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Abstract

Genetic variation is an important determinant affecting either drug response or susceptibility

to adverse drug reactions. Several studies have highlighted the importance of ethnicity in

influencing drug response variability that should be considered during drug development.

Our objective is to characterize the genetic variability of some pharmacogenes involved in

the response to drugs used for the treatment of Metabolic Syndrome (MetS) in Tunisia and

to compare our results to the worldwide populations. A set of 135 Tunisians was genotyped

using the Affymetrix Chip 6.0 genotyping array. Variants located in 24 Very Important Phar-

macogenes (VIP) involved in MetS drug response were extracted from the genotyping data.

Analysis of variant distribution in Tunisian population compared to 20 worldwide populations

publicly available was performed using R software packages. Common variants between

Tunisians and the 20 investigated populations were extracted from genotyping data. Multidi-

mensional screening showed that Tunisian population is clustered with North African and

European populations. The greatest divergence was observed with the African and Asian

population. In addition, we performed Inter-ethnic comparison based on the genotype fre-

quencies of five VIP biomarkers. The genotype frequencies of the biomarkers rs3846662,

rs1045642, rs7294 and rs12255372 located respectively in HMGCR, ABCB1, VKORC1 and

TCF7L2 are similar between Tunisian, Tuscan (TSI) and European (CEU). The genotype

frequency of the variant rs776746 located in CYP3A5 gene is similar between Tunisian and

African populations and different from CEU and TSI. The present study shows that the

genetic make up of the Tunisian population is relatively complex in regard to pharmaco-

genes and reflects previous historical events. It is important to consider this ethnic difference

in drug prescription in order to optimize drug response to avoid serious adverse drug
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reactions. Taking into account similarities with other neighboring populations, our study has

an impact not only on the Tunisian population but also on North African population which are

underrepresented in pharmacogenomic studies.

Introduction

Drug response varies between individuals owing to disease heterogeneity, genetic and environ-

mental factors [1–3]. It depends on absorption and distribution of drug to the targeted recep-

tors and enzymes that further metabolize it and ultimately excrete it from the body [4]. During

this process, genetic variation may alter the therapeutic response of an individual [5–7].

Indeed, ethnic diversity plays a major role in drug response variability, which may have an

important regulatory aspect that should be also considered during drug development [8]. Con-

sequently, treatment and recommended doses should not be extrapolated from one ethnic

group to another [9]. Pharmacogenetic studies explore the genetic impact of the inter-individ-

ual variability of drug response, involving both the pharmacokinetics and pharmacodynamics

[3]. The clinical implementation of pharmacogenetics in therapeutic approaches, aims to opti-

mize specific drug regimens and drug dosage. This, may have a great advantage in, improving

clinical outcomes and avoiding major clinical complication such as congestive heart failure,

hepatic and renal disorders [10, 11].

During the last years, the incorporation of pharmacogenetic testing in clinical trials has

gained interest. This has been facilitated with the advancement in microarray based methods

that allows genotyping Single Nucleotide Polymorphisms (SNPs) in many samples simulta-

neously. This method leads to the identification of loci responsible for drug response variabil-

ity and adverse reactions [12, 13]. Despite the double burden of communicable and non

communicable diseases (NCDs) on the health system, some populations like African still

remain poorly studied at the pharmacogenetic level. The Metabolic Syndrome (MetS) is one of

the diseases which prevalence is increasing dramatically in North Africa. In Tunisia, it affects

up to 30% of the population in urban region [14]. MetS is defined by a cluster of multiple met-

abolic abnormalities, including central obesity, hypertension, dyslipidemia and insulin resis-

tance that directly increase the risk of coronary heart disease (CHD), other forms of

cardiovascular atherosclerotic diseases (CAD), Type 2 Diabetes Mellitus (T2DM), and prema-

ture death [13, 15]. Until now, there is no effective drug treatment prescribed to manage all

components of MetS. Indeed each syndrome component is treated individually, so miscella-

neous types of drugs are used in the treatment of this syndrome, including weight losing

drugs, antilipemic, antihypertensives and antidiabetics [15]. This strategy is not always reliable;

indeed the individuals do not respond equally to the same treatment. Such differences may

be due to diverse mean values of quantitative traits or different genotypic frequency distribu-

tions of the variants between populations [16]. For instance, many studies have reported the

involvement of variants annotated as Very Important Pharmacogene (VIP) variants in the out-

come of anticoagulant, oral anti-diabetic [17, 18] and statins [19]. A significant proportion of

ethnic variability in the response to coumarin anticoagulant (AVK), prescribed to treat and

prevent arterial and venous thromboembolic disorders in MetS, has been attributed to the

differential frequencies of variant in CYP2C9 and VKORC1 genes[20, 21]. The diversity of dis-

tribution of functional variants, rs9923231 located in VKORC1, rs1799853 and rs1057910

located in CYP2C9, and which are known to influence AVK dose requirement, has been

highlighted [21]. These common polymorphisms were shown to confer a high risk towards
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over-anticoagulation, predisposing the individuals carrying these polymorphisms to hemor-

rhagic incidents [22]. In addition, a variable response to beta-blockers used in the treatment of

hypertension, including propranolol [23], metoprolol, atenolol [24] and clopidogrel [25, 26]

was observed in patients of European and African origins which can trigger a stroke [27, 28].

