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MaturemicroRNAs (miRNAs) are short, single-stranded RNAs
that bind to target mRNAs and induce translational repression
and gene silencing. Many miRNAs discovered in animals have
been implicated in diseases and have recently been pursued as
therapeutic targets. However, conventional pharmacological
screening for candidate small-molecule drugs can be time-
consuming and labor-intensive. Therefore, developing a
computational program to assist mature miRNA-targeted
drug discovery in silico is desirable. Our previous work
(https://doi.org/10.1002/advs.201903451) revealed that the
unique functional loops formed during Argonaute-mediated
miRNA-mRNA interactions have stable structural characteris-
tics and may serve as potential targets for small-molecule drug
discovery. Developing drugs specifically targeting disease-
related mature miRNAs and their target mRNAs would avoid
affecting unrelated ones. Here, we present SMTRI, a convolu-
tional neural network-based approach for efficiently predicting
small molecules that target RNA secondary structural motifs
formed by interactions between miRNAs and their target
mRNAs.Measured on three additional testing sets, SMTRI out-
performed state-of-the-art algorithms by 12.9%–30.3% in AUC
and 2.0%–18.4% in accuracy. Moreover, four case studies on
the published experimentally validated RNA-targeted small
molecules also revealed the reliability of SMTRI.
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INTRODUCTION
Recent studies about the structural and functional information of
RNAs1–3 have put them in the spotlight to replace the long-domi-
nating proteins as promising therapeutic targets.4 MicroRNA
(miRNA) is now a well-validated target of all RNA classes.5–7 Mature
miRNA is a type of short (�22 nt) single-stranded non-coding RNA
molecule that integrates with Argonaute protein to form miRNA-
induced silencing complex (miRISC), which then negatively regulates
post-transcriptional gene expression by either degrading mRNA or
inhibiting mRNA translation.8 Diseases caused by miRNA-induced
mRNA silencing can be rescued by screening drug-like molecules spe-
M
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cifically targeting those miRNAs to alter their abundance and adjust
downstream translation efficiency accordingly.9

Various approaches have been applied to screen small molecules
(SMs) targeting miRNAs. Wet lab-based methods include SM micro-
array screening, high-throughput screening, and fragment-based
screening.10,11 Computational methods, like artificial intelligence
(AI)-assisted tools, have also recently been developed to promote
miRNA drug discovery by predicting SM-miRNA associations in sil-
ico. For example, Jamal et al.12 were the pioneers in employing ma-
chine learning (ML) models (naive Bayes and random forest) to
mine miR-21 inhibitors from large SM datasets. Both classifiers
were trained with SMs represented in two-dimensional (2D) molecu-
lar descriptors and produced a prediction accuracy of nearly 0.80.
Wang et al.13 also used the random forest algorithm to predict SM-
miRNA association. Their model RFSMMA utilized the similarities
of SMs and miRNAs as feature vectors to represent SM-miRNA pairs,
which were then fed into a random forest classifier to train a
predictive model. Zhao et al.14 presented a symmetric non-negative
matrix factorization model for SM-miRNA association prediction
(SNMFSMMA). First, they applied symmetric non-negative matrix
factorization to performmatrix decomposition on the integrated sim-
ilarity matrixes of SMs and miRNAs, respectively. Second, they calcu-
lated the Kronecker product of the newly integrated similarity ma-
trixes from the previous step and obtained the SM-miRNA pair
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Figure 1. Overview of SMTRI workflow

(A) Data collection from public databases and feature engineering of RNA motif-SM associations. (B) Deep learning model construction. (C) Training procedures, case

studies, and launch of online web server.

Molecular Therapy: Nucleic Acids
similarity. Finally, they implemented regularized least squares to map
the SM-miRNA pairs to the association probabilities. More recently,
some other studies attempted to use deep learning models for this
task. Shen et al.15 proposed a joint learning computational framework
(SMAJL) built on the restricted Boltzmann machine to predict SM-
miRNA associations. SMAJL used enhancing matrix completion to
obtain vector features from the network representations of SM clin-
ical and miRNA functional similarities. Next, it extracted SM chem-
ical structural features andmiRNA secondary structural features from
RDKit and Pse-in-One. All acquired features were fed into the joint
learning model to make predictions. Oliver et al.16 developed a tool,
RNAmigos, which took graph representations of RNA structures to
predict binding SMs. A relational graph convolutional network was
used as the core model to operate on the RNA representation encoded
by an augmented base pairing network and compute node embed-
dings. The embeddings underwent a pooling process and a multi-
layer perceptron to generate a molecular fingerprint for a potential
SM. The fingerprint was then used to search a library of SMs for active
binders.

