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Abstract

China has been troubled by high concentrations of fine particulate matter (PM2.5) for many

years. Up to now, the pollutant sources are not yet fully understood and the control approach

still remains highly uncertain. In this study, four month-long (January, April, July and October

in 2015) WRF-Chem simulations with different sensitivity experiments were conducted in

the Yangtze River Delta (YRD) region of eastern China. The simulated results were com-

pared with abundant meteorological and air quality observations at 138 stations in 26 YRD

cities. Our model well captured magnitudes and variations of the observed PM2.5, with the

normal mean biases (NMB) less than ±20% for 19 out of the 26 YRD cities. A series of sensi-

tivity simulations were conducted to quantify the contributions from individual source sectors

and from different regions to the PM2.5 in the YRD region. The calculated results show that

YRD local source contributed 64% of the regional PM2.5 concentration, while outside trans-

port contributed the rest 36%. Among the local sources, industry activity was the most signif-

icant sector in spring (25%), summer (36%) and fall (33%), while residential source was

more important in winter (38%). We further conducted scenario simulations to explore the

potential impacts of varying degrees of emission controls on PM2.5 reduction. The result

demonstrated that regional cooperative control could effectively reduce the PM2.5 level. The

proportionate emission controls of 10%, 20%, 30%, 40% and 50% could reduce the regional

mean PM2.5 concentrations by 10%, 19%, 28%, 37% and 46%, respectively, and for places

with higher ambient concentrations, the mitigation efficiency was more significant. Our study

on source apportionment and emission controls can provide useful information on further

mitigation actions.
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Introduction

Fine particulate matter (PM2.5) pollution in China has drawn sustained attention in recent

years [1–6]. Human exposure to high PM2.5 can lead to adverse health impacts on cardiovascu-

lar and respiratory system [7–9]. Light extinction components in PM2.5 can seriously impair

visibility, regarded as the dominant contributors to regional haze [6, 10–13]. In addition,

PM2.5 can influence climate, via the direct effect of scattering/absorbing radiation and the indi-

rect effect of changing cloud properties [14–16]. The Yangtze River Delta (YRD) region is one

of the most PM2.5 polluted regions in China [17–20]. The annual mean PM2.5 concentration

averaged for the YRD region is 70 μg m-3 in 2013, 100% higher than the national grade II stan-

dard at 35 μg m-3. Due to the continuous improvement efforts of local environmental authori-

ties in recent years, the anthropogenic PM2.5 emissions has been reduced by ~30% [21], which

significantly result in the PM2.5 concentration decreasing (~30%) during 2013 to 2017. Even

so, more than 90% of the YRD cities still failed to meet the guideline.

PM2.5 pollution is jointly affected by meteorology and pollutant emissions [16,22]. Some

typical synoptic situations improve the air quality, such as high mixing layer, strong wind and

rich precipitation, in favor of diffusing or depositing the PM2.5 [23], but this is uncontrollable.

We would pay more attention to source apportionment and emission control for the effective

atmospheric environmental governance. Chemistry model is a useful tool to bridge the pollut-

ant emissions with concentrations [24–30]. For instance, an updated CMAQ model was

employed to simulate the PM2.5 in China for the whole year of 2013, using a newly developed

inventory of anthropogenic emissions (MEIC) [31]. They proved the ability of the CMAQ

model to reproduce the severe air pollution in China using the MEIC inventory, and empha-

sized the risk of human exposure to high level PM2.5. Also using CMAQ, the server haze pollu-

tions occurred in eastern and central China in January 2013 were successfully reproduced in

consideration of heterogeneous chemistry in secondary PM2.5 formation [32]. Focused on the

sources of PM2.5, many model studies e.g. [31,33,34] agreed that local industrial and residential

emissions as well as external transport considerably contributed to regional PM2.5 pollution

episodes. In addition to the general sources, some studies e.g. [35] pointed out that ship emis-

sions could contribute up to 11% to the PM2.5 concentrations along the shoreline of Bohai

Rim region of China. The chemistry model was also applied to explore the potential impacts of

emission control measures on PM2.5 reduction. For example, in the Guanzhong basin, esti-

mated by WRF-Chem model, a 50% reduction of residential emissions could reduce the winter

surface black carbon particles by up to 25% [25]. During the Second World Internet Confer-

ence in Hangzhou, the implemented emission control measures could effectively reduce the

PM2.5 level by 7–25%, based on simulating results [36].