Other serious adverse outcomes of drugs in MetS are reported such as sudden death, bleeding

events, myopathy, [2, 20, 27, 29]. All these ADR engender high social and financial burden.

Considering the burden of public health, and genetic variability in response to treatment, we

have chosen in the present study to characterize the genetic variability of some pharmacogenes

involved in the response to drugs used for the treatment of MetS in Tunisia and to compare

our results to the worldwide human populations.

Materiel & methods

Study participants and genotyping

A set of 135 Tunisian healthy individuals including; 32 women and 103 men, originating from

two regions (the Capital Tunis and the coastal city of Monastir) were genotyped in a previous

study [30] using the AffymetrixChip 6.0 genotyping array. Genotyping data were generated

after the variants calling performed with R CRLMM package [31]. The study was approved by

the Ethics Committee of the Institut Pasteur (Tunis, Tunisia-Registration numbers

IRB00005445, FWA00010074, and PV09/06, IRB# 0000000044). All participants provided

written informed consent.

Selection of very important pharmacogenes and variant

We selected a set of very important pharmacogenes (VIP) involved in MetS components drug

response from the PharmGKB database (http://www.pharmgkb.org) which provides an over-

view of significant genes involved in the metabolism or response to one or several drugs. VIP

genes were chosen through extensive review of a variety of sources, including the U.S. Food

and Drug Administration (FDA) biomarker list, FDA-approved drug labels with pharmacoge-

netic information, and Clinical Pharmacogenetic Implementation Consortium (CPIC) nomi-

nations [32]. Additionally, we considered a gene as a VIP if it is associated with a large number

of variant annotations and having high-level of clinical annotations. Furthermore, genetic vari-

ants were chosen from published polymorphisms associated with VIP through an extensive

bibliographic search.

Genotyping data

PLINK v2 [33] was used to extract variants of the selected VIP. The genotypic data of individu-

als from 22 other populations were downloaded from the International HapMap Project phase

III (ftp://ftp.ncbi.nlm.nih.gov/hapmap/) and published data [34, 35]. The studied populations

included those of (1) African ancestry in the South Western USA (ASW); (2) Northwestern

and western European ancestry populations of Utah from the CEPH collection (CEU); (3)

Han Chinese in Beijing, China (CHB); (4) Chinese population of metropolitan Denver, Colo-

rado, USA (CHD); (5) Gujarati Indians in Houston, Texas, USA (GIH); (6)Luhya people in

Webuye, Kenya (LWK); (7) people of Mexican ancestry living in Los Angeles, California, USA

(MEX); (8) Maasai people in Kinyawa, Kenya (MKK); (9) Toscani people of Italy (TSI); and

(10)Yoruba in Ibadan, Nigeria (YRI).

Genotypic data from other population mainly from South Europe and North Africa (Alge-

ria (ALG), Egypt (EGY), Libya (LIB), Tunisia Douiret (TN_Ber), Lebanon (LEB), South
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Morocco (MCS), North Morocco (MCN), Sub-Saharan (SAH), South Spain (SPS), North

Spain (SPN) Spain Basc (SBA) were download from the previous published study [16, 35].

Quality control analysis

Genotypic data were managed using the PLINK v2 software. Variants were excluded if they

are deviating from the Hardy-Weinberg equilibrium (HWE) (p-value< 10−4), minor allele fre-

quency (MAF) < 10−2 and have missed genotyping rate� to 95% for each of the studied

populations.

Statistical analysis

To infer cryptic population structure from genomic data, principal component analysis (PCA)

based on pruned genotypic data was performed using SNPrelate R package [36]. Cryptic popu-

lation structure defines a population structure that is difficult to detect using visible characters

but may be significant in genetic terms[37, 38]. Indeed, the information about the population

origin is given by the study participants. This information is subjectively based on geographic

location, physical and cultural characters. The genotypic data and estimated allele frequencies

might be used to determine if a given assignment of individuals to a population, based on sub-

jective criteria, mirrors a natural assignment in genetic terms (admixture and gene flow).

Genetic data can be useful to determine the cryptic relatedness among populations and to

shape the false matches due to the probabilistical assignment of population. In addition, we

used PLINK v2, and “rgl” R package [39], to generate multidimensional scaling plot (MDS)

and three dimensional MDS (3D MDS) from the same data.

