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Abstract

Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive poul-

try disease. IBD virus (IBDV) is the causative agent, which may lead to high morbidity and

mortality rates in susceptible birds. IBDV-pathogenesis studies have focused mainly on pri-

mary lymphoid organs. It is not known if IBDV infection may modify the development of the

gut associated lymphoid tissues (GALT) as well as the microbiota composition. The aim of

the present study was to investigate the effects of IBDV-infection on the bursa of Fabricius

(BF), caecal tonsils (CT) and caecum, and to determine the effects on the gut microbiota

composition in the caecum. Commercial broiler chickens were inoculated with a very virulent

(vv) strain of IBDV at 14 (Experiment 2) or 15 (Experiment 1) days post hatch (dph). Virus

replication, lesion development, immune parameters including numbers of T and B lympho-

cytes, macrophages, as well as the gut microbiota composition were compared between

groups. Rapid IBDV-replication was detected in the BF, CT and caecum. It was accompa-

nied by histological lesions including an infiltration of heterophils. In addition a significant

reduction in the total mucosal thickness of the caecum was observed in vvIBDV-infected

birds compared to virus-free controls (P < 0.05). vvIBDV infection also led to an increase in

T lymphocyte numbers and macrophages, as well as a decrease in the number of B lympho-

cytes in the lamina propria of the caecum, and in the caecal tonsils. Illumina sequencing

analysis indicated that vvIBDV infection also induced changes in the abundance of Clostrid-

ium XIVa and Faecalibacterium over time. Overall, our results suggested that vvIBDV infec-

tion had a significant impact on the GALT and led to a modulation of gut microbiota

composition, which may lead to a higher susceptibility of affected birds for pathogens invad-

ing through the gut.

Introduction

Infectious bursal disease virus (IBDV) is the causative agent of infectious bursal disease (IBD)

[1]. To date, this disease is prevalent in most of the poultry-producing regions of the world [2,

PLOS ONE | https://doi.org/10.1371/journal.pone.0192066 February 1, 2018 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Li L, Kubasová T, Rychlik I, Hoerr FJ,
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3]. Very virulent (vv) IBDV infection generally results in immunosuppression, which may lead

to high mortality rates in susceptible chickens. vvIBDV-induced immunosuppression in the

early phase of the chicken’s growing period may result in subsequent problems with secondary

infections including also gut-associated diseases, which contribute to the economic losses in

the poultry industry [4].

IBDV targets IgM+ B cells leading to a severe damage of the bursa of Fabricius (BF). In

recent years, vvIBDV-pathogenesis studies have mainly focused on the primary lymphoid tis-

sues such as the BF and the thymus. However, only little is known about the effects of vvIBDV

on the gut-associated lymphoid tissues (GALT) besides the BF. These comprise organized lym-

phoid tissues such as caecal tonsils (CT), peyer’s patches (PP), Meckel’s diverticulum and

other lymphoid aggregates located within the lamina propria (LP) along the gastrointestinal

tract [5]. These establish a first line of defense against invading pathogens and also contribute

to systemic immune responses [6]. Previous studies demonstrated that lymphocytes and mac-

rophages in the intestine play a role in vvIBDV transmission to the BF and other sites [7, 8].

vvIBDV may impair the intestinal mucosal immunity. One recent study demonstrated that

vvIBDV infection led to a decrease in villus height, and a reduction in the number of intestinal

intraepithelial lymphocytes (IEL) and mast cells in the intestine of specific-pathogen-free

(SPF) chickens [9]. These effects on gut associated immunity were observed during the first

three days after vvIBDV infection.

Little is known about the interaction between vvIBDV and the gut microbiota. The inter-

action between viruses and the microbiota is presently an area of intensive research in

human and other animal models [10]. It has been shown that the immune system is also

likely to be an important contributor to host control over microbiota composition [11]. Sev-

eral cell types such as goblet cells, IgA secreting B cells as well as intraepithelial lymphocytes

(IEL) function together to stratify luminal microbes and to minimize bacterial-epithelial

contact [12–14]. Likewise it has been shown that microbiota shapes immunity. Studies com-

paring germ-free and microbiota colonized mice revealed an effect of microbial coloniza-

tion on the formation of lymphoid tissues and subsequent immune system development

[11]. We hypothesize that vvIBDV may lead to a modification of the GALT and subse-

quently the gut microbiota composition, which enhances the risk of pathogen invasion of

the host through the gut [15, 16]. Previously another important immunosuppressive virus

of chickens, Marek’s disease virus (MDV), was shown to modify the core gut microbiota

composition [17].

Our objective was to investigate the effect of vvIBDV on the GALT of commercial

broiler chickens and the gut microbiota composition. In two experiments, broiler chickens

were experimentally inoculated with vvIBDV at 14 or 15 day post hatch, when the mater-

nally derived IBDV antibodies (MDA) were confirmed to be below the break through level

of the virus. Lesion development, viral antigen load, and local immune cell populations

were investigated in selected GALT such as the BF, CT and caecum. In addition, caecum

harbors a more diverse microbial community compared to other intestinal sections, and

it is physically associated with the CT, therefore caecal content was selected to determine

the gut microbiota by 16S rRNA sequencing. Our study clearly demonstrates that vvIBDV

not only modified immune cell populations in the BF but also in CT and caecum, and

subsequently led to changes in the microbiota composition. This indicates that not only

humoral immunity and innate immune parameters are affected in IBDV-infected birds,

but also the intestinal barrier is significantly altered, which could allow secondary patho-

gens to colonize.
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Material and methods

