
T1C Exponential glszm SizeZoneNonUniformityNormalized
T1C Exponential glszm SmallAreaLowGrayLevelEmphasis
T2F Original glcm Idmn
T2F LLH wavelet firstorder 90Percentile
T2F LLH wavelet glcm ClusterTendency
T2F LHH wavelet glszm SmallAreaEmphasis
T2F HHH wavelet glcm DifferenceVariance
T2F Exponential gldm DependenceVariance
Fe
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0.919 in the training and validation cohorts, respectively, which
indicated favorable sensitivity and specificity (Figure 5). The
calibration curve of the proposed nomogram based on the
training cohort was constructed, and a favorable calibration
was confirmed in the validation cohort (Figure 6). Moreover,
the result of DCA showed that the nomogram to stratify the OS
of GBM patients could yield clinical net benefits (Figure 7).
DISCUSSION

A total of 125 newly diagnosed GBM patients with standard
treatment were included in this study, and the objective was to
develop and validate a preoperative prediction model for OS
stratification. Only one independent predictive factor was found
to be associated with OS stratification. The Radscore factor was
adopted in a clinically relevant nomogram model that can
predict the probabilities of OS stratification for the GBM
patients. The radiomics nomogram demonstrated that a
patient was more likely to have long OS if he had a higher
Radscore before operation and would receive standard
treatment. This may help neurosurgeons with preoperative
planning and allow for better education for these patients or
Frontiers in Oncology | www.frontiersin.org 6
those family members who were extremely concerned about the
postoperative survival or hesitated to continue the treatment for
various reasons before the operation.

The nomogram, as a tool of prediction, integrates a variety of
independent predictive factors and visualizes the overall impact
of these factors on survival in each patient to help clinicians
develop intervention plans (17). Owing to its convenience and
accuracy, the nomogram has been used in many tumors, such as
pancreatic ductal adenocarcinomas, colorectal cancer, pituitary
adenomas, and gastric cancer (11–13, 18). Moreover, radiomics,
as a new study method, extracts, processes, and analyzes the
quantitative and high-throughput data from medical imaging to
explore their relationships with valuable information. When
combined with radiomics features and traditional clinical
features to construct a nomogram, the radiomics features
showed stronger robustness, which had been confirmed by
some studies (9, 19).

At present, there have been some studies that make efforts to
predict the OS of GBM. These studies have selected some
independent clinical risk factors related to OS, such as age at
diagnosis, gender, KPS, MGMT, IDH, radiotherapy,
chemotherapy, and radiotherapy combined with chemotherapy
(8, 20, 21). In our research, the study population was newly
A B

FIGURE 3 | The histogram of Radscore for each patient in the training cohort (A) and validation cohort (B). The red bars showed the Radscore values for the short
OS patients, and the blue bars showed the values for the long OS patients. Patients with long OS showed higher Radscores than patients with short OS in both the
training and validation cohorts.
TABLE 3 | Comparison of the three radiomics feature classifiers.

Variable RF SVM LR

Training Validation Training Validation Training Validation

AUC 0.98 0.72 0.97 0.75 0.85 0.73
Sensitivity 0.98 0.87 1 0.93 0.84 0.8
Specificity 0.98 0.57 0.95 0.57 0.86 0.65
Accuracy 0.98 0.68 0.97 0.71 0.85 0.71
F1-score 0.98 0.68 0.97 0.72 0.85 0.69
February
 2022 | Volume 12 | Art
RF, random forest; SVM, support vector machine; LR, logistic regression.
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diagnosed GBM patients who had undergone standard
treatment, so no treatment factors were included. The factors
included in our study were clinical features and conventional
imaging features, and the postoperation-related factors were
excluded including completeness of resection, pathological
features, and treatment, for the study stage was defined as
preoperation. Ultimately, according to the logistic regression,
none of these clinical factors and conventional imaging features
was selected as an independent risk factor. This result was
different from the results of these studies (8, 20, 21). For this
difference, we think it was because of strict treatment and
imaging standards. On the other hand, it also indicated that
patients who chose standard treatment after surgery were
relatively concentrated in this study.