The genotype frequencies of the selected VIP in Tunisian population, were calculated and

compared with 10 HapMap populations, using SNPassoc R package [40]. In this step of analy-

sis, we have considered only the HapMap project populations due to the complete genotypic

data. The inter-ethnic genotypic frequency comparison was performed using the Chi-square

test and Bonferroni’s adjustement was applied to the level of significance set at a p-value

threshold of 5% devided by the number of studied loci.

Analyses of population genetic structures

Fixation Index (Fst) and Structure are two common analyses in population genetic studies.

The R package Hierfstat [41] was used in order to assess the degree of similarity in genetic

structure between the different ethnic populations, we calculated pairwise Fst values and evalu-

ate the magnitude of differentiation among geographic populations (0 indicating no diver-

gence, 1 meaning complete separation). Pairwise Fst values between the Tunisian population

and the other 10 HapMap populations were calculated. To further investigate variation at the

VIP variants in terms of population structure, we used the STRUCTURE ver. 2.3.4 software

[38, 42] which is based on the bayesian clustering algorithm to assign the samples within a

hypothetical K number of ancestries. We set a range of possible number of clusters ranging

from K = 2 to K = 10 and 24 trials were run for each K. The Markov Chain Monte Carlo itera-

tion for each structure analysis was run for 10000 after an initial burn-in period of 10000 steps.

In order to assess the most likely number of clusters, we calculated delta K as proposed by

Evanno et al. [43]. The similarity of the runs at each K level was evaluated by the CLUMPP

software as implemented at the online [44]. The Distruct software was used to visualize the

best alignment of subpopulation inferring population substructure and individual assignment

across the best runs at each k level [45].
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Results

Based on a large bibliographic search and PhamaGKB interrogation, we selected 24 pharmaco-

genes implicated in MetS components drug response modulation listed in Table 1 including

class of drug, drug name, gene name, description and category family of genes, pharmacoki-

netic phase of drug metabolism, chromosomal localization and the corresponding VIP variant.

The studied genes belong to ABC transporters family, cytochrome P450 family and G-coupled

receptor family (Table 1). A total of 1056 variant on 24 pharmacogenes were identified in the

Tunisian population and kept after quality control steps for subsequent analysis.

For inter-ethnic genotypic frequency comparison and population structure analyses pur-

poses, we kept 743 shared variants among the 22 worldwide studied populations. The MDS

analysis describing the genetic landscape of these pharmacogenes shows a cluster of the Tuni-

sian population with the North African populations (Algeria, Morocco, Egypt . . .), Tuscan and

CEU were distinguished from the Asian and Sub Saharan African populations (Fig 1). This

result was further confirmed using PCA analyses (S1 Fig). A great divergence was observed

between the Asian populations and LWK (S1 Fig).

Among the 743 variants shared between the studied populations, five clinically relevant VIP

variants were identified. Therefore, we performed an inter-ethnic comparison based on their

genotypic frequencies. We found that the genotype frequencies of the following variants

involved in the anticoagulant sensitivity; rs3846662 (HMGGR), rs1045642 (ABCB1), rs7294

(VKORC1) and rs12255372 (TCF7L2), were similar between the Tunisian population, Tuscany

and the European populations (CEU); (p>>0.05/5�10). The genotypic frequencies of the

rs776746 variant located in the CYP3A5 gene involved in the hypolipidemic susceptibility are

similar between Tunisian and African populations (MKK, LWK, YRI) and significantly differ-

ent from European (CEU) and Asian (CHD, CHB); (p<<0.05/5�10) (Table 2).

In order to assess the degree of similarity in the genetic structure between the different eth-

nic populations, we calculated the pairwise Fst values among the Tunisian population and the

other 10 HapMap populations ranged from 0.00802 to 0.41201 (Table 3). Comparing Tunisia

to other populations, the lowest level of differentiation was observed between the inner and

costal part of centeral Tunisia (Fst = 0.01182), followed by the TSI (Fst = 0.02872) and MEX

(Fst = 0,0269) populations, whereas the greatest divergence was observed with the LWK popu-

lation (Fst = 0,35929).

Bayesian-based STRUCTURE analysis (Fig 2) provided complementary methods for visual-

izing patterns of genetic similarity and differentiation between the Tunisian population and

the other 22 populations. According to the Evanno’s ΔK method for STRUCTURE, K = 3 was

selected to detect the most likely number of genetic clusters (S2 and S3 Figs). The barplot

shows three components: African, Asiatic and European. For the North African populations

cluster regrouping (TN_MC, TN_TC, ALG, EGY, MCN, MCS, SAH and LIB), the European;

(CEU, TSI, MEX, SPB, SPN, SPS), East African (MKK, LWK, ASW) and Asiatic subgroups

(CHD, CHB). This graph demonstrates the predominance of the African and European com-

ponents. Thus, reflecting that the Tunisian population is a mosaic of different populations

which reflects the existence of different gene flows that have influenced genetic variability of

the response to treatments.