Animals

One-day-old commercial broiler chicks (Ross 308, mixed sex) were purchased from the hatch-

ery Brüterei Weser-Ems, GmbH & Co. KG, Visbek, Rechterfeld, Germany. All chicks were

kept in the same room at the Clinic for Poultry under isolation conditions on wood shavings

until the day of inoculation. On this day, the chicks were randomly distributed to different iso-

lation units and subsequently inoculated with virus or phosphate-buffered saline (PBS). All

groups received the same feed and water from the same commercial source ad libitum. The

chicks did not receive any vaccination. Experiments were conducted following the regulations

for animal welfare of Lower Saxony and were approved by the Lower Saxony State Office for

Customer Protection and Food Safety (LAVES: 33.12-42505-04-13/1215). Each bird was indi-

vidually marked with a wing tag.

All groups were evaluated daily for clinical signs. The following parameters were deter-

mined to evaluate the health status of the animals and clinical scores/animal in case of illness.

If clinical disease would have been observed in one group, individual birds with clinical signs

such as huddling, ruffled feathers, separation from the group, loss of feathers and skin integ-

rity, dirty feathers, bleeding, nasal or conjunctival discharge would have been identified. Indi-

vidual birds were more closely investigated then to determine the clinical score. The clinical

score is based on the following criteria: breathing and excrement quality, injuries, conjunctiva

condition, modification at the blood sampling region, feed and water intake, and locomotion.

Each parameter was evaluated and scored from 0 to three ranging from no signs/normal

(score 0) to severe signs (score 3) (S1 Table). The maximum total clinical score for all six

parameters is 18. The following criteria led to the definition of the humane endpoint: one bird

shows at three subsequent controlling time points (at least two observation time points per

day) a total clinical score of at least 5 to 7 or for one or more than one parameter a score of 3. If

this would have been confirmed, birds would have been immediately taken to the necropsy

hall and sacrificed. A therapeutic approach was not followed due to the fact that therapeutic

intervention would modify the outcome and possible interpretation of the experiment.

In the case of minor injuries affected birds would have been separated within the isolation

room from the group and treated with a silver spray to protect the injured area and support

the healing process. The birds were placed back in the group, if a clear recovery was visible.

If more birds would have been injured due to pecking, the light intensity would have been

reduced to stop pecking.

If the group would have shown at least one of the following symptoms: depression, ruffled

feathers, closed eyes, reluctant to move, huddling, birds would have been clinically observed at

least two to three times/day, and the room temperature be raised.

Virus and inoculum preparation

The vvIBDV strain 89163/7.3, used in this study, was kindly provided by N. Eterradossi,

AFSSA, Ploufragan, France [18]. The preparation and the challenge dosage of vvIBDV with

103 egg infectious dose (EID)50 /bird via eye drop were described previously [19]. The virus

had been stored at -80˚C.

Histological investigations

Samples of the BF, CT and the middle region of the caecum were collected, fixed in 4% (w/v)

phosphate-buffered formalin for 48 hours, embedded in paraffin, sectioned (2 μm) and further

processed for histological examination following standard procedures as previously described
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[20]. Bursal follicular lesion scores were determined according to previously described scores

(lesion scores: score 1 = 1–25%, score 2 = 26–50%, score 3 = 51–75% and score 4 = 76–100% of

bursal follicles showing more than 50% lymphoid cell depletion [21]. CT lesions included

edema, infiltration of plasma cells and heterophilic granulocytes.

Caecum lesions were characterized by the loss of epithelial integrity, edema, infiltration of

plasma cells as well as heterophils [9, 22]. Total mucosal thickness, including the mucosal epi-

thelium and lamina propria of the cecum were determined by morphometric analysis. The

caecum mucosa was measured at 5 representative points in each caecum using ImageJ software

(National Institutes of Health, USA), with the line tool calibrated from pixels to micrometers

using the reference bar standard (calibration: 0.457 pixels/micrometers). The mean of mucosal

thickness was calculated for six birds per group.

Immunohistochemical staining of vvIBDV antigen

Sections of the BF, CT and the middle region of the caecum were prepared as previously

described [20]. vvIBDV antigen was detected using a polyclonal rabbit anti-IBDV serum at a

dilution of 1:5000 [21]. The secondary anti-rabbit IgG biotinylated antibodies and ABC

reagent (Universal Vectastain 1Elite1ABC Kit, Vector Laboratories Inc., Wertheim-Bettin-

gen, Germany) were used according to the manufacturer’s instructions [23]. DAB (DAB per-

oxidase substrate Kit, Vector Laboratories Inc.) was used to visualize the enzyme-linked

complex. Sections were investigated by light microscopy. The antigen score of each group is

based on the number of vvIBDV-antigen positive cells per field at a magnification of 200 x:

1 = 1–10, score 2 = 11–50, score 3 = 51–100 and score 4 = over 100 vvIBDV antigen-positive

cells in 10 randomly selected microscopic fields per bird (n = 6/group).