Disney et al. have proposed a miRNA biogenesis-dependent method
to develop SM drugs that directly degrade the miRNAs.17 However,
few studies have proposed strategies targeting disease-specific
miRNA-mRNA interactions. We tried to develop a miRNA biogen-
esis-independent method that targets the downstream after miRNA
biogenesis (i.e., miRNA-mRNA interactions). Previously, our work
revealed that mature miRNAs and their target mRNAs exhibit struc-
tural uniqueness and high-stability loops (e.g., bulge loop, internal
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loop), which could be postulated as therapeutic targets for drug dis-
covery in translation repression-related diseases.9 In this paper, build-
ing upon the previous foundation, we developed biogenesis-indepen-
dent algorithms incorporating a convolutional neural network
(CNN) based model for predicting SMs that directly target the
RNA structural motifs formed by miRNA-mRNA interactions. We
called the program SMTRI (Small Molecules Targeting miRNA-
mRNA Interactions) (Figure 1). Unlike most other AI methods that
nonselectively encoded the whole RNA sequence to predict binding
SMs,12–15 SMTRI selectively used the pocket region of an RNA
sequence—RNA motifs—eliminating much useless information.
The program extracted RNAmotifs in letter-bracket notations, which
retain the nucleic acid compositions and order information in the tar-
gets. The dataset of experimentally verified RNA motif-SM associa-
tions used in this model was downloaded from RNALigands,18

PDB,19 PubChem,20 and RPocket21 databases. In addition, the pro-
gram implemented both deep learning and statistical methods in
feature engineering to fully represent the RNAmotifs and SMs in nu-
merical forms.

To evaluate the performance of SMTRI, we compared our method
with state-of-the-art (SOTA) algorithms as well as tested its ability
in case studies. The results showed that SMTRI surpassed the other
methods on independent testing sets for predicting true targeting
SMs. To promote and facilitate the usage of SMTRI, a user-friendly
web server was launched at http://www.smtri.net/. Our program nar-
rows down the range of SMs that require experimental verification,
which plays a guiding role in future research and experiments.

http://www.smtri.net/


Figure 2. The detailed deep learning framework implemented in SMTRI

(A) The schematic view of RNA motif-SM inputs. (B) The schematic view of feature encoding methods for RNA motifs. (C) The schematic view of the CNN-based model.
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RESULTS
In this study, we obtained RNA motif-SM association data from pub-
lic databases and curated valid ones to construct positive and negative
samples (described in materials and methods). Then, we transformed
the data into numerical forms by extracting sequential and structural
features from RNA motifs and SMs, respectively, and concatenating
them linearly. In this process, a long short-term memory-based
stacked autoencoder (LSTM-SAE) was employed to learn latent
high-level features from the sequences of RNA motifs, while a statis-
tical approach was established to calculate features from their nucleic
acid compositions. The molecular fingerprints and descriptors were
used to represent SMs in feature vectors. Next, we trained a CNN-
based model to predict the binding probability scores of RNA
motif-SM combinations (Figure 2). The reason for choosing CNNs
as the core model rather than recurrent neural networks, LSTMs,
gated recurrent units, and other complex models is that the latter per-
formed much worse on our feature data or were too complicated for
our data volume. We evaluated the model’s predictive ability on three
additional testing datasets and compared its performance with three
SOTA algorithms to demonstrate the effectiveness of our approach.
Furthermore, we conducted four case studies with specific examples
that proved the robustness of SMTRI. Finally, we launched our pro-
gram on the web server incorporating the above CNN-based model
and two SM databases.