Discussion

In the recent years, the use of pharmacogenomics witnessed important success in the improve-

ment of healthcare by developing therapeutic treatment and predicting individual response

[23]. Distribution of VIP variants exerts irreplaceable significance in pharmacogenomics

knowledge [25]. In the present study, we showed that some VIP variants involved in MetS
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Table 1. Basic information of selected pharmacogenes.

Class of Drug Drug name Genes ID Description Category Family Phase Chr Localisation of Gene VIP (High

evidence level)

Anticagulant Clopidogrel

(Palvix)

ABCB1 ATP binding cassette

subfamily B member 1

ABC transporters

superfamily

Other 7 chr7:87,133,179–

87,342,638

rs10545642

rs1128503

rs2032582

CYP2D6 cytochrome P450 family 2

subfamily D member 6

Cytochrome P450

superfamily

phaseI 22 chr22:42126499–

42130881

rs3892097

CYP2C19 cytochrome P450 family 2

subfamily C member 19

Cytochrome P450

superfamily

phaseI 10 chr10:96,522,438–

96,612,962

rs1057910

rs4244285

P2RY12 purinergic receptor P2Y,

G-protein coupled, 12

G-protein coupled receptor Other 3 chr3:151,054,631–

151,102,600

Acenocoumarol CYP2C9 cytochrome P450 family 2

subfamily C member 2

Cytochrome P450

superfamily

phaseI 10 chr10:96,698,415–

96,749,148

rs1057910

VKORC1 vitamin K epoxide

reductase complex, subunit

1

Vitamin K epoxide

reductase

phaseI 16 chr16:31,102,163–

31,106,320

rs9934438 rs7294

Antidiabetic Biguanide/

Metformine

SLC22A1 solute carrier family 22

(organic cation

transporter), member 1

Organic cation transporte other 6 chr6:160,542,863–

160,579,750

Biguanide/

Metformine

SLC22A2 solute carrier family 22

(organic cation

transporter), member 2

Organic cation transporte other 6 chr6:160,637,794–

160,679,963

Biguanide/

Metformine

SLC47A1 solute carrier family 47

(multidrug and toxin

extrusion), member 1

Multidrug and toxin

extrusion

other 17 chr17:19,437,167–

19,482,346

Biguanide/

Metformine

SLC47A2 solute carrier family 47

(multidrug and toxin

extrusion), member 2

Multidrug and toxin

extrusion

other chr17:19,581,628–

19,620,043

Biguanide/

Metformine

ATM ATM serine/threonine

kinase

Phosphatidylinositol

3-kinase-related kinase

superfamily

Other 11 chr11:108,093,559–

108,239,826

rs11212617

TZD/

Pioglitazone

PPARG peroxisome proliferator-

activated receptor gamma

Nuclear receptors

superfamily

Other 3

TZD/

Rosiglitazone

PGC-
1alpha

peroxisome proliferative

activated receptor, gamma,

coactivator 1 alpha

Nuclear receptors

superfamily

Other 5 chr5:51,454,249–

51,553,921

rs1801282

TZD/

Troglitazone

RETN Resitin 19 chr19:7,669,086–

7,670,454

Leptin
LEPR

leptin receptor Cytokine receptors

superfamily

Other 1 chr1:65,420,652–

65,635,428

TNFalpha Tumor Necrosis Factor Tumor necrosis factor

receptor

31 chr6:31,543,344–

31,546,112

Sulphonylurea KCNJ11 potassium channel,

inwardly rectifying

subfamily J, member 11

Potassium channel Modifier 11 chr11:17,406,796–

17,410,206

rs5215 rs5219

rs757110

ABCC8 ATP binding cassette

subfamily C member 8

ATP-binding cassette

(ABC) transporters

Modifier 11 chr11:17,414,432–

17,498,392

KCNQ1 potassium channel, voltage

gated KQT-like subfamily

Q, member 1

Potassium Channel

superfamily

Other 11 chr11:2,466,221–

2,870,340

TCF7L2 transcription factor 7-like 2

(T-cell specific, HMG-box)

DNA-binding proteins. Other 10 chr10:114,710,009–

114,927,436

rs12255372

(Continued)
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drug response, exhibited a great genetic variation among the studied populations, which

directly impacts on the delivery of individualized medicine. The ethnicity should be taken into

consideration, in routine clinical practice to ensure the efficacy and safety of the drug at the

population level [46][47]. Our data confirm that ethnicity, even among close populations plays

a significant role in differential distribution of variants implicated in drug response or ADR

[46]. In Tunisian population, these variants displayed a close genetic affinity with the North

African (ALG, LIB, MCN, MCS), Middle Eastern (EGY, LEB) and European populations (TSI,