Mast and goblet cell staining

The preparation of the BF, CT and the middle of the caecum for mast and goblet cell staining

was done as previously described [9]. Briefly, for the mast cell staining, sections of 2 μm were

stained with 0.8% toluidine blue (Sigma Co., UK) for 2 min after the rehydration. Slides were

washed with distilled water for 1 min, immediately dehydrated using 95% alcohol, and 100%

alcohol for 2 min, cleaned with xylene and then mounted with neutral gums. For the goblet

cells staining, sections were stained with 1% Alcian blue 8GS in PBS (Sigma Co., UK) for 15

min, rinsed for 5 min with distilled water, dehydrated with 95% alcohol and 100% alcohol for

2 min, respectively, cleaned with xylene and then mounted with neutral gums. The number of

mast cells in the caecum was counted in five randomly selected fields per bird (n = 6/group)

under the microscope (200 x magnification) and the goblet cells were counted per villus, from

tip to the crypt and calculated as the mean number per villus.

Detection of immune cells by immunohistochemistry

Samples of BF, CT and the middle region of the caecum were snap frozen in liquid nitrogen.

Frozen sections of tissues of 4 μm were prepared. Immunohistochemical staining of immune

cells was conducted according to the manufacturer’s instructions [23]. The following primary

antibodies were used at the following work concentration of 0.05 μg/ml: anti-CD4, anti-CD8β,

anti-Bu1, anti-KuL01 and anti-IgA (Southern Biotech, provided by Biozol, Eching, Germany).

Secondary anti-mouse IgG biotinylated antibodies, ABC reagent (Vectastain 1Elite1ABC

Kit, Vector Laboratories Inc., Wertheim-Bettingen, Germany), as well as DAB (DAB peroxi-

dase substrate Kit, Vector Laboratories Inc.) were used according to the manufacturer’s

instructions [24]. Sections were examined via light microscopy. The lymphocyte populations

and macrophages in the BF as well as the IgA-positive cell populations in the caecum were
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evaluated by counting the number of stained cells at a magnification of 200x in five randomly

selected microscopic fields per bird (n = 6/group). The caecal Bu1+ and T LPL as well as

KuL01+ cells were evaluated by counting the number of positive cells per three crypt regions

at a magnification of 200x of five randomly selected fields per bird (n = 6/group) [24].

For the epithelial lymphocytes (IEL), the numbers of CD4+ and CD8ß+ cells were evaluated

by counting the positive cells in the epithelial layer at a magnification of 200 × of five randomly

selected fields.

Gut microbiota composition

Microbiota composition was determined by sequencing of the V3/V4 variable region of 16S

rRNA genes exactly as described previously [25]. The resulting sequences were classified by

RDP Seqmatch with an OTU (operational taxonomic units) discrimination level set to 97%

using Qiime software.

vvIBDV-antibody detection by ELISA

Circulating anti-IBDV-specific IgG antibodies were detected by the commercially available

enzyme-linked immunosorbent assay (ELISA) ProFLOK1 IBD PLUS ELISA antibody test kit

(Synbiotics Co., Kansas City, Mo.). Anti-IBDV-antibody titers were calculated based on the

OD values and are presented as mean titer ± standard deviation (SD) per group.

Experimental design

Two experiments were conducted in the present study.

All people who participated in the animal experiments were either veterinarians with over

10 years of experience in conducting animal experiments with birds or specifically trained by

attending a FELASA C course, or were animal care takers, which were specialized in managing

poultry under experimental conditions. All participants were specifically approved by the

Lower Saxony State Office for Customer Protection and Food Safety (LAVES) to contribute to

these animal studies.

Experiment 1. Forty-eight one-day-old commercial broiler chickens were raised at the

Clinic for Poultry and were randomly divided into two groups (vvIBDV-inoculated group and

virus-free control). At seven and 14 days post hatch (dph), sera were collected for maternally

derived antibody (MDA) detection. Twenty-four chickens were inoculated with vvIBDV at the

age of 15 dph with a dosage of 103 egg-infectious dose (EID)50/bird via eye drop. Twenty-four

chickens were kept as virus-free controls which received PBS. Clinical signs were monitored

throughout the whole experiment. Six birds of each group were randomly selected and sacri-

ficed at three, seven, 14 and 21 days post inoculation (dpi), when the experiment was termi-

nated. Serum samples were collected for the detection of vvIBDV specific IgG antibodies by

ELISA. BF was weighted to calculate the organ to body weight ratio. Pathological lesions were

determined. Samples of BF, CT, as well as the middle of the caecum were formalin-fixed and

sectioned for the detection of histopathological lesions. Samples of BF, CT and the middle

region of the caecum were collected for immunohistochemical detection of vvIBDV-antigen,

immune cells, mast and goblet cells. In addition, caecum content was collected at necropsy for

gut microbiota composition analysis.

Experiment 2. Experiment 2 was partially a repeat of Experiment 1 with a total of thirty-

six broiler chickens. Eighteen chickens were inoculated with vvIBDV at a dose of 103 EID50/

bird at 14 dph. The remaining eighteen chickens were kept as virus-free controls. Six broilers

of each group were randomly selected and different to Experiment 1 necropsied at 10, 14 and

21 dpi, when the experiment was terminated. As in Experiment 1, serum samples were
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collected for MDA detection and at necropsy for the detection of vvIBDV specific IgG anti-

bodies by ELISA. Parameters, which were investigated at necropsy in Experiment 2 as a repeat

of Experiment 1 include: bursa/body weight ratio, histological lesions, viral-antigen detection,

immune cell populations including T and B lymphocytes, mast cell, and goblet cells in the BF,

CT, and caecum. Different to Experiment 1, gut microbiota composition of caecum content

was only determined at 14 dpi.