In this study, we employed a regional chemical model WRF-Chem to simulate PM2.5 concen-

trations in the YRD region for the year of 2015. We drove the simulation using the best currently

available emission inventory of anthropogenic emissions. We evaluated the model performance

by comparing simulated results with meteorological and air quality observations from 138 stations

in 26 YRD cities. The aim of our study is to identify the source contributions from individual sec-

tors and from different regions to PM2.5 concentration in the YRD region, and to explore the

potential impacts of varying degrees of emission controls on PM2.5 reduction.

Method and data

Model

A specific version of the WRF-Chem model (Weather Research and Forecast model coupled

with chemistry module, [37,38]) was applied to simulate PM2.5 pollution in the YRD region.
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This version of the model was developed by Li et al., [39–42], including updated gas-phase

chemical [39,41], photochemistry [40], and aerosol modules [42,43]. This model has been

applied to simulate PM2.5 and O3 pollutions in China multiple times and its performance was

proved to be satisfactory e.g. [44,45].

We set two nested domains with horizontal resolutions of 36 km and 12 km, respectively,

and the inner domain covered the YRD region (see Fig 1). Vertical layers extended from the

surface to 50 hPa (28 layers), with 7 layers in the bottom one km to emphasize boundary layer

processes. The meteorological initial and boundary conditions were derived by the National

Centers for Environmental Prediction (NCEP) FNL Operational Global Analysis data (https://

rda.ucar.edu/datasets/ds083.2/, last access: 18 November, 2018). The chemical initial and

boundary fields were provided by a global chemical model (MOZART, Model for Ozone and

Related chemical Tracers) [46]. We conducted four month-long simulations (January, April,

July and October) to represent the typical meteorological and air conditions for each of the

four seasons in 2015. Each month-long simulation was initialized for the last five days of the

previous month.

Fig 1. The simulation domain and the locations of the 26 cities in the YRD region. The area of bold blue line indicates the YRD region. The red and black bars

are the concentrations of simulated and observed PM2.5 in each YRD city. The pie charts show sources of the simulated seasonal PM2.5 in four typical cities

(Shanghai, Nanjing, Hangzhou and Hefei), including the relative contributions of local industry, transportation and residential sources, transport from outside of

the YRD region, and other sources (power plants and open biomass burning).

https://doi.org/10.1371/journal.pone.0208944.g001
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Emissions

Pollutant emissions, including anthropogenic, biogenic and open biomass burning emissions,

are important inputs for chemistry simulation. We obtained anthropogenic emissions from

the Multi-resolution Emission Inventory for China (MEIC) developed by Tsinghua University

(http://www.meicmodel.org, [21]). MEIC is the most updated available emission inventory for

China, which included monthly emissions from industry, power generation, transportation,

residential and agricultural activities, and had a native resolution of 0.25˚. We averaged the

MEIC emission estimates for the years of 2014 and 2016 to represent that for 2015, because the

data for 2015 is not available at present. S1 Fig shows the spatial distributions of anthropogenic

SO2, NOx, VOCs and PM2.5 emissions in the YRD region. Anthropogenic actives strongly con-

tributed to emissions in urban areas of central YRD, such as Zhenjiang, Changzhou, Wuxi,

Suzhou and Shanghai.