CEU, SPS, SBA, SPN) but they were distinct from the South Africans and Asians. Our results

are in agreement with those of the study of Mizzi C et al, 2016, that used tailored DMET array

and compared the generated data of 11 European populations against Saudi Arabian, Asian

and South African populations. The study showed that there are no significant differences

among the European populations. The great divergence was observed among European, Asian

and South African population [46]. Another study of Abdelhedi et al., focused on the CYP2C9
and CYP2C19 variants implicated in the metabolism of anticoagulant response, concluded that

Tunisians were similar to Europeans and Middle Easterners with regard to the allelic frequen-

cies [27]. Pairwise Fst values of clinically relevant VIP variants, in our study, also revealed a

more similarity between Tunisian, Tuscan and European populations (CEU). This was con-

firmed with analysis using admixture that showed the heterogeneity of Tunisian population

and the contribution of the European, North African components. These observations were

also reported on mitochondrial DNA, Y chromosomal and autosomal markers and interpreted

as influences from different migration events [34, 48–50]. Obviously, differences in admixture

history exert an important impact in the allelic and genotypic distribution of variants at the

population level [47]. In the present study, five polymorphisms characterized as clinically

Table 1. (Continued)

Class of Drug Drug name Genes ID Description Category Family Phase Chr Localisation of Gene VIP (High

evidence level)

Lipid lowring

Fenofibrate

Flavastatin CYP2C9 Cytochrome P450 family 2

subfamily C member 9

Cytochrome P450 phaseI 10 chr10:96,698,415–

96,749,148

Lovastatin ABCB1 ATP binding cassette

subfamily B member 1

ABC transporters

superfamily

Other 7 chr7:87,133,179–

87,342,638

rs1128503

Atorvastatin ABCB1 ATP binding cassette

subfamily B member 1

ABC transporters

superfamily

Other 7 chr7:87,133,179–

87,342,638

rs2032582,

ABCA1 ATP-binding cassette, sub-

family A (ABC1), member

1

ABC transporters sub-

family A

Other 9 chr9:104,781,003–

104,928,246

rs12003906

CYP2C9 Cytochrome P450 family 2

subfamily C member 9

Cytochrome P450 phaseI 10 chr10:96,698,415–

96,749,148

rs1057910

PPARA Peroxisome proliferator-

activated receptor alpha

Nuclear hormone receptor

superfamily

22 chr22:46,546,499–

46,639,653

SCLO1B1 Solute carrier organic

anion transporter family,

member 1B1

Solute carrier family Others chr22:46,546,499–

46,639,653

rs4149056

rs4149081

rs4363657

rs4149015

HMGCR 3-hydroxy-

3-methylglutaryl-CoA

reductase

HMGCR superfamily 5 chr5:74,632,993–

74,657,926

rs17238540

rs3846662

rs17244841

CYP3A5 cytochrome P450 family 3

subfamily A member 5

Cytochrome P450

superfamily

Phase I 7 chr7:99,245,812–

99,277,649

rs776746

The list of 24 pharmacogenes implicated in MetS components drug response modulation, including class of drug, drug name, gene name, description and category

family of genes, pharmacokinetic phase of drug metabolism, chromosomal localization and the corresponding common VIP variant.

https://doi.org/10.1371/journal.pone.0194842.t001
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Fig 1. Multidimensional scaling plot analysis of the Tunisian subpopulation and worldwide populations. The plot reveals three distinct clusters

showing that the Tunisian population present a close affinity with the North Africans and Europeans and distinct from South Africans and Asians.

Tunisian population; Capital Tunis TU_TC, coastal city of Monastir TU_MC (AffymetrixChip 6.0 genotyping array), African ancestry in the south

Western USA (ASW); a northwestern European population (CEU); the Han Chinese in Beijing, China (CHB); a Chinese population of metropolitan

Denver, Colorado, USA (CHD); the Gujarati Indians in Houston, Texas, USA (GIH); the Japanese population in Tokyo, Japan (JPT); the Luhya people

in Webuye, Kenya (LWK); people of Mexican ancestry living in Los Angeles, California, USA (MEX); the Maasai people in Kinyawa, Kenya (MKK); the

Tuscan people of Italy (TSI); and the Yoruba in Ibadan, Nigeria (YRI); data from HapMap were retrived in March 2016. It is available by FTP: ftp://ftp.

ncbi.nlm.nih.gov/hapmap/ and Algeria (ALG), Egyptia (EGY), Libya (LIB), Tunisia Dwiret TUN_Ber, Lebanon (LIB), Morocco South (MCS), Morocco

North (MCN), Spain South (SPS), Spain North (SPN), Spain Basc (SBA),: Sub-Saharan (SAH), Canary Island (CIS); data from the literature [34, 35].

https://doi.org/10.1371/journal.pone.0194842.g001

Table 2. Genotype frequency of significant VIP variants in Tunisian population (n = 135) compared with ten HapMap populations.