In all experiments birds were randomly selected for necropsy (n = 6/group and time point

in each experiment). They were stunned using blunt trauma, which was placed on the fronto-

parietal region, and subsequently immediately killed by exsanguination, which was approved

by the animal welfare committee of the Lower Saxony State Office for Customer Protection

and Food Safety.

Statistical analysis

Statistical analysis was performed using Statistix version 9.0 (Analytical software, Thallahassee,

USA). Two Sample T test (two-tailed) was used to analyze the difference in the total mucosal

thickness, and LPL immune cells between groups because data were normally distributed as

tested by the Shapiro Wilk-Test. The Wilcoxon Rank Sum T test was used to analyze the differ-

ences in IEL, mast cells, and antibodies titer between groups at the indicated time points

because data for these parameters were not-normally distributed as tested by the Sharpiro

Wilk-Test. P< 0.05 was considered as statistically significant. Graphs were prepared with

GraphPad v6 (Prism, LaJolla, USA).

Results

Clinical signs and tissue lesion development

vvIBDV was inoculated when MDA were below the breakthrough titer of the virus in both

experiments. In Experiment 1 and 2, vvIBDV was inoculated at 15 and 14 days post hatch

based on the break-through levels as calculated by the Deventer formula and published previ-

ously (data not shown) [26].

No chicken died due to vvIBDV-infection in either experiment, and none showed clinical

signs including ruffled feathers, huddling, respiratory distress or diarrhea after virus-inocula-

tion (S1 Table), which confirms previous experimental vvIBDV-infection studies in commer-

cial broilers [19, 27].

Consistent with previous studies [27, 28], vvIBDV inoculation induced a significant

increase in the bursa to body weight ratios (B/BW) at three dpi in comparison to the virus-free

controls (S2 Table, P< 0.05). Afterwards starting at seven dpi, bursal atrophy was observed in

vvIBDV-infected birds compared to virus-free controls. Comparable results were observed in

Experiment 2, with a significant decrease in B/BW at 21 dpi in comparison to the virus-free

control (S2 Table, P< 0.05). vvIBDV infection induced an increase in anti-IBDV IgG-specific

antibodies in both experiments. A significant upregulation was observed in both experiments

with ELISA-titers of log10 3.5 ± 0.2 at seven dpi in Experiment 1 and 3.2 ± 0.2 in Experiment 2

at 10 days post hatch compared to virus-free controls in Experiment 1 (2.4 ± 0.8) and 2

(1.6 ± 0.8), respectively (P< 0.05).

A depletion of lymphoid cells in bursal follicles was observed microscopically throughout

both experiments, and a trend of bursal recovery with beginning repopulation of follicles was

observed starting at 21 dpi (S1 Fig). Bursa lesion scores were 4.0 ± 0.0 starting at three dpi in

all vvIBDV-infected groups in both experiments (S3 Table).

An infiltration of heterophils was observed in the BF of vvIBDV-infected birds at three dpi

in Experiment 1 (Fig 1A and 1B). In the CT, vvIBDV-infected birds exhibited cellular
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destruction of germinal centers (Fig 1D), and a slight infiltration of heterophils in the submu-

cosal area at three and seven dpi (Experiment 1), these lesions were not observed at later time

points in either experiment. An infiltration of heterophils was also detected in the caecum of

Fig 1. vvIBDV infection led to histological lesions in the BF (A, B), CT (C, D) and caecum (E, F) (Experiment 1 as a representative experiment).

Control = virus-free control, vvIBDV = vvIBDV-infected group. A, C, E are representative sections from virus-free controls at three dpi, and B, D, F are

representative sections from vvIBDV-infected birds at three dpi.

https://doi.org/10.1371/journal.pone.0192066.g001
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vvIBDV–inoculated birds at three and seven dpi (Experiment 1) in comparison to virus-free

controls (Fig 1E and 1F). A significant decrease in the total mucosal thickness was observed at

seven, 14 and 21dpi in the caecum of vvIBDV–inoculated birds compared to virus-free con-

trols (Table 1, P< 0.05).

Effect of vvIBDV on goblet and mast cells

Consistent with previous studies [9], an increase in the number of goblet cells in the out layer

of the bursa was observed in the vvIBDV-infected chickens in comparison to virus-free con-

trols in both experiments (data not shown). In the caecum, vvIBDV-infected birds showed a

significant increase in the number of goblet cells at three, seven (Experiment 1, Fig 2) and 10

dpi (data not shown, Experiment 2) compared to virus-free controls (P< 0.05). While a signif-

icant lower number of goblet cells was observed at 21 dpi in the caecum of vvIBDV-infected

birds compared to virus-free control (Fig 2 and S2 Fig, P< 0.05)

Mast cells were frequently detected in the mucosal LP of the caecum, while they were rarely

detected in the BF and CT of virus-free birds. The effect of vvIBDV on the mast cell numbers

varied between different tissues. A transient increase of mast cell numbers was observed at

three dpi in the BF and CT of vvIBDV-infected birds in comparison to virus-free controls in

Experiment 1 (Fig 3A–3D). Compared to virus-free controls, a significant decrease in the

number of mast cells in the caecum was observed at three, seven and 14dpi in Experiment 1

and at 10 and 14 dpi in Experiment 2 in the vvIBDV-infected birds (Fig 3E–3H, P< 0.05).

vvIBDV antigen detection

All virus-free birds were negative for vvIBDV. Consistent with previous studies, vvIBDV repli-

cation was most vigorous in the BF [27, 28]. vvIBDV antigen was detected at high levels in the

BF at three dpi (Experiment 1, Fig 4), and then the number of antigen-positive cells decreased

over time. At 21 dpi nearly no IBDV-positive cells were detected in the BF in either experi-

ment. vvIBDV-antigen positive cells were also observed at three and seven dpi in the CT and

caecum and at 14 dpi in the CT of vvIBDV-infected birds in comparison to virus-free controls

in Experiment 1 (Fig 4). No IBDV-positive cells were detected in the CT and caecum at 10, 14

and 21 dpi in Experiment 2. The score of vvIBDV antigen-positive cells was lower in these tis-

sues compared to the BF.