RNA motif-SM associations

When disease-causing miRNA interacts with its target mRNA, the
conserved seed region (mostly situated at positions 2–7 from the
miRNA 50 end) of miRNA has completely complementary base
pairing to the 30 UTR of target mRNA. The rest of the miRNA
sequence generally has partially complementary base pairing to
mRNA, leaving unpaired bases to form cleft-like motifs that SMs
can bind with (Figure S1A). Identifying those ligand-binding
pockets in RNA structures is critical for RNA-targeted SM drug
discovery. We utilized RNA2222 to generate possible secondary
structural interactions between miRNA and its target mRNA in
dot-bracket notations. We then extracted the motifs in letter-bra-
cket notations from the interactions (Figure S2). Platforms like
RNALigands18 provided available RNA motif-SM associations or
structures of RNA-SM associations. We compiled RNA secondary
structural motifs and their associated targeting SMs from these da-
tabases for deep learning. Figure S1B illustrates the proportion of
different loops in all curated RNA motifs. Internal loops (59.09%)
and bulge loops (32.14%) accounted for a significant proportion
because they are most likely to be formed from the interactions be-
tween short mature miRNAs (�22 nt) and their target mRNAs.
Other loops (8.78%) included hairpin loops, exterior loops, and
multi-branch loops (Figure S1C). The associated SMs have relatively
concentrated properties (Figures S1D–S1G—for example, the mo-
lecular mass is between 450 and 650, and the number of atoms is
between 60 and 90. These molecular properties assisted in predict-
ing potential targeting SMs through deep learning.

Performance evaluation

To evaluate the prediction performance of SMTRI, an independent
testing set was held out for assessing the final model. We further
compared SMTRI with three SOTA algorithms—XGBoost, NB,12

and RFSMMA13—on three additional testing sets collected from
PDB,19 PubChem (AID: 2899),20 and RPocket,21 respectively. The
evaluation metrics involved area under the receiver operating charac-
teristic curve (AUC), accuracy, precision, recall, F1 score, Matthew’s
correlation coefficient (MCC), and kappa (Equations S1–S6).
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 3
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Table 1. The performance of SMTRI on an independent testing set

AUC Accuracy Precision Recall F1 score MCC Kappa

SMTRI 0.978 0.963 0.894 0.927 0.910 0.887 0.887
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A 5-fold cross-validation was implemented in training procedures to
fine-tune the model parameters. We randomly divided the known
RNA motif-SM associations into five equal parts; one part was
selected as the validating set in turn, and the remaining four parts
were regarded as the training samples. The corresponding receiver
operating characteristic curves in validation results were depicted
five times, and the average AUC values (0:963± 0:009) were taken
to evaluate the model (Figure S3). After that, we re-trained the model
with optimized parameters using all available data and tested it on an
independent testing set (82 positive samples, 324 negative samples).
The SMTRI model achieved good results (Table 1; Figure S4) in
AUC (0.978), accuracy (0.963), precision (0.894), recall (0.927), F1
score (0.910), MCC (0.887), and kappa (0.887).

We next compared the performance of SMTRI with XGBoost, NB,
and RFSMMA in the task of predicting RNA motif-SM associations.
These benchmark models were tuned using the training set by search-
ing the hyper-parameter spaces. With the optimal parameters, the
benchmarks and SMTRI were tested on three additional testing sets
from PDB, PubChem (AID: 2899), and RPocket, with 5-fold cross-
validation. Evaluation metrics with means and SDs were obtained
to assess their average performances on each testing set. The method-
ologies, including detailed parameter configurations for these
methods, were thoroughly documented in the supplemental informa-
tion. The comparative results were encapsulated in Tables 2, 3, and 4.

PDB testing set

The PDB set is a medium-sized testing set with 125 positive and 345
negative samples. SMTRI performed best in all metrics on this data-
set, leading to an increase in AUC by 18.8%–23.0%, an increase in ac-
curacy by 12.3%–13.4%, an increase in precision by 26.2%–27.0%, an
increase in recall by 11.4%–22.2%, an increase in F1 score by 18.3%–

23.7%, an increase inMCC by 27.7%–33.5%, and an increase in kappa
by 27.3%–33.0% (Table 2).

PubChem testing set

The PubChem set (AID: 2899) is a large testing set with 882 positive
and 2,600 negative samples. SMTRI ranked at the top in all metrics,
Table 2. The performance of SMTRI compared with other models on a PDB te

PDB AUC Accuracy Precision R

SMTRI 0.947 ± 0.087* 0.923 ± 0.072* 0.875 ± 0.173* 0.

XGBoost 0.759 ± 0.041 0.800 ± 0.032 0.613 ± 0.055 0.

NB 0.742 ± 0.052 0.794 ± 0.037 0.605 ± 0.062 0.

RFSMMA 0.717 ± 0.027 0.789 ± 0.020 0.610 ± 0.054 0.

The highest score in each column is indicated with an asterisk.
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leading to an increase in AUC by 24.9%–30.3%, an increase in accu-
racy by 7.5%–18.4%, an increase in precision by 12.5%–39.5%, an in-
crease in recall by 11.2%–39.4%, an increase in F1 score by 25.7%–
33.0%, an increase inMCC by 30.3%–46.1%, and an increase in kappa
by 31.4%–44.5% (Table 3).