Gene name SNP ID Freq.(TUN)� p-values against ten populations after Bonferroni correction

AA AB BB CEU TSI ASW LWK MKK YRI CHB CHD GIH MEX

CYP3A5 rs776746 0;66 0;26 0;08 1.403e-05 0.0001 0.0056 0.1242 0.0952 0.1507 0.04827 0.1836 0.2151 0.2151

HMGCR rs3846662 0.29 0.47 0.25 0.4508 0.8194 7.205e-12 2.2e-16 8.61e-10 2.2e-16 0.9271 0.8383 0.0226 0.2502

ABCB1 rs1045642 0.49 0.33 0.18 0.0262 0.0152 0.0007 - 0.0004 6.802e-06 0.4246 0.0066 0.0066 0.0002

VKORC1 rs7294 0.65 0.27 0.09 0.0902 0.0014 0.0013 4.081e-07 3.722e-06 2.226e-06 6.742e-05 0.0005 0.0001 0.0013

TCF7L2 rs12255372 0.48 0.33 0.19 0.0487 0.0264 0.0071 0.0071 0.0236 - 0.02361 4.248e-10 0.0002 0.0216

Bonferroni correction was applied to the level of significance, which was set at (p.value < 0.05/5�10 = 0.001);p.value > (0.05/5�10) assigned in bold represent differences

not statistically significant between Tunisia and the compared population, 0.00 not observed genotypes; -: not successfully genotyped or not compared by chi-square

test. TUN� = (TN_Mc/TN_TC), MEX = Mexican ancestry in Los Angeles, California; TSI = Toscans in Italy; LWK = Luhya in Webuye, Kenya; ASW = African ancestry

in Southwest USA; GIH = Gujarati Indians in Houston, Texas; MKK = Maasai.

https://doi.org/10.1371/journal.pone.0194842.t002
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relevant VIP variant, were selected, based on previous pharmacogenomics research to be fur-

ther investigated (S4 Fig).

The variant rs7294; 3730 G>A transition located on chromosome 16 in the 3’Untranslated

Region (UTR) of VKORC1 gene. This gene encodes the vitamin K epoxide reductase protein,

which is a crucial enzyme in vitamin K cycle and therefore involved in inter-individual drug

variability of the majority of coumarin derivatives, such as warfarin, acenocoumarol and phen-

procoumon which are frequently prescribed as oral anticoagulants to treat and prevent throm-

boembolism [51]. Because there is a large inter-individual and intra-individual variability in

dose-response and a narrow therapeutic window, treatment with coumarin derivatives is chal-

lenging. Some polymorphisms in VKORC1 were associated with lower dose requirements and

a higher risk of bleeding [52]. Patient with the TT genotype may require an increased dose to

attend the curative effect of the anti-coagulant such as phenprocoumon or acenocoumarol as

compared to patients with the TC or CC genotypes[53]. The frequency of TT genotype of

rs7294 was generally lower in Tunisian population (0.09) than in African populations (MKK,

LWK, ASW, YRI) respectively equal to (0.18, 0.28, 0.23) and East Asian populations (CHB,

CHD) (0.89, 0.86) and similar to Europeans (CEU, MEX, TSI) (0.13, 0.09, 0.08) and Central

Table 3. Estimating of pairwise Fst among the 11 populations.

TN_TC TN_MC ASW CEU CHB CHD GIH LWK MEX MKK TSI YRI

TN_TC 0

TN_MC 0.01182 0

ASW 0.15553 0.23478 0

CEU 0.06517 0.04978 0.29914 0

CHB 0.02268 0.02350 0.21765 0.09797 0

CHD 0.06546 0.09602 0.26864 0.11989 0.00179 0

GIH 0.10636 0.14372 0.17866 0.08929 0.18313 0.21073 0

LWK 0.24521 0.32005 0.02744 0.35559 0.27347 0.32958 0.22448 0

MEX 0.02691 0.02635 0.2041 0.031436 0.04645 0.06478 0.08524 0.27337 0

MKK 0.12447 0.21536 0.03173 0.25203 0.18501 0.18924 0.15348 0.09203 0.16398 0

TSI 0.02872 0.01614 0.26226 0.00802 0.06736 0.11424 0.09639 0.34295 0.02816 0.22575 0

YRI 0.27506 0.35929 0.01749 0.41201 0.32575 0.37106 0.29278 0.00276 0.32288 0.08404 0.38693 0

The pairwise differences Fst values between 11 populations. Fst value is less than 0.15 represent that there is no genetic differentiation between the two populations. The

lowest level of differentiations were found between TN_TC and TN_MC (Fst = 0,01182) followed by the TSI (Fst = 0.02872) and MEX (Fst = 0,0269) populations,

whereas the greatest divergence was observed with the LWK population (Fst = 0,35929).