Effects of vvIBDV-infection on immune cells in the LP of the GALT

Consistent with previous studies, vvIBDV infection led to a depletion of B lymphocytes, a sig-

nificant increase in T lymphocytes, as well as transient infiltration of macrophages at three and

Table 1. Morphometric measurements of the caecum mucosa of virus-free and vvIBDV-inoculated birds. Results

are expressed as mean± SD (μm) (Experiment 1).

Dpi Average total mucosal thickness (μm)

Control vvIBDV

3 245.6±67.2 230.6±25.6

7 342.3±48.9 213.2±35.8�

14 262.9±22.7 205.1±47.6�

21 283.6±32.3 216.3±25.2�

Dpi = days post inoculation; Control = virus-free control; vvIBDV = vvIBDV-infected group.

�indicates significant differences between groups at the indicated time points (P< 0.05, n = 6/group).

https://doi.org/10.1371/journal.pone.0192066.t001
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seven dpi in the BF (P< 0.05) [21]. In the caecum, vvIBDV-infected birds showed a significant

decrease in the number of LP B lymphocytes at seven and 14 dpi compared to virus-free con-

trols in Experiment 1 (Fig 5A and S3 Fig, P< 0.05), and this significant difference was also

observed at 10 and 14 dpi in Experiment 2 (P< 0.05). Compared to virus-free controls,

Fig 2. Goblet cell staining in the caecum (A, B) of birds after three days post vvIBDV inoculation (Experiment 1) and average number of goblet cells at varies

time points post virus-inoculation (C). A, is the representative picture from virus-free controls, and B is the representative picture from a vvIBDV-infected bird. C is

the summary of the number of goblet cells in the caecum in Experiment 1. � significantly different between groups at the indicated time points (Wilcoxon Rank Sum

Test, P< 0.05). control = virus-free control, vvIBDV = vvIBDV-infected group.

https://doi.org/10.1371/journal.pone.0192066.g002
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vvIBDV-infected birds had a reduced number of B cells and smaller sizes of germinal centers

in the CT throughout both experiments (Fig 6B). The decrease in the number of LP B lympho-

cytes in the caecum coincided with a significant decrease in the number of IgA secreting cells

in the caecum in the area of the lamina propria in Experiment 1 of vvIBDV-infected birds in

comparison to virus-free controls (Table 2, S4 Fig). No IgA-positive cells were detectable in

the epithelium.

Fig 3. Mast cell detection in the BF (A, B), CT (C, D) and caecum (E, F) of control (A, C, E) and vvIBDV-inoculated (B, D, F)

birds after three days post vvIBDV inoculation (Experiment 1) and a summary of mast cell detection over time in the caecum

of animals in Experiment 1 (G) and Experiment 2 (H). Arrows indicate stained mast cells. Enlargements of indicated regions

with mast cells are presented in figures B, D, E, F. �indicates significant differences between groups at the indicated time points

(Two-sample T test, P< 0.05). Control = virus-free control, vvIBDV = vvIBDV-infected group. n = 6 per group.

https://doi.org/10.1371/journal.pone.0192066.g003

Fig 4. Staining of IBDV-antigen in the BF (A, B, C), CT (D, E, F), and caecum (G, I, H) of chickens at three days post vvIBDV-inoculation (Experiment 1).

Control = virus-free control, vvIBDV = vvIBDV-infected group. A, D, G are sections from virus-free controls, and B, E, I are from vvIBDV-infected birds. C, F, H are the

summary of antigen positive cells in the BF, CT and caecum, respectively.

https://doi.org/10.1371/journal.pone.0192066.g004
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An increase in the number of CD4+ and CD8ß+ LPL in the caecum was detected in both

experiments. This increase was significant at three, seven and 14 dpi when comparing

vvIBDV-infected birds and virus-free controls in Experiment 1 (Fig 5B and 5C, P< 0.05).

Comparable results with a significant increase in the number of CD4+ LPL at 10 dpi were

observed in the caecum of vvIBDV-infected birds compared to virus-free controls in Experi-

ment 2 (P< 0.05). Similar results were observed in the CT with an infiltration of T cells in the

submucosal area at three dpi (Fig 6D and 6F).

A significant increase in the number of macrophages was observed at three and seven dpi

in the caecal LP of vvIBDV-infected birds compared to virus-free controls (Fig 5D, P< 0.05).

An increase in the amount of macrophages was also induced by vvIBDV in the CT at three

and seven dpi, but not at later time points (Fig 6H).