Biogenic emissions were calculated by the Model of Emissions of Gas and Aerosols from

Nature (MEGAN, [47]). The MEGAN is coupled into the WRF-Chem model, and provides

on-line calculation of biogenic emissions. To drive MEGAN, the leaf area index (LAI), the

plant function types (PFTs) and emission factors (EFs) are needed. The LAI and PFTs are

based on Moderate Resolution Imaging Spectroradiometer (MODIS) products [48], and the

EFs are taken from dominant species from Guenther et al. [47]. Open biomass burning emis-

sions were quantified by the Fire INventory from NCAR (FINN, https://www2.acom.ucar.

edu/modeling/finn-fire-inventory-ncar, last access: 18 November, 2018), which is based on

satellite observations of active fires and land cover [49,50].

Surface PM2.5 and meteorological observations

To a thorough evaluation of model performance, the air quality and meteorological observa-

tions with sufficient spatiotemporal coverage and resolution are need. We obtained surface

hourly PM2.5 observations from 134 stations in 26 cities over the YRD region in January,

April, July and October 2015 from the publishing website of China National Environmental

Monitoring Center (http://datacenter.mep.gov.cn, last access: 18 November, 2018). Locations

of all these cities can be found in Fig 1. The bars corresponding to each city in Fig 1 indicate

the observed annual mean PM2.5 concentration, which was 57.6 μg m−3 averaged for the YRD

region and exhibited remarkable variations in sub-regions. The Jiangsu province was the most

polluted area, where the averaged PM2.5 concentration reached 62.4 μg m−3. The Zhejiang

province was relatively less polluted with the averaged PM2.5 concentration of 52.6 μg m−3.

Even more noteworthy is that all the cities exceeded the national grade II standard of PM2.5 at

35 μg m-3, except the island city Zhoushan in Zhejiang province.

We collected meteorological data with temperature, relative humidity and wind involved at

4 surface stations in Shanghai, Nanjing, Hangzhou and Hefei (see Table 1) (http://www.

meteomanz.com, last access: 18 November, 2018). Meteorological conditions were generally

mild and humid over the YRD region, with the annual mean temperature of 16.8–18.2˚C and

the relative humidity of 63–78%.

Mitigation efficiency

In this study, we would explore the potential impacts of emission controls on PM2.5 reduction

later. To better quantify the effects of different emission reduction schemes, we defined mitiga-

tion efficiency (ME) as the PM2.5 reduction ratio divided by the emission reduction ratio, as
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shown in Eq (1).

ME ¼
ðC0 � C1Þ=C0

ðE0 � E1Þ=E0

ð1Þ

where, ME is the mitigation efficiency, E0 is the initial anthropogenic emission, E1 is the

anthropogenic emission in certain emission control scenario, C0 and C1 are the simulated

PM2.5 concentrations using the emission E0 and E1, respectively.

Results

Model evaluation

Hourly observations of meteorology at 4 sites (Table 1) and PM2.5 at 134 sites (Table 2) were

compared with the simulated results for validation.

Fig 1 compares the simulated and observed annual mean PM2.5 concentrations at each of the

26 YRD cities. We averaged the grid concentrations matching at individual observation station

level in each city to represent the city’s value. The simulated annual mean PM2.5 concentration

was 61.8 μg m−3 averaged for the YRD region, 7% higher than the observed 57.6 μg m−3 (see Fig

1 and Table 2). Fig 2 shows the simulated and observed hourly PM2.5 concentrations in each of

the 26 YRD cities. The seasonal mean simulated PM2.5 was the highest in winter and the lowest

in summer, consistent with the observations. On the scale of individual cities, our model well

reproduced the observed PM2.5 concentrations in most cities, with the normal mean biases

(NMB) less than ±20% for 19 out of the 26 cities (Table 2). However, the model systematically

overestimated the observed PM2.5 in Shanghai (NMB = 13%), Jiangsu (NMB = 11%) and Anhui

(NMB = 20%). The overestimation has also been found in other simulation studies in China,

but our difference was relatively smaller compared with the previous results [51], which is partly

because our study used the latest emission inventory. In addition, our model incidentally over-

estimated the summertime PM2.5 in Shanghai, Jiangsu and Zhejiang (see Fig 2), mainly because

of the omission of precipitation prediction.

Table 1. The simulated and observed meteorological parameters in the YRD region.