https://doi.org/10.1371/journal.pone.0194842.t003

Fig 2. STRUCTURE analysis of the genetic relationship between 24 populations. K is the possible numbers of

parental population clusters. One color represents one parental population into different color segments. Best K level

was observed at K = 3, where a vertical the proportion of each ancestral component in a single individual is represented

by a vertical bar divided into 3 colors. 601 markers study—displaying results for runs with highest likelihood out of 27

runs in each cluster K3 to 10. Black vertical lines identify the population boundaries. The height extent of each color

within an individual’s color bar corresponds to the estimated membership of the individual in one of the clusters; each

cluster is assigned a separate color. The bars with multiple colors can be interpreted as genetic admixture or as relative

probabilities of belonging to the different clusters.

https://doi.org/10.1371/journal.pone.0194842.g002
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Asians (GIH) (0.03) (S1 Table). Indeed, this result suggests that the Tunisians might require a

lower dose of acenocoumarol or phenprocoumcon to achieve the therapeutic effect. Thus, the

dosage regimen may be optimized on the specific genotypic frequency in Tunisian population.

The rs1045642 (A>G) transition is synonymous variant located on ABCB1 (MDR1) gene

which is one of many ubiquitous adenosine triphosphate (ATP)-binding cassette (ABC) genes

that is responsible for cellular homeostasis [54, 55]. The ABCB1C3435T (rs1045642) is exten-

sively studied and some research showed that the ABCB1C3435T genotype influences the

absorption of clopidogrel [56] and is associated with poor clopidogrel response. Conversely,

the frequencies of AA and AG genotypes of rs1045642 which respectively equal to (0.49, 0.33),

in Tunisian population, were respectively much lower than that are reported in other popula-

tions. (S1 Table). In this case, AA and AG genotypes may have an increased risk of major

adverse cardiovascular events such as cardiovascular death, myocardial infarction, or stroke,

when treated with clopidogrel in people with acute coronary syndrome or myocardial infarc-

tion as compared to people with GG genotypes.

The rs3846662 located on intron 13 ofHMGCR, was associated with differential induction,

upon simvastatin exposure, of expression of full-length HMGCR transcript versus alternatively

spliced transcript lacking exon 13 (HMGCRv_1). Homozygous individuals A/A exhibit 40%

greater induction of full-length transcripts and 20% less alternatively spliced HMGCRv_1 tran-

script relative to A/G or G/G subjects [57]. These differences may have implications for simva-

statin efficacy, since the AA genotype of rs3846662 was associated with the increased induction

of the alternatively spliced transcript is correlated with reduced response to simvastatin [57].

For this variant, the Tunisian and European populations were genetically different to the Afri-

can population (MKK, LWK, YRI) which represented a highly frequencies of the defective AA
genotype which consisted respectively to the values of (0.93, 0.71, 0.92). These results mirror

that the African populations were more sensitive to the statin treatment than Tunisian popula-

tion which seems having a response similar to the European (TSI, CEU) (0.35, 0.32) (S1

Table).

Rs776746 (C/T) variant located on CYP3A5 gene which is implicated in the biotransforma-

tion of the statin drugs, this variant creates a splice site in intron 3, resulting in altered mRNA

splicing. The alternatively spliced isoform has an insertion in intron 3, which changes the read-

ing frame and results in a premature termination codon and hences a non-functional protein

[58]. Individuals with rs776746 TT genotype are considered to be CYP3A5 poor metabolizes.

Indeed, Subjects carrying this genotype have a poor response to lipid lowering drugs such as

statin (atorvastatin, simvastatin, lovastatin) [59], consequently they may develop severe muscle

damage linked to this inappropriate treatment[60]. The aforementioned variant is the most

frequent and well-studied variant allele of CYP3A5. Its frequency varies widely across human

populations [61, 62]. In Tunisian population, it was more similar to the Africans (p.

value < 0.05/5�10) and differed significantly to the European and Asian population (p.

value > 0.05/5�10). The frequency of rs776746 TT in Tunisian and African were low, it ranged

between (0.01 to 0.08). Thus, these populations may have similar statin metabolism and will be

of great clinical significance in determining future therapeutic approaches. Regarding the vari-

ant rs776746, our findings show that Tunisian population has significant similarities with Afri-

can populations in predicted atorvastatin response. Yet, they display a distinct profile on PCA.

This result could be due to the high heterogeneity of the Tunisian genetic structure composed

of European, African, and Asian (Near Eastern) components. For this reason, it seems plausi-

ble that for some VIP variant, Tunisians are similar to the Europeans and for others, Tunisians

are similar to the Africans. As stated in the study of Mizzi C et al,. 2016, the population groups

are distinguished according to the results of PCA or admixture analysis using genotyping data.

This approach cannot lead to broad generalizations in the application for VIP variants at the
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individual level. Although, the approaches aiming to identify clinically relevant actionable VIP

variants are conducted in small number of variants. Moreover, this result is in agreement with

other studies showing that there are multiple pharmacogenomic profiles across African and

non African populations which could affect the safety and efficacy of many therapeutic drugs

with CYP3A5 substrate [59, 61]. In addition a considerable heterogeneity in North Africa but

not in other geographic regions, has been highlighted revealing a selective pressure on

CYP3A5 gene [63]. Based on the rich historic background of Tunisia, we suggest that adaptive

T allele of rs776746 might have been introduced by a relatively recent gene flow.