Fig 5. Immunohistochemical detection of Bu1+ (A), CD4+ (B), CD8β+ (C), and KuL01+ (D) cells in the caecum of chickens at different days after vvIBDV-

infection (Experiment 1). �indicates significant difference between groups at the indicated time points (Two-sample T test (A) or Wilcoxon Rank Sum Test (B, C, D),

P< 0.05). Control = virus-free control, vvIBDV = vvIBDV-infected group.

https://doi.org/10.1371/journal.pone.0192066.g005
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Effects of vvIBDV-infection on IEL in caecum

IEL B cells were rarely detectable in non-as well as infected birds. A significant decrease in the

number of CD4+ IEL was observed at three and seven dpi in the caecum of vvIBDV-infected

birds compared to virus-free controls in Experiment 1 (Fig 7A–7C; P< 0.05). vvIBDV-

infected birds also had a significant decrease in CD8ß+ IEL numbers at seven dpi in the cae-

cum compared to virus-free controls (Fig 7D–7F; P< 0.05).

Effect of vvIBDV on caecum microbiota composition

To obtain a deeper insight into the changes occurring to the caecal microbiota during vvIBDV

infection, we investigated the caecal content at three, seven, 14 and 21 dpi in Experiment 1 and

14 dpi in Experiment 2. The sample with the lowest coverage was characterized by 3677

sequences, and 10283 sequences were available for the sample with the highest coverage. Rep-

resentatives of nine phyla were detected at all the investigated time points. Independent of

vvIBDV infection, the majority (over 95%) of microbiota was formed by representatives of Fir-
micutes, Proteobacteria, Acitinobacteria and Bacteroidetes (Figs 8 and 9). The relative represen-

tation of individual phyla in the caecal samples remained stable with Firmicutes forming more

than 90% of the microbiota between 18 dph to 36 dph [29].

A more detailed analysis was performed on the family and genus level. At the family level,

the majority of bacteria were Lachnospiraceae and Ruminococcaceae in both vvIBDV-infected

and virus-free control groups. Independent of vvIBDV inoculation, the abundance of Lachnos-
piraceae decreased over time. It ranged from 54.4% at 18 dph to 42.2% at 36 dph. Ruminococ-
caceae showed a reverse trend with an abundance ranging from 25.6% at 18 dph to 42.2% at 36

dph (Fig 8). At the genus level, the abundance of Faecalibacterium increased ranging from

0.5% at 18 dph to 13.2% at 29 dph, and decreased afterwards to 9.3% at 36 dph (Fig 9).

vvIBDV inoculation modified the gut microbiota. Independent of age, vvIBDV inoculation

led to a lower abundance of Clostridium XlVa at three dpi, which was followed by a higher

abundance at seven and 21 dpi compared to virus-free controls (Fig 9). A higher abundance of

Faecalibacterium at seven dpi, but a lower abundance at 14 and 21 dpi was observed in

vvIBDV-infected birds in comparison to virus-free controls (Fig 9). There was also a decrease

in abundance of Escherichia/Shigella detected at three, 14 dpi and 21 dpi in vvIBDV-infected

birds compared to virus-free controls (Fig 9), confirming the decrease in the abundance of

Fig 6. Immunohistochemical detection of Bu1+ (A, B) CD4+ (C, D), CD8β+ (E, F), and KuL01+ (G, H) in the CT of chickens after

three days post vvIBDV inoculation (Experiment 1). A, C, E, G are from virus-free controls, and B, D, F, H are from vvIBDV-infected

birds.

https://doi.org/10.1371/journal.pone.0192066.g006

Table 2. Average number of IgA+ cells in the in the lamina propria of the caecum (Experiment 1).

Dpi Average number of IgA+ cells in the caecum ± SD

Control vvIBDV

3 19.6±3.8 12.2±3.0�

7 31.6±3.8 15.9±2.9�

14 39.6±10.7 28.7±7.4

21 52.8±10.1 35.1±12.3�

Dpi = days post inoculation; Control = virus-free control; vvIBDV = vvIBDV-infected group.

�indicates significant differences between groups at the indicated time point (P< 0.05, n = 6/group).

https://doi.org/10.1371/journal.pone.0192066.t002
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Fig 7. Average number of CD4 (A, B, C) and CD8β-positive (D, E, F) cells located within the epithelia (IEL) of the caecum of chickens at seven (A, B, D, E) or

different days post vvIBDV inoculation (C, F) (Experiment 1). �indicates significant difference between groups at the indicated time points (Wilcoxon Rank Sum T

test, P< 0.05). Control = virus-free control, vvIBDV = vvIBDV-infected group. Arrows indicate IEL cells, n = 6 per group.

https://doi.org/10.1371/journal.pone.0192066.g007
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Enterobacteriaceae in the vvIBDV-infected birds compared to virus-free controls (Fig 8). Simi-

lar observations were made in Experiment 2 at 14 days pi.

Discussion

Gut health is a very important aspect in poultry production and significantly contributes to the

overall health and performance of a flock [30]. If the gut immunity as well as the mucosal intes-

tinal barrier is disturbed, this may have a severe impact on the bird’s development and may

enhance the risk for not only gut but also systemic infections [31]. Immunosuppressive dis-

eases may influence the development of the gut immunity and possible the microbiota compo-

sition and subsequently modify the intestinal barrier [32, 33]. Neither the effect of vvIBDV

infection on the GALT nor the possible correlation to the gut microbiota composition has

been investigated so far. In the present study, commercial broiler chickens were infected with

vvIBDV at 14 (Experiment 2) or 15 (Experiment 1) days post hatch, when MDA had reached

the break-through levels of the virus. vvIBDV-infection was confirmed by viral antigen detec-

tion in the BF, and bursal atrophy with a depletion of B lymphocytes. Seroconversion was

detected in vvIBDV-infected birds starting at seven dpi. Birds showed beginning recovery of

microscopical lesions in the BF at 21 dpi.