Mean r NMB RMSE

Simulated Observed

Shanghai (31.42˚N, 121.45˚E)

Temperature (˚C) 17.5 17.1 0.95 2% 2.7

Relative humidity (%) 78 70 0.71 11% 18

Wind speed (m s-1) 3.7 2.8 0.46 33% 1.8

Nanjing (31.93˚N, 118.90˚E)

Temperature (˚C) 16.8 16.5 0.96 6% 2.6

Relative humidity (%) 70 71 0.67 -1% 19

Wind speed (m s-1) 3.9 2.7 0.39 48% 2.2

Hefei (31.78˚N, 117.30˚E)

Temperature (˚C) 18.2 16.9 0.96 8% 2.9

Relative humidity (%) 63 72 0.65 -13% 21

Wind speed (m s-1) 3.2 2.1 0.50 52% 1.8

Hangzhou (30.23˚N, 120.17˚E)

Temperature (˚C) 18.2 17.6 0.94 3% 2.9

Relative humidity (%) 73 71 0.71 3% 18

Wind speed (m s-1) 2.8 2.3 0.35 25% 1.6

https://doi.org/10.1371/journal.pone.0208944.t001

Modeling of PM2.5 in the YRD region

PLOS ONE | https://doi.org/10.1371/journal.pone.0208944 December 7, 2018 5 / 15

https://doi.org/10.1371/journal.pone.0208944.t001
https://doi.org/10.1371/journal.pone.0208944


Fig 3 shows the scatter plots of simulated vs. observed hourly PM2.5 in each of the 26 YRD

cities. The results show that our model moderately captured the spatial and temporal varia-

tions of PM2.5 in the YRD region. The correlation coefficient (r) was calculated as 0.49 (p-

value less than 0.001) for the whole YRD region, ranging from 0.36 to 0.57 in different cities

(p-value less than 0.001). Fig 3 also shows the regression slopes, which ranged from 0.90 to

1.20 for most cities and again verified the capability of the model in predicting the magnitude

of PM2.5.

Simulated PM2.5 in the YRD region

Fig 4 shows the spatial distributions of the simulated seasonal mean PM2.5 over the YRD

region. PM2.5 level in winter was the highest in the year, with the simulated PM2.5 reaching

80–100 μg m−3 in Nanjing, Zhenjiang, Changzhou, Wuxi, Suzhou and all cities in Anhui. The

concentrations even exceeded 100 μg m−3 in downtowns of Shanghai and Hefei. The phenom-

enon can be mainly explained by low boundary layer and abundant transported PM2.5 from

Table 2. The simulated and observed PM2.5 concentrations in the YRD region.