RPocket testing set

The RPocket set is the smallest testing set, with only 28 positive and 72
negative samples. SMTRI dominated all metrics on this dataset, lead-
ing to an increase in AUC by 12.9%–24.2%, an increase in accuracy by
2.0%–11.0%, an increase in precision by 6.8%–17.4%, an increase in
recall by 6.0%–28.0%, an increase in F1 score by 5.2%–23.4%, an in-
crease in MCC by 8.9%–29.6%, and an increase in kappa by 7.0%–

28.6% (Table 4).

In general, SMTRI excels in predicting true positives across all three
testing sets. The true positive rate (recall) of SMTRI is significantly
higher than other methods, which is an important indicator for
downstream drug discovery. The results demonstrated that SMTRI
has visible advantages compared with other models and is superior
in predicting RNA motif-SM associations.

Case studies

To further evaluate the discrimination ability of SMTRI, we carried
out four case studies based on the data of RNA-SM interactions
experimentally verified in the publications (Table S1). Since existing
studies of SMs that target miRNA-mRNA interactions were limited
and most of them have already been used for our model training,
two of the four cases were not conducted directly on mature miRNAs.
However, the secondary structural motifs in the RNA sequences re-
ported in these studies can still be used for testing purposes. The
first case was our previous research9 of the verified 7-hydroxyfla-
vone-b-D-glucoside (OC-3), which targets the interaction between
mature hsa-miR-214-3p and TRAF3 (Figure 3A). The second case
was a synthesized molecule 60-fluorosisomicin targeting protozoal
cytoplasmic rRNA A-site (PDB: 5Z1I).23 The palindromic RNA
duplex comprising two identical protozoal cytoplasmic rRNA se-
quences provides binding pockets for 60-fluorosisomicin (Figure 3B).
sting set

ecall F1 score MCC Kappa

787 ± 0.226* 0.823 ± 0.196* 0.781 ± 0.236* 0.775 ± 0.238*

673 ± 0.071 0.640 ± 0.056 0.504 ± 0.076 0.502 ± 0.076

635 ± 0.107 0.617 ± 0.076 0.478 ± 0.092 0.475 ± 0.093

565 ± 0.050 0.586 ± 0.048 0.446 ± 0.055 0.445 ± 0.054



Table 3. The performance of SMTRI compared with other models on a PubChem testing set

PubChem AUC Accuracy Precision Recall F1 score MCC Kappa

SMTRI 0.935 ± 0.079* 0.878 ± 0.113* 0.828 ± 0.207* 0.782 ± 0.142* 0.783 ± 0.153* 0.719 ± 0.212* 0.703 ± 0.227*

XGBoost 0.632 ± 0.014 0.712 ± 0.008 0.436 ± 0.038 0.472 ± 0.026 0.453 ± 0.028 0.258 ± 0.030 0.258 ± 0.030

NB 0.686 ± 0.008 0.694 ± 0.011 0.433 ± 0.026 0.670 ± 0.020 0.526 ± 0.020 0.332 ± 0.018 0.315 ± 0.020

RFSMMA 0.666 ± 0.012 0.803 ± 0.010 0.703 ± 0.026 0.388 ± 0.029 0.498 ± 0.022 0.416 ± 0.019 0.389 ± 0.023

The highest score in each column is indicated with an asterisk.
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The third case was a designed molecule, Targapremir-210, which tar-
gets the secondary structural motifs in the single-stranded has-mir-
210 precursor (Figure 3C).24 The fourth case was a study of SM inhib-
itor Isis-11 ((7R)-7-[(dimethylamino)methyl]-1-[3-(dimethylamino)
propyl]-7,8-dihydro-1H-furo[3,2-e]benzimidazol-2-amine) that tar-
gets the RNAmotif in the hepatitis C virus (HCV) internal ribosomal
entry site (IRES) RNA (PDB: 2KTZ) (Figure 3D).25

We randomly collected 46 irrelevant SMs from the Zinc26 and Nat-
ural Product databases,27 together with the above four candidate
SMs, to form a list of 50 for testing. The RNA motifs were first re-
produced from the involved RNA sequences. SMTRI then made
predictions on each RNA motif-SM pair. We set the threshold of
binding probability at 0.85, which meant the SM was deemed to
target the motif if the predicted score was above 0.85. Figure 3
(lower row) also depicts the score distributions of 50 candidate
SMs in 4 case studies. We can infer from the pictures that SMTRI
can separate the true targeting ones from the vast majority of
SMs. The detailed results are reported below.