In addition to the changes in the BF, detectable histopathological lesions were also observed

in the CT and caecum of vvIBDV-infected birds. These findings coincide with the presence of

virus antigen. CT and caecum showed structural recovery starting at 14 dpi. Viral clearance

and recovery occurred faster in the CT and caecum compared to the BF. IBDV initially repli-

cates in lymphocytes and macrophages in the gut intestine [34, 35]. It reaches the liver and

enters the bloodstream leading to a primary viremia within 11 hours post infection. The virus

starts replicating in proliferating B lymphocytes of the BF [35, 36]. Afterwards it migrates into

the different tissues via blood circulation, causing secondary viremia [8]. In the present study,

we observed the viral antigen positive cells in the germinal centers together with lesions from

three to seven dpi. We speculate that the lesion in the CT and caecum are due to the secondary

viraemia [37].

Gut associated mucosal immunity is important as a first barrier of host defense against

pathogen invasion. An increase in the number of mast cells was observed in the BF and CT

during the acute phase of the disease what confirms previous studies showing IBDV infection

may affect the number and morphology of mast cells [9, 38]. Our method does not allow the

differentiation if this was an increase in absolute numbers or just a change in relative cell num-

bers due to the IBDV-mediated B cell depletion. However Wang et al. [38] also demonstrated

by using a comparable staining method a mast cell number increase in the thymus, a tissue,

which is not as severely affected by B cell depletion as the bursa, providing circumstantial evi-

dence that changes in mast cell numbers may not only be due to B cell depletion. vvIBDV

infection also led to a significant decrease in number of mast cells in the caecum. We propose

that this decrease contributes to a compromised gut mucosal immunity caused by vvIBDV

infection [39]. A significant increase in the number of goblet cells was observed in the caecum

of vvIBDV-infected birds compared to virus-free controls (P< 0.05). Goblet cells, together

with epithelial cells and macrophages are regarded as the major cellular constituents of the

innate defense system [40]. It was demonstrated that various enteric infections including bac-

teria and viruses are associated with an alteration of the goblet cell response [41–43]. Goblet

Fig 8. Bacterial communities of caecal samples from chickens at the family level (Experiment 1). Data were analyzed

using QIIME. The x-axis represents the groups at different days post inoculation (dpi) and the y-axis represents the relative

abundance of sequences. Control = virus-free control, vvIBDV = vvIBDV-inoculated group. NA = not analysed.

https://doi.org/10.1371/journal.pone.0192066.g008
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cell hyperplasia was suggested to be controlled by immunological mechanism during infection

[44, 45]. vvIBDV-infection may also interfere with the function of goblet cells [39].

A significant increase in the number of T cells was observed in the BF and CT, as well as in

the LP of the caecum of vvIBDV-infected birds compared to virus-free controls (P< 0.05). It

has been shown that T lymphocytes infiltrate into the LP of the gut after various enteric infec-

tions, such as with rotavirus [46] or Salmonella Enteritidis [47]. Previous studies had already

demonstrated that an infiltration of T cells into the BF starts at the early stage of IBDV-infec-

tion [48]. Cytotoxic T lymphocytes were suggested to play a role in the clearance of IBDV, but

also to contribute to lesion development in the bursa [49, 50]. Interestingly also the number of

T LPL increased in the caecum of vvIBDV-infected birds, which suggests that the T cells are

not only activated in the BF but also in the gut. However, vvIBDV infection led to a significant

decrease in the number of CD4+ IEL at three and seven and CD8ß+ IEL at seven dpi

(P< 0.05). The increase in T LPL might be due to the movement of CD4+ and CD8ß+ lym-

phocytes from the intraepithelial to the submucosal area. LPL and IEL are two distinct compo-

nents of the GALT. Based on our investigation there is not clear correlation between the

increase in T LPL and IBDV-antigen, as there was no detectable IBDV-antigen in the LP.

A decrease in the number of IgA+ secreting cells was observed in the caecum of vvIBDV-

infected birds compared to virus-free controls. IgA is the most common immunoglobulin in

the mucosal tissue, being an important line of the immunological defense against invading

enteric pathogens. In addition, IgA regulates the ecological balance of the microbiota and has

a fundamental role in mucosal homeostasis [51]. This detected decrease in IgA+ cells may be

due to direct infection of these cells by IBDV. But older studies suggested that IBDV may tar-

get receptors mainly presented on the surface of IgM-bearing cells. vvIBDV-exposure did not

reduce the levels of total serum IgA, IgG, and IgM, nor did it affect IgG and IgA B-cells in the

spleen, while the caecum was not investigated [52]. Therefore, we speculate that the decrease

in IgM+ B cells in the BF and CT possibly led to the subsequent reduction of IgA+ secreting

cells in the caecum. Further studies should be conducted to determine if local and systemic

IgA-levels may be reduced under comparable experimental conditions. Overall, this reduction

in IgA+ cells together with the decrease in the number of mast cells as well as T IEL may result

in insufficient protection against other pathogens, such as Salmonella [53], or Escherichia coli
[54]. Early findings indicated that IBDV-induced humoral immunity suppression led to failure

of seroconversion to other pathogens including infectious bronchitis virus (IBV) [55], chicken

infectious anemia virus (CIAV) [56].

The gastrointestinal tract represents one of the primary sites of exposure to pathogens [57].