City Mean (μg m-3) r NMB RMSE

Simulated Observed

Shanghai 65.4 57.7 0.51 13% 43.0

Nanjing 70.7 61.2 0.50 16% 43.2

Changzhou 76.4 65.0 0.51 18% 46.7

Zhenjiang 74.5 62.0 0.50 20% 42.7

Wuxi 77.3 66.9 0.49 16% 44.2

Suzhou 77.5 64.1 0.45 21% 45.8

Nantong 60.7 63.8 0.51 -5% 43.4

Taizhou 63.7 69.2 0.56 -8% 42.3

Yangzhou 69.1 55.9 0.51 24% 41.4

Yancheng 55.8 53.4 0.56 4% 39.5

Jiangsu average 69.5 62.4 0.51 11% 43.3

Hefei 85.3 68.2 0.49 25% 48.6

Chuzhou 66.4 65.2 0.41 2% 43.3

Ma’anshan 70.8 68.0 0.48 4% 42.2

Wuhu 72.7 60.6 0.46 20% 42.4

Tongling 66.9 58.1 0.44 15% 39.9

Xuancheng 57.6 52.4 0.41 10% 41.2

Chizhou 64.0 35.4 0.42 81% 44.3

Anqing 67.5 50.6 0.40 33% 38.4

Anhui average 68.9 57.3 0.45 20% 42.6

Hangzhou 57.6 57.8 0.46 0% 36.7

Huzhou 55.4 60.7 0.42 -9% 41.9

Jiaxing 56.2 56.1 0.50 0% 36.1

Shaoxing 49.4 57.4 0.47 -14% 37.8

Jinhua 43.7 59.4 0.36 -27% 43.4

Ningbo 40.8 48.5 0.50 -16% 36.8

Taizhou 35.1 47.5 0.55 -26% 32.8

Zhoushan 26.3 33.0 0.57 -20% 26.5

Zhejiang average 45.6 52.6 0.50 -13% 36.8

YRD average 61.8 57.6 0.49 7% 41.2

https://doi.org/10.1371/journal.pone.0208944.t002
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North China by monsoon in winter. Summer was the least polluted season in the year, mainly

because of high mixing height and rich precipitation. PM2.5 concentrations in most of the Zhe-

jiang province were less than 40 μg m−3, and the areas with the concentrations of 50–70 μg

m−3 were limited in Shanghai, Anhui and Southern Jiangsu. The spatial patterns of PM2.5 in

spring and fall were similar. Higher PM2.5 concentration of 70–80 μg m−3 occurred in Hefei,

Zhenjiang, Changzhou, Wuxi, Suzhou and Shanghai which were related to strong local emis-

sions (see S1 Fig) [21].

We also analyzed the spatial distributions of seasonal mean PM2.5 components, including

sulfate, nitrate, ammonium, element carbon (EC), primary organic aerosol (POA), secondary

organic aerosol (SOA) and other components (i.e. primary PM2.5 mostly from dust) (see Fig

5). Secondary inorganic components (sulfate, nitrate and ammonium) and primary anthropo-

genic components (EC and POA) had similar seasonal variation to the total PM2.5, which was

the highest in winter and the lowest in summer. As mentioned above, higher concentrations of

secondary inorganic components and primary anthropogenic components in winter were

mainly due to the lower mixing height and transport effects from North China. In contrast,

SOA showed a different pattern, and the highest SOA occurred in summer. As major precur-

sors of SOA, biogenic VOC emissions abundantly enhanced during summertime, causing the

Fig 2. The simulated (red) and observed (black) PM2.5 concentrations (μg m-3) in 26 cities over the YRD region.

https://doi.org/10.1371/journal.pone.0208944.g002
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SOA concentration in summer 80% higher than the annual mean value. Nevertheless, we

should note that uncertainties exist in sulfate and SOA simulations. Current models frequently

underestimate sulfate especially in haze events. This may in part due to the omission of hetero-

geneous formation of sulfate [52,53] in chemical models. Li et al. [54] evaluated this process

might contribute 20% of the sulfate in non-polluted days and the contribution would greatly

enhanced as ambient PM2.5 increasing. In addition, current chemical models also tend to

underestimate SOA due to imperfect understanding of its sources and formation pathways

[55].

Fig 3. Scatter plots of simulated versus observed hourly PM2.5 concentrations at the 26 cities in the YRD region. Also shown are the

reduced-major axis regression lines (solid lines), the regression slopes (s) and correlation coefficients (r). Grey dashed lines indicate the 1:1

ratio.

https://doi.org/10.1371/journal.pone.0208944.g003

Modeling of PM2.5 in the YRD region

PLOS ONE | https://doi.org/10.1371/journal.pone.0208944 December 7, 2018 8 / 15

https://doi.org/10.1371/journal.pone.0208944.g003
https://doi.org/10.1371/journal.pone.0208944


PM2.5 concentrations from different sources

We conducted intensive sensitivity simulations to quantify the contributions of individual

sources to PM2.5 concentration in the YRD region, by turning off the emissions from different

sectors (industry, power generation, residential, transportation, and open biomass burning in

the YRD region), in turn and all at once. Other simulation settings were the same as the base

case.