Case 1: OC-3, targeting the interaction between hsa-miR-214-

3p and TRAF3

Table S2 lists three candidate SMs predicted to have a >85% chance of
targeting hsa-miR-214-3p-TRAF3. The other 47 SMs, not listed in the
table, had a <85% chance of targeting this interaction. The red-
marked SM 11 (OC-3) was predicted to have a 99.64% chance of tar-
geting hsa-miR-214-3p-TRAF3, the highest among the other possible
candidate SMs (Figure 3E).

Case 2: 60-fluorosisomicin, targeting the protozoal cytoplasmic

rRNA A-site

Table S3 lists seven candidate SMs predicted to have a >85% chance of
targeting protozoal cytoplasmic rRNA A-site. SM 5 (60-fluorosisomi-
Table 4. The performance of SMTRI compared with other models on a RPocke

RPocket AUC Accuracy Precision R

SMTRI 0.950 ± 0.100* 0.870 ± 0.112* 0.749 ± 0.326* 0.

XGBoost 0.820 ± 0.109 0.840 ± 0.080 0.665 ± 0.304 0.

NB 0.821 ± 0.135 0.850 ± 0.114 0.681 ± 0.171 0.

RFSMMA 0.708 ± 0.133 0.760 ± 0.116 0.575 ± 0.238 0.

The highest score in each column is indicated with an asterisk.
cin), colored red, exhibited an 85.70% chance of targeting the rRNA
(Figure 3F).

Case 3: Targapremir-210, targeting the has-mir-210 precursor

Table S4 lists three candidate SMs predicted to have a >85% chance of
targeting the has-mir-210 precursor. All the other candidates were
very unlikely (<10% chance) to hit the target. Targapremir-210 was
the red-marked SM 8, with a dominant targeting probability of
99.73%. Thus, as expected, the real targeting SM stood out from the
prediction result (Figure 3G).

Case 4: Isis-11, targeting the HCV IRES RNA

Table S5 lists ten candidate SMs predicted to have a >85% chance of
targeting the HCV IRES RNA. SM 10 (Isis-11) emerged as the best
candidate molecule for targeting the RNA motif, with a probability
score of 99.95% (Figure 3H).

These case studies demonstrated that SMTRI could identify high-af-
finity SMs that target RNAmotifs formed frommiRNA-mRNA inter-
actions with relatively high accuracy.

Online web server

SMTRI has been implemented as a user-friendly and freely available
web server. It provides an easy-to-use interface to predict potential
high-affinity SMs that target miRNA-mRNA interactions. The data
flow of SMTRI is shown in Figure S5. On the homepage, users are
required to provide a pair of miRNA and mRNA in FASTA format
and specify the candidate SMs by either selecting a database provided
by us (Drug Bank Database or Natural Product Database)27,28 or up-
loading a list of SM simplified molecular-input line-entry system
(SMILES) (Figure 4A). By default, SMTRI will run RNA2222 on
miRNA and mRNA sequences to identify their binding modes,
from which SMTRI extracts the RNA motifs in string format.
t testing set

ecall F1 score MCC Kappa

840 ± 0.206* 0.763 ± 0.263* 0.704 ± 0.300* 0.677 ± 0.314*

780 ± 0.177 0.685 ± 0.221 0.609 ± 0.246 0.583 ± 0.249

767 ± 0.200 0.711 ± 0.167 0.615 ± 0.243 0.607 ± 0.243

560 ± 0.233 0.529 ± 0.221 0.408 ± 0.257 0.391 ± 0.267
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Figure 3. The 3D structures of RNA motif-SM interactions in 4 case studies, and the results of screening targeting SMs from 50 candidates

The x axes in the scatterplots (E–H) indicate the serial numbers of the 50 candidate SMs, and the y axes indicate the predicted binding scores (range from 0 to 1) of the SMs.

