
genes
G C A T

T A C G

G C A T

Article

MicroRNA Analysis of Human Stroke Brain Tissue Resected
during Decompressive Craniectomy/Stroke-Ectomy Surgery

Andrew P. Carlson 1 , William McKay 1, Jeremy S. Edwards 2, Radha Swaminathan 2, Karen S. SantaCruz 3,
Ron L. Mims 1, Howard Yonas 1 and Tamara Roitbak 4,*

����������
�������

Citation: Carlson, A.P.; McKay, W.;

Edwards, J.S.; Swaminathan, R.;

SantaCruz, K.S.; Mims, R.L.; Yonas,

H.; Roitbak, T. MicroRNA Analysis of

Human Stroke Brain Tissue Resected

during Decompressive Craniectomy/

Stroke-Ectomy Surgery. Genes 2021,

12, 1860. https://doi.org/10.3390/

genes12121860

Academic Editor: Italia Di Liegro

Received: 11 October 2021

Accepted: 21 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Neurosurgery, University of New Mexico Health Science Center, Albuquerque, NM 87131,
USA; AndrewCarlson@salud.unm.edu (A.P.C.); William.mckay@ucdenver.edu (W.M.);
rmims@uw.edu (R.L.M.); Howardyonas1@gmail.com (H.Y.)

2 Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA;
jsedward@unm.edu (J.S.E.); rswaminathan@unm.edu (R.S.)

3 Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA;
KSantaCruz@salud.unm.edu

4 Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
* Correspondence: troitbak@salud.unm.edu; Tel.: +1-505-272-3202

Abstract: Background: Signaling pathways mediated by microRNAs (miRNAs) have been identified
as one of the mechanisms that regulate stroke progression and recovery. Recent investigations
using stroke patient blood and cerebrospinal fluid (CSF) demonstrated disease-specific alterations in
miRNA expression. In this study, for the first time, we investigated miRNA expression signatures in
freshly removed human stroke brain tissue. Methods: Human brain samples were obtained during
craniectomy and brain tissue resection in severe stroke patients with life-threatening brain swelling.
The tissue samples were subjected to histopathological and immunofluorescence microscopy evalua-
tion, next generation miRNA sequencing (NGS), and bioinformatic analysis. Results: miRNA NGS
analysis detected 34 miRNAs with significantly aberrant expression in stroke tissue, as compared to
non-stroke samples. Of these miRNAs, 19 were previously identified in stroke patient blood and
CSF, while dysregulation of 15 miRNAs was newly detected in this study. miRNA direct target gene
analysis and bioinformatics approach demonstrated a strong association of the identified miRNAs
with stroke-related biological processes and signaling pathways. Conclusions: Dysregulated miRNAs
detected in our study could be regarded as potential candidates for biomarkers and/or targets for
therapeutic intervention. The results described herein further our understanding of the molecular
basis of stroke and provide valuable information for the future functional studies in the experimental
models of stroke.

Keywords: stroke; malignant hemispheric infarction; microRNA; next generation microRNA sequencing

1. Introduction

Ischemic stroke accounts for up to 71% of all stroke cases and 51% of all stroke-
related deaths worldwide, and is currently among the top leading causes of serious,
long-term disability [1,2]. Identification of the molecular markers of stroke provides the
potential to predict severity and clinical outcome, as well as to identify possible targets for
therapeutic intervention. Stroke-associated ischemic damage involves blood brain barrier
(BBB) dysfunction, microvascular injury, cytotoxic and vasogenic edema, post-ischemic
inflammation, oxidative damage, spreading depolarization, and ultimately, the death of
neurons, glia, and endothelial cells [3–7]. In search of the molecular mechanisms and
signaling cascades regulating these pathological processes in human subjects, researchers
focus on the differential gene profiling in peripheral blood and CSF collected from stroke
patients [8–10]. Besides the identified alterations in gene expression, stroke-associated
changes in microRNA profiles are now regarded as indicators of the risk, occurrence, and
severity of the disease [11–13].

Genes 2021, 12, 1860. https://doi.org/10.3390/genes12121860 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-2189-3699
https://orcid.org/0000-0003-1599-6819
https://doi.org/10.3390/genes12121860
https://doi.org/10.3390/genes12121860
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12121860
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes12121860?type=check_update&version=2


Genes 2021, 12, 1860 2 of 18

MicroRNAs (miRNAs) are a diverse class of highly conserved small RNA molecules
that function as critical regulators of gene expression and orchestrate a variety of signaling
pathways involved in stroke progression [14,15]. Among the wide range of identified miR-
NAs, some are now considered as biomarkers for cerebral ischemia [13,14,16]. The stroke-
related changes in human gene and miRNA expression were detected using the patient
blood (whole blood and plasma), cerebrospinal fluid, or postmortem brain samples [17–20].
Even though these samples represent simple and clinically relevant alternatives to brain
tissue, the interpretation of the obtained gene and miRNA expression profiling results
remains problematic. While these data may predict a clinical outcome or describe the
systems response to disease, they do not distinguish the brain tissue-specific alterations
from the molecular changes associated with systemic immune response or postmortem
transformations.