On an annual scale, industry was the largest local source, contributing 27% to the PM2.5

concentration averaged for the YRD region, followed by residential (19%) and transportation

activities (15%). However, the PM2.5 source characters exhibited remarkable variations in sub-

regions in different seasons. Pie charts in Fig 1 show the corresponding contributions of each

source (5 sources) to seasonal mean (4 seasons) PM2.5 concentrations in Shanghai, Nanjing,

Hangzhou and Hefei (the capital cities of each province). Industry was the most important

local source to the PM2.5 in all these four cities in summer (26–46%), fall (33–41%) and spring

(24–30%), which was mainly due to the relative large emissions from coal-based industries in

the region. In winter, the residential activities turned to be the dominant local contributor

(28–45%), mostly caused by fossil-fuel and biofuel usage for domestic heating in the cold sea-

son. Transportation was also a considerable source of PM2.5 in the YRD region, which was the

second largest source in summer (17–26%), fall (13–24%) and spring (14–18%), and even con-

tributed 4–14% in winter. Other sources, power generation and open biomass burning, jointly

contributed 3% year-round. At a city-level, contributions from industry and transportation

were more obvious in Hangzhou (35% and 20%, respectively), compared with those in the

other three cities (27–29% and 13–18%, respectively). Residential source played a more impor-

tant role in Hefei, which was ~2 times as high as that in other cities.

In addition to the local sources, transport from outside of the YRD region (turned off the

emissions from all sectors in the YRD region) also considerably contributed to the PM2.5 con-

centrations in spring (40–46%) and winter (32–44%), mainly because of the spring dust storm

and winter monsoon transport, respectively. On an annual mean basis, outside sources con-

tributed 36% to the PM2.5 concentration averaged for the YRD region, nearly half of the local

sources’ contribution. It indicated the importance of both local emissions and external

Fig 4. Seasonal variations of the simulated PM2.5 concentrations in the YRD region.

https://doi.org/10.1371/journal.pone.0208944.g004
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Fig 5. Seasonal variations of the simulated PM2.5 components in the YRD region.

https://doi.org/10.1371/journal.pone.0208944.g005

Modeling of PM2.5 in the YRD region

PLOS ONE | https://doi.org/10.1371/journal.pone.0208944 December 7, 2018 10 / 15

https://doi.org/10.1371/journal.pone.0208944.g005
https://doi.org/10.1371/journal.pone.0208944


transport to the PM2.5 pollution in the YRD region and emphasized the necessity of regional

cooperative pollution control.

Impacts of different emission controls on PM2.5 reduction

We further conducted 5 scenario simulations to explore the potential impacts of emission con-

trols on PM2.5 reduction. Based on the standpoint of regional cooperative control, we assumed

all anthropogenic emissions in the YRD region as well as its circumjacent regions were propor-

tionately reduced by 10%, 20%, 30%, 40% and 50%, respectively. Other simulation settings

were the same as the base case.

S2 Fig compares spatial distributions of the simulated annual mean PM2.5 concentrations

in the YRD region under different emission control scenarios, as well as the corresponding

concentration changes. The PM2.5 concentration would effectively be reduced by mitigating

anthropogenic emissions, and larger reductions tend to occur at the place of higher ambient

concentrations (Shanghai, Anhui and southern Jiangsu). Table 3 shows the variations of miti-

gation efficiency of different schemes averaged for all YRD cities, and demonstrates an approx-

imate linear correlation between anthropogenic emission reduction and the PM2.5

concentration decrease. To be specific, a 10% reduction of anthropogenic emission caused a

10% reduction of PM2.5 concentration. If the initial emission was reduced by 20%, 30%, 40%

or 50%, the corresponding PM2.5 concentration would decreased by 19%, 28%, 37% or 46%,

respectively. The calculated ME (as defined in Method and Data) was in the range of 0.92 to

1.00, slightly decreased as the emission reduction enhanced. The results suggested that the

anthropogenic emission controls at varying degrees between 10–50% could all effectively

reduce the PM2.5 concentration. The ME would slow down along with the declining initial

anthropogenic emission, mainly because of the background PM2.5 concentrations and the con-

tributions from non-anthropogenic (biogenic and open biomass burning) sources.