The red dashed lines at the scores of 0.85 in (E)–(H) represent the partition thresholds. Therefore, an SM is considered to have a high affinity for an RNA motif if its predicted

probability is >0.85. (A) Case 1: OC-3 (SM 11 in E, scores 0.9964), targeting the interaction between miR-214 and TRAF3. (B) Case 2: 60-fluorosisomicin (SM 5 in F, scores

0.8570), targeting the protozoal cytoplasmic rRNA A-site. (C) Case 3: Targapremir-210 (SM 8 in G, scores 0.9973), targeting the miRNA-210 precursor. (D) Case 4: Isis-11

(SM 10 in H, scores 0.9995), targeting the HCV RNA.
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Sequence-based RNA motifs and SMILES-based SMs are further
transformed into their numerical features, which, after combination,
will be input into the trained classifier to produce a probability score.
Finally, SMTRI will summarize the top 20 predicted SMs with a >85%
likelihood to bind to the miRNA-mRNA interactions. These potential
targeting SMs will be displayed in the results table (Figure 4B), with
affinity levels (probabilities) presented in descending order, in which
their InChIKey, canonical SMILES, 2D structure images, and pre-
dicted probability scores are listed for reference. In addition, a simi-
larity matrix for pairwise comparison of the SM structures will also
be given based on their fingerprints (Figure 4C). As structurally
similar molecules tend to have similar biological activities or func-
tions, the similarity matrix provides another perspective to cluster
suitable SMs for experimental validation in addition to the binding
probabilities.

DISCUSSION
RNA-targeted SM drug discovery has emerged as an alternative solu-
tion to disease treatment in addition to conventional protein-targeted
SM drug strategies and RNA-targeted oligonucleotide therapeutics.
Among the various RNA classes, miRNA is the most promising target
for developing SM drugs.

So far, therapeutic antagomiRs have not been clinically approved for
marketing by the US Food and Drug Administration in the past ten
years, indicating the concern in druggability.29–31 There is a long
way to clinical translation for therapeutic antagomiRs. Regarding
the research and development approach, SMs rather than antagomiRs
are mature drug forms with no critical concerns in druggability.32–34

This is why we focus on the approach of SMs.
6 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
The target complexmiRISC, formed bymaturemiRNAandArgonaute
protein, is considered transient in some studies.35–38 In our previously
publishedwork,9 we identified two SMs that could effectively target the
miRISC complex. Our in vitro and in vivo data have demonstrated the
efficacy of these two molecules. One SM was found to target miR-214-
ATF4 mRNA to promote ATF4 protein expression and enhance oste-
ogenic potential. Another SM was found to target miR-214-TRAF3
mRNA to promote TRAF3 protein expression and inhibit osteoclast
activity. Our findings indicate that targeting the interactions within
the miRISC complex is feasible, even though they could be transient.

The current miRNA-targeted SM drug discovery is limited, however,
by the high time and labor costs of the traditional experimental
method. To address this problem, we presented SMTRI, a computa-
tional tool for predicting lead compounds targeting miRNA-mRNA
interactions. SMTRI applied deep learning techniques in both feature
representation and result prediction. The comparison between SOTA
algorithms and the validation in case studies showed that SMTRI
could effectively predict high-affinity SMs for the RNA motifs.
Finally, SMTRI was integrated into the web service to offer conve-
nience for other researchers.

The most distinct factor that contributed to the achievement of
SMTRI was the use of RNAmotif segments instead of whole RNA se-
quences as the targets. Most similar studies would encode the full-
length RNAs without preferences, which not only wasted computing
resources but also retained a large amount of redundant and useless
information for ML. A few studies, like RNAmigos,16 utilize the
three-dimensional (3D) structural data of RNAs to achieve better pre-
diction but require complex structural inputs and longer running



Figure 4. The interface of the SMTRI website

(A) Users can input a pair of miRNA and mRNA sequences in FASTA format and input SMs by choosing a database or uploading user-preferred ones in SMILES format. (B)

The results table shows the InChIKeys, SMILES strings, structure images, and calculated probability scores of the predicted SMs. The probability score indicates how

confidently the SM can bind to the miRNA-mRNA pair. (C) The similarity matrix for pairwise comparisons between predicted SMs is also given as part of the results.
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times. In our study, we greatly reduced the storage space for RNA rep-
resentations by focusing only on the binding pockets, whose average
length was 6.4 nt. Another essential factor that influenced the effec-
tiveness of SMTRI was that we employed multiple ways to fully
extract the features, especially for RNA motifs. Not limited to nucle-
otide-level statistical features, we utilized an LSTM-SAE to map
sequence-level RNA motifs into latent space. Consequently, the pre-
diction accuracy of SMTRI was more convincing than other methods.