In the present study, we analyzed human brain tissue samples resected during a
craniectomy and stroke-ectomy procedure in patients with severe (malignant) hemispheric
stroke. In up to 10% of stroke patients, the infarct and associated edema progresses into
severe space-occupying brain swelling associated with a high mortality rate of up to
80% [21–23]. Malignant cerebral infarction caused by middle cerebral artery (MCA) or
internal carotid artery (ICA) occlusion leads to an increased intracranial pressure and
subsequent herniation and brain stem compression. The affected MCA territory includes
a portion of the frontal and temporal/parietal lobes. Depending on the location of the
occlusion, ICA-affected brain area could be smaller or wider than that of an MCA territory
infarction. Recommended treatments for malignant edema include early identification
of neurological worsening, osmotic therapy, and decompressive craniectomy (DC) with
dural expansion in select patients [24–27]. Additional removal of infarcted tissue (stroke-
ectomy) is performed in cases of severe swelling in order to quickly decompress deep
structures [28,29]. This usually aspirated and discarded tissue provided a unique source for
our human stroke tissue analysis. Herein, for the first time, morphological evaluation, as
well as gene and microRNA profiling was performed in the freshly removed human stroke
brain tissue. This approach enables the identification of early (as opposed to post-mortem)
brain tissue-specific alterations in the live brain following cerebral stroke. The obtained
data could contribute to knowledge on the underlying mechanisms of stroke, as well as
lead to development of miRNA-based targeting therapies in the future.

2. Materials and Methods
2.1. Tissue Sample Collection

The sample collection procedures and the roles of all participants in the study are
regulated by the protocol approved by the University of New Mexico Human Research
Review Committee (IRB approval: UNM-HRPO 17-031).

Surgical procedure: Brain tissue specimens were collected from the ischemic stroke
patients with large cerebral infarction who underwent decompressive hemicraniectomy
with stroke-ectomy procedure. During the surgery, a large (≥12 cm) craniectomy was
created and the dura opened in a stellate fashion. After the dura was opened, the brain was
inspected and if it is still herniating out of the defect, additional infarcted temporal lobe
tissue was removed and stored immediately in RNAlater solution to stabilize the samples
for further analyses. Additional stroke-ectomy was performed with suction and bipolar
cautery until the brain was adequately relaxed.

Sample handling: The resected tissue was taken to the UNM Human Tissue Repository
and Tissue Analysis Shared Resource (HTR-TASR, an honest broker). Control temporal lobe
samples of non-stroke patients were received from the HTR-TASR as frozen blocks. These
biopsy samples were collected during a neuro-oncology surgery, either from the tissue
adjacent to the tumor, or tissue removed when accessing a deep tumor. These temporal
lobe samples were identified by the pathologist as “normal”, based on the absence of
gliosis, necrosis, or tumor cells. Similar histologically normal tissue has been widely used
as reference normal samples for genomic and proteomic analyses in cancer research [30,31].
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2.2. Human Brain Tissue Processing

Before sectioning, the tissue specimens were cut longitudinally to obtain two mirror
samples from the same tissue block. One portion of the brain tissue was fixed in 10%
neutral buffered formalin and subjected to sectioning and histological staining, followed
by morphological evaluation. Another “mirror” part of each sample was stored in RNA
later and subsequently frozen at −70 ◦C, for further microRNA analysis.

2.3. Histological Staining

4 µm paraffin-embedded tissue sections were cut using RM2135 microtome, Leica
(Buffalo Grove, IL, USA). After the deparaffinization, the sections were subjected to hema-
toxylin and eosin (HE) staining. The staining was performed using a protocol for standard
automated HE histopathology staining with Leica Autostainer XL.

2.4. Immunohistochemistry and Fluorescence Microscopy

Immunofluorescence staining was performed based on the modified protocols for
human brain tissue labeling described earlier [32,33]. After the regular deparaffiniza-
tion and rehydration steps and prior to immunohistochemical labeling, the human tissue
samples underwent antigen retrieval by incubating sections for 10 min in a solution of
Tris-buffered saline (TBS) containing 20 µg/mL proteinase K. For blocking and perme-
abilization, the sections were incubated for 2 h at room temperature in TBS with 0.05%
tween (TBST) containing 2% normal goat serum. Incubation with primary antibody was
performed for 24 h at room temperature. The following antibodies were used for the
immunofluorescence labeling: mouse monoclonal pan-neuronal marker antibody (1:100,
MilliporeSigma, Burlington, MA