Discussion

The YRD region has been arousing more and more attention in recent year, and the heave air

pollution issue manifested along with the fast economic development. We summarized the

main findings of this study and proposed corresponding mitigation suggestions as follows. 1)

We quantified the contribution to PM2.5 pollution in the YRD region was 64% from the local

sources, and the rest 36% was from circumjacent regions, which emphasized the importance

of both local emissions and external transport. The result highlights the necessity of regional

cooperative control in environmental policy making. 2) Turning our attention to the YRD pol-

lution, we found the dominant contributor was different from other high-polluted regions in

China. In the Beijing-Tianjin-Hebei region, residential sources dominated [21], while in the

Table 3. The simulated PM2.5 in the YRD region under different emission control scenarios.

Base Scenarios

1 2 3 4 5

Emission reduction ratio - 10% 20% 30% 40% 50%

PM2.5 concentration (μg m-3) a 61.8 55.5 50.0 44.4 38.8 33.4

PM2.5 concentration reduction ratio - 10% 19% 28% 37% 46%

Mitigation efficiency b - 1.00 0.96 0.94 0.93 0.92

a The simulated annual mean PM2.5 concentration averaged for the 26 cities in the YRD region.
b The Mitigation efficiency is defined as the PM2.5 reduction ratio divided by the emission reduction ratio.

https://doi.org/10.1371/journal.pone.0208944.t003
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YRD region we indicated industry contributed about half of the local PM2.5 concentration.

Thus, to pointedly reduce air pollution in the YRD region, the effective method might be con-

trolling pollutant emission from industry activities in priority order, potentially via industrial

structure innovation, emission control techniques development and fossil fuels replacement

[56]. Compared with residential source, industrial pollutant control is relatively more imple-

mentable, since the former includes massive emissions from necessity for human life and

sometimes detrimentally from fugitive sources. 3) Our scenario simulations give us the confi-

dence that the PM2.5 pollution could be effectively reduced as long as the mitigation actions

bring into operation. We will always receive positive feedback from different degrees of emis-

sion controls, which is quite different with the O3 governance. However, this study presented a

big rough picture about the pollutant gross-control in the YRD region, and the emission con-

trol scenarios were supposed to proportionately reduce the pollutant emissions from all sec-

tors. Based on the effects of gross-control as the first step, further studies are still needed to

formulate and optimize implementable mitigation actions down to sector-specific level for

individual pollutants.

Conclusion

In this study, the WRF-Chem model well captured the magnitudes and variations of observed

PM2.5, with the normal mean biases less than ±20% for 19 out of the 26 cities from 134 ground

stations. Based on the confidence built by the model evaluation, a series of sensitivity simula-

tions were conducted to quantify the contributions from individual source sectors and from

different regions to PM2.5 in the YRD region. The calculated results show that local sources

and surrounding transport contributed 64% and 36% to the annual mean PM2.5 concentration,

respectively, which indicated the importance of both local emissions and external transport to

the PM2.5 pollution. Among the local sources, industry activity was the most significant sector

in spring (25%), summer (36%) and fall (33%), while residential source was more important in

winter (38%). We further conducted 5 scenario simulations to explore the potential impacts of

varying degrees of emission controls on PM2.5 reduction, in which all anthropogenic emissions

in the YRD region as well as its circumjacent regions were proportionately reduced by 10%,

20%, 30%, 40% and 50% respectively. The result demonstrated that regional cooperative con-

trol could effectively reduce the PM2.5 level. A preliminary emission control of 10% could

reduce the PM2.5 concentration by 10%. Further emission controls would continue to reduce

the concentration approximate linearly, and for places with higher ambient concentrations,

the mitigation efficiency was more significant.

Supporting information

S1 Fig. Annual mean emissions of SO2, NOx, VOCs and PM2.5 in the YRD region for the

year of 2015 from MEIC emission inventory.

(TIF)

S2 Fig. The simulated PM2.5 in the YRD region under different emission control scenarios

(left panel), and the concentration changes of PM2.5 compared with the results of the BASE

simulation (right panel).

(TIF)
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