However, there are also weaknesses in our proposed method. The
experimentally confirmed RNA motif-SM associations used in this
study are not enough. More RNA motif-SM associations need to be
verified by experiments, which would promote the robustness of
our model. Moreover, the diversity of website functionality and
display needs to be improved in the next version. An interface for up-
loading experimentally verified data will be developed to accept data
from other research groups. Despite the imperfections, we believe that
our work has brought new solutions to RNA-targeted SM drug dis-
covery and provided better-guiding information for wet experiments.

MATERIALS AND METHODS
Data acquisition and processing

RNA secondary structural motifs and bound SMs were obtained from
RNALigands,18 PDB,19 PubChem,20 and RPocket.21 RNALigands
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 7
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curated RNA-SM data from three public databases—Inforna,39 R-
Bind,40 and PDB19—which provided ready-made RNA motif-SM
pairs. For data cleaning and filtering, pairs that contained either
invalid RNAmotifs or nonexistent SM names were removed. The left-
over data have five RNA motifs: bulge loop, internal loop, hairpin
loop, exterior loop, and multi-branch loop. All the data with bulge
loops and internal loops were reserved, while only a few with hairpin
loops, exterior loops, and multi-branch loops were reserved. The
reason is that mature miRNAs are short (�22 nt) and likely to
form bulge loops and internal loops with target mRNAs. In this
case, forming hairpin loops or multi-branch loops is almost impos-
sible. Finally, all corresponding SMs in the remaining data were con-
verted into SMILES format. Hence, we screened 809 valid RNAmotif-
SM pairs as positive samples.

We further collected RNA-SM complexes from PDB and RPocket
that are not covered by RNALigands. For this part of the data, we first
constructed RNA secondary structures from their primary sequences
via RNAfold.41 We then manually extracted the RNAmotifs from the
dot-bracket notations of their secondary structures to form the RNA
motif-SM pairs. The PDB set contains 125 positive pairs, and the
RPocket set contains 28 positive pairs.

We also downloaded the publicly available dataset (AID: 2289) of
high-throughput screens on SM modulators of hsa-miR-21-5p from
PubChem. We filtered out 882 true positives according to the data
processing strategy in Jamal et al.12: by using an Excel-based
approach, compounds with a PubChem Activity Score between 40
and 100 were considered active (3,282 counts); FLuc inhibitors
were then eliminated from these active compounds utilizing the
counter-screen of mir-21 project (AID: 588342). We retained 2,600
of the total negatives in AID: 2289 to form the complete PubChem set.

To generate negative samples for all datasets except the PubChem set,
SMs from the Zinc database26 that did not pair with existing RNAmo-
tifs were chosen tomake upmost of the negative ones. SMs only with a
cosine similarity of <0.95 to the original paired SMs were selected in
this procedure to enhance the credibility of made negative samples. A
few SMs from positive samples were also used to make negatives by
mismatching them with RNA motifs. Likewise, SMs with a cosine
similarity of <0.85 to the original paired ones were considered. The ra-
tio between positive and negative samples was set at �1:4 for the
RNALigands set (4,051 samples in total) and �1:3 for the PDB (470
samples in total) and RPocket (100 samples in total) sets.

We used 90% of the data from the RNALigands set for training pur-
poses and reserved 10% of the data as an independent testing set. We
set up three additional testing sets from the PDB, PubChem, and
RPocket sets, respectively.

Feature engineering

After data processing, the RNA motifs were stored in letter-bracket
notation, and the SMs were stored in SMILES format. We then trans-
formed these strings into numerical features.
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For RNAmotifs, we extracted statistical features from nucleotides and
latent features from primary sequences. First, an RNA motif in
miRNA-mRNA interaction was read from the 50 end of miRNA to
the 30 end of mRNA that forms a closed loop structure to produce
a string sequence made up of “A,” “C,” “G,” and “U” letters (Fig-
ure S2). Second, statistical features (41 bits) were extracted from the
nucleotide compositions and combinations in the string sequence,
such as the sequence length, GC content, ratio of each nucleotide, ra-
tio of each combination of two neighboring nucleotides, and length
ratio of miRNA (Table S6). Third, we used an LSTM-SAE to encode
the string sequence into 512-bit latent features. Finally, statistical and
latent features were linearly concatenated into a unique 553-bit
numeric vector.

For SMs, we extracted molecular fingerprints and descriptors from
SMILES strings. First, a SMILES string was converted into 1,024-bit
extended 3D fingerprints,42 which outperformed the other 15 tested
molecular fingerprinting approaches in our classification task
(Table S7). Second, 43-bit molecular descriptors were generated for
the SMILES string through the RDKit (http://www.rdkit.org) toolkit.
Finally, molecular fingerprints and descriptors were linearly concate-
nated into a unique 1,067-bit numerical vector. We then connected
the RNA motif feature vector and SM feature vector together to
form a 1,620-bit feature vector for deep learning (Figure 2A).