There is limited literature on dysbiosis caused by viruses. Recent studies targeted at the influ-

ence of the human immunodeficiency virus (HIV) as well as the simian immunodeficiency

virus (SIV) on the gut microbiota and showed a selective enrichment of few phenotypes in the

gut microbiota after viral infection [58, 59]. Interestingly, we observed a higher abundance of

Ruminococcaceae and Desulfovibrionaceae in vvIBDV-infected birds compared to virus-free

control. Similar finding were observed in HIV chronically infected patients [58, 59]. It was also

shown that HIV infection leads to a lower level of local IgA. This possibly contributes to HIV

infection-associated enhanced microbial translocation, which may lead, in turn, to a chronic

state of immune activation as noted in many HIV patients [60]. HIV targets the CD4+ cells,

while IBDV targets B cells. However, both virus infections lead to a decrease in the number of

Fig 9. Bacterial communities of caecal samples from chickens at genus level (Experiment 1). Data were analyzed

using QIIME. The x-axis represents the groups at different days post inoculation (dpi) and the y-axis represents the

relative abundance of sequences. Control = virus-free control, vvIBDV = vvIBDV-inoculated group. NA = not

analysed.

https://doi.org/10.1371/journal.pone.0192066.g009
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IgA+ cells in the intestine. We may speculate the decrease in IgA might attribute to the dysbio-

sis of gut microbiota.

In the present study, vvIBDV-infected birds had a lower abundance of Clostridium XIVa at

three dpi compared to virus-free birds. This trend reversed between seven and 21dpi. An

increase in the abundance of Faecalibacterium was observed at three and seven dpi in the

vvIBDV-infected birds compared to virus-free controls, while this trend also reversed starting

at 14 dpi. The acute phase of IBDV infection is between three to five dpi, which includes the

peak of IBDV replication, and a strong inflammatory response with a ‘cytokine storm’. After

the acute phase, all these reactions decrease over time, possibly coinciding with modification

in the gut microbiota composition. Previous studies showed that Clostridium spp. are strong

inducers of colonic T regulatory (Treg) cells [61]. Treg cells are primary mediators in main-

taining the immune homeostasis and play a critical role in the suppression of extensive intesti-

nal inflammation. In inflammatory bowel disease also a decrease in the abundance of

Clostridium XIVa and Faecalibacterium had been observed [62–64]. Therefore, the decrease in

the abundance of Clostridium XIVa at three days post vvIBDV infection might suggest that

vvIBDV interferes with the delicate balance of gut mucosal immunity and may support harm-

ful intestinal inflammation. The role of Faecalibacterium is unknown in chickens. In human

studies, it was demonstrated that Faecalibacterium prausnitzii is a sensor and a marker of

human health [63]. Intestinal disorders, such as inflammatory bowel disease [65] and colorec-

tal cancer [66] are associated with a diminished abundance of Faecalibacterium prausnitzii. If

this observation can be transferred to chicken, our data provides circumstantial evidence that

changes in the abundance of Faecalibacterium for example through vvIBDV infections are an

indicator for intestinal disorders.

In conclusion, this study shows for the first time the influence of vvIBDV on the gut associ-

ated immune system and the microbiota composition. These results may help to understand

the far-reaching consequences of immunosuppressive diseases in poultry. The change of the

microbial populations correlated well with changes in immune cell populations such as mast

cells, B cells especially IgA+ cells in the LP of the caecum and CT of vvIBDV-infected birds.

Due to the complexity of the viral pathogenesis and the GALT system of the host, it is difficult

to pinpoint the exact mode of action of the virus on the microbiota. It is not clear if there were

direct or indirect effects of the virus. This has to be evaluated further to be able to improve

chicken’s health in the field in the future.

Supporting information

S1 Fig. Histological bursa lesions of virus-free control (A, C, E, G) and vvIBDV-inoculated

(B, D, F, H) chickens at three, seven, 14 and 21 dpi. Arrows indicate beginning recovery in

some bursa follicles.

(TIF)

S2 Fig. Goblet cell staining in the caecum of virus-free control (A) and vvIBDV-inoculated

(B) birds after 21 days post virus-inoculation (Experiment 1).

(TIF)

S3 Fig. Immunohistochemical detection of Bu1+ (A, B), CD4+ (C, D), CD8β+ (E, F), and

KuL01+ (G, H) cells in the caecum of virus-free control (A, C, E, G) and vvIBDV-inocu-

lated chickens after three days post virus-inoculation (Experiment 1). Arrows indicate the

positive immune cells in the lamina propria of the caecum.

(TIF)
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S4 Fig. Immunohistochemical detection of IgA in the caecum of virus-free control (A) and

vvIBDV-inoculated (B) chicken after three days post virus-inoculation (Experiment 1).

Arrows indicate IgA positive cells in the lamina propria of the caecum.

(TIF)

S1 Table. Clinical scoring of virus-free control and vvIBDV-inoculated birds during Exper-

iments 1 and 2.

(DOC)

S2 Table. Bursa to body weight ratio of chicken after vvIBDV inoculation. Dpi = days post

inoculation; Control = PBS-inoculated control; vvIBDV = vvIBDV-infected group. �letter

indicates significant differences between groups at the indicated time point (P< 0.05, n = 6).

(DOCX)

S3 Table. Bursa lesion score after vvIBDV-inoculation (Experiment 1 as a representative

experiment). dpi = days post inoculation; control = PBS-inoculated control;

vvIBDV = vvIBDV-infected group. �indicates significant differences between groups at the

indicated time point (P< 0.05, n = 6/group).

(DOCX)
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