The intronic variant rs12255372, transition 113049143 G>T located on chromosome 10 of

TCF7L2 gene have been thoroughly studied and found to be associated with increased risk of

T2DM [64, 65]. The mechanisms by which TCF7L2 affects susceptibility to the disease remain

unraveled. Nevertheless, several studies have shown that decreased TCF7L2 protein expression

inhibits the insulin secretory response to an oral glucose through impaired incretin action[66].

The GODART study performed on Scottish subjects receiving sulfonylurea, showed an associ-

ation of rs12255372 risk allele with reduced effect of Sulfonylureas hypoglycemic response [65,

66]. The results revealed that the TT patients undergoing early sulfonylurea treatment had

approximately two-fold higher probability to fail the sulfonylureas medication (57% versus

17% for TT versus GG respectively)[65]. Conversely, our study shows that the frequency of

Tunisians carriers of rs12255372 TT genotype (0.19) is much lower than TSI, ASW, LWK,

MKK and CHB (respectively equal to 0.23, 0.22, 0.22, 0.29, 0.29) and much higher than CEU

and MEX (0.07, 0.09). Tunisian population seems to be good responder to Sulfonylureas

which should be the first line drug for patients, replacing insulin injections. Genotyping the

rs12255372 located in TCF7L2 should be considered when using Sulfonylureas treatment [67].

SNP array designed for the Genome Wide Association Study (GWAS) exploited in our

study do not allow to fully assess the contributions of variants implicated in MetS drugs

response due to the non-uniform coverage of all the chromosomal regions. Indeed, specialised

pharmacovariants chip like DMET array increases the power to identify common and rare var-

iations validated for their involvement in drugs metabolism [68–70].

The current clinical pharmacogenomics practice considered that inter-individual drug

response variability is mainly based on genetic common variants [1, 3, 46, 47, 71]. For this rea-

son, in our study, we have focused on common variants among Tunisian compared to other

populations. Nevertheless, it is well known that rare variants are expected to have more effects

on response to drug than common variants because they will not have been subject to purify-

ing selection after the recent expansion of the human population. [72, 73].

Conclusion

The present study showed that Tunisian population is genetically heterogeneous regarding the

studied pharmacogenes involved in the response to the MetS components. The allelic and

genotypic frequencies do not differ homogenously among the components. This shows the

complexity of the genetic components of response to treatment in admixed populations. This

study should be extended to other North African population to take into account their pecu-

liarities in order to effectively orient dose and drug prescription to ovoid serious adverse

reactions.

Supporting information

S1 Fig. Principal component analysis of the Tunisian subpopulation and worldwide popu-

lations. The plot reveals three distinct clusters showing that the Tunisian population present a

close affinity with the North Africans and Europeans and distinct from South Africans and
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Asians. Tunisian population; Capital Tunis TU_TC, coastal city of Monastir TU_MC (Affyme-

trixChip 6.0 genotyping array), African ancestry in the south Western USA (ASW); a north-

western European population (CEU); the Han Chinese in Beijing, China (CHB); a Chinese

population of metropolitan Denver, Colorado, USA (CHD); the Gujarati Indians in Houston,

Texas, USA (GIH); the Japanese population in Tokyo, Japan (JPT); the Luhya people in

Webuye, Kenya (LWK); people of Mexican ancestry living in Los Angeles, California, USA

(MEX); the Maasai people in Kinyawa, Kenya (MKK); the Tuscan people of Italy (TSI); and

the Yoruba in Ibadan, Nigeria (YRI); data from HapMap: ftp://ftp.ncbi.nlm.nih.gov/hapmap/

and Algeria (ALG), Egyptia (EGY), Libya (LIB), Tunisia Dwiret TUN_Ber, Lebanon (LIB),

Morocco South (MCS), Morocco North (MCN), Spain South (SPS), Spain North (SPN), Spain

Basc (SBA),: Sub-Saharan (SAH), Canary Island (CIS); data from the literature.

(TIFF)

S2 Fig. Distruct barplot result. The figure shows the different bar plots according to the dif-

ferent K number.

(DOCX)

S3 Fig. Best_K_By_Evanno-Delta K By K graph. The graph shows the best K equal to 3

according to delta K as proposed by Evanno.

(TIF)

S4 Fig. Analysis pipeline.

(TIF)

S1 Table. Genotype frequencies of clinical relevant VIP variant in Tunisia an ten HapMap

populations. The table reveals the similarities or divergences of the Tunisian population to the

other studied populations. This table highlight that the genotype frequencies of VIP variants

significantly affect a population’s response to a given drug.

(XLSX)
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