LSTM-based stacked autoencoder

We constructed an LSTM-SAE to map the input into latent space and
extracted high-dimensional features for the input. The original input
was the string sequence of RNA motif in arbitrary length, consisting
of “A,” “C,” “G,” and “U” letters. We mapped the sequence into a
fixed-length one-hot vector (5� 16 matrix) through one-hot encod-
ing techniques.

The LSTM-SAE architecture consisted of four LSTM layers (Fig-
ure 2B): two LSTM encoders and two LSTM decoders. One LSTM
encoder (512 bits) was stacked on top of another (64 bits) to expand
the dimensionality of the input vector (5 bits). One LSTM decoder (64
bits) was stacked on top of another (512 bits) to reduce the dimen-
sionality of the latent vector (512 bits) to the original dimension of
the input. Thus, in this process, the encoders took the input vector
and encoded it into a latent representation vector (512 bits). Then,
the decodes took that vector as input and reconstructed the original
vector. The cost function of this LSTM-SAE was the categorical
cross-entropy of the difference between the input vector and the re-
constructed vector.

We trained the LSTM-SAE with RNAmotif sequences in the training
set and saved the encoder parts as a model for feature engineering.

Deep convolutional neural networks

SMTRI CNN architecture consisted of 17 layers: an input elayer, three
one-dimensional (1D) convolutional layers, three 1D max-pooling
layers, three fully connected layers, six batch normalization layers,
and one output layer. A 1D convolutional layer (3� 3;2� 2;2� 2)
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and a 1D max-pooling layer were stacked 3 times, followed by 3 fully
connected layers (512-, 64-, and 8-hidden units, respectively) and 1
output layer (Figure 2C). Batch normalization was applied after
each convolutional and fully connected layer to re-center and re-scale
the input for the successive layer. The activation function used in all
hidden layers was a rectified linear unit. The activation function used
in the output layer was sigmoid, which squashed vectors from the last
hidden layer to a value between 0 and 1. A kernel regularizer (L2:
0.01) was applied in each convolutional and fully connected layer
by adding a penalty term to the network weights to prevent overfit-
ting. The total number of parameters in this architecture was �0.86
million.

The input layer had 1,620 neurons corresponding to a 1,620-bit input
feature vector of an RNA motif-SM pair. The output layer had only
one neuron to output a probability score, which indicated the likeli-
hood of an SM targeting a given RNA motif. A higher probability
score means a greater chance that the SM and RNA will interact.

For training processes, the model adopted binary cross-entropy as the
loss function and the Adamax optimization algorithm (learning rate:
0.001) as the optimizer and was trained with a batch size of 32 in 78
epochs to minimize the loss. In 5-fold cross-validation, the training
set was divided into five parts, one of which took turns making the
validation set. The learning curves were depicted according to
training and validation loss at each epoch to diagnose underfitting
and overfitting issues. The TensorFlow and Keras version 2.11.0
were adopted for model construction.

Website construction

The server’s back end was developed using Java via Springboot3
Framework, while the front end was developed using Java,
JavaScript, and HTML5. The data were stored in the Apache HBase
2.9 (https://hbase.apache.org/) database, with Redis (https://redis.
io/) as a cache database for high-speed data transmission. The web
server is hosted on a Linux machine with a CentOS 7.9 64-bit oper-
ating system.

SMTRI has been tested on web browsers, including Microsoft Edge,
Safari, Chrome, and Firefox, on different operating systems (Linux,
MacOS, and Windows). In addition to interface interaction, SMTRI
can be programmatically accessed through Curl commands.

DATA AND CODE AVAILABILITY
SMTRI is freely available at http://smtri.net. Documentation on how to use the web server
is available at http://smtri.net/#/help. The code is available at https://github.com/huan-
xiao/SMTRI. The notebooks reproducing the results of case studies and the comparisons
of SOTA algorithms were also uploaded to GitHub. A docker image (https://hub.docker.
com/u/hilaryhsiao) of SMTRI was generated to be run locally with easy-to-follow instruc-
tions at https://github.com/huan-xiao/SMTRI/blob/main/README.md. The RNA
motif-SM data, all the saved best models, and the prediction results are available at
https://zenodo.org/records/11201636.
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