Recently, several studies about the nomogram for predicting
survival of GBM based on radiomics were published. Zhang et al.
(9) developed a radiomics nomogram, which showed excellent
performance with 0.974 of the concordance index (C-index) in
survival stratification. The C-index represents the AUC of ROC
that plots sensitivity against 1-specificity of the radiomics
Frontiers in Oncology | www.frontiersin.org 7
nomogram (15). A total of 4,000 radiomics features were
extracted from multiple regions of the GBM using
multiparametric MRI, and 25 selected features were used for
constructing the Radscore. Among these features, the T1C and
T2F sequence of GBM contributed more than other MRI
sequences. Xu et al. (22) reported a radiomics nomogram
integrated with Radscore, ependymal, and pia mater
involvement and age at diagnosis to stratify the survival of
GBM patients, and the ROC reached up to 0.858. In this study,
the data from Brain Tumor Segmentation Challenge 2018 were
divided into training and test sets to build the model, and the
data from the local medical center were used to validate the
model. In our study, we first analyzed the extracted radiomics
features with three machine learning algorithms to determine the
ability of these OS status-related radiomics features to
discriminate the OS stratification. The results showed that the
three classifiers were all excellent, and the SVM performance was
best among them (the AUCs of 0.97 and 0.75 in the training and
validation cohorts), which illustrated the favorable ability for
these features to stratify the OS of GBM patients. Similarly to the
FIGURE 4 | The radiomics nomogram for OS stratification of GBM patients.
TABLE 4 | The results of logistic regression.

Variable Univariate logistic regression Multivariable logistic regression

OR (95% CI) p-value OR (95% CI) p-value

Age 0.972 (0.930–1.010) 0.164 NA NA
Gender 1.293 (0.528–3.167) 0.571 NA NA
pEPI 1.333 (0.439–4.585) 0.625 NA NA
pKPS 0.991 (0.960–1.020) 0.545 NA NA
Frontal 0.486 (0.193–1.213) 0.122 NA NA
Temporal 1.396 (0.518–4.067) 0.521 NA NA
Parietal 6.935 (1.249–130.091) 0.070 NA NA
Occipital 0.327 (0.041–2.085) 0.236 NA NA
Insular 0.588 (0.162–2.216) 0.416 NA NA
Corpus callosum 0.452 (0.012–3.245) 0.980 NA NA
Left 1.120 (0.458–2.729) 0.802 NA NA
Right 0.763 (0.309–1.893) 0.556 NA NA
Bilateral 2.189 (0.306–43.891) 0.493 NA NA
Radscore 5941.499 (239.983–336406.47) <0.001 5941.499 (239.983–336406.47) <0.001
February 2022 | Volume 12 | Article
OR, odd ratio; CI, confidence interval; NA, not applicable.
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published researches, the nomogram only including Radscore
represented the favorable ability to predict the long OS patients
with 0.919 of the AUC in the validation set and these features
from the T1C sequence had a greater impact on OS stratification,
although we merely cared about preoperative features to stratify
the OS of GBM patients.

However, our study still has some limitations. Firstly, this was
not a multicenter study, although we had independently
validated the model. More datasets from multimedical centers
are needed to independently validate the robustness and
repeatability of the radiomics nomogram. Second, although
with high efficiency and sparsity, the combination method of
Frontiers in Oncology | www.frontiersin.org 8
the t-test and LASSO regression may be less stable when a large
number of features were involved in the model. Other feature
selection methods should be investigated in future work. Finally,
these MRI images come from different imaging scanners and
models, which may cause heterogeneity bias. In order to avoid
this situation, all MRI images involved in the study were
normalized and resampled before feature extraction. The same
scanner and model are expected for MRI images in future
researches for the convenience of image processing.

In conclusion, to help neurosurgeons make better
preoperative planning and patient education, our research
developed and validated a radiomics nomogram based on
A B

FIGURE 6 | The calibration curves of the radiomics nomogram for the training cohort (A) and validation cohort (B). It showed the agreement between observed
probabilities and the nomogram-estimated probabilities.
A B

FIGURE 5 | The AUCs of the radiomics nomogram for the training cohort (A) and validation cohort (B). The results demonstrated that the radiomics nomogram
performed well in both groups with favorable sensitivity and specificity.
February 2022 | Volume 12 | Article 758622
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multiparameter MRI imaging. The presented radiomics
nomogram, as a noninvasive tool, achieved satisfactory
preoperative prediction of the individualized survival
stratification of GBM patients.
Frontiers in Oncology | www.frontiersin.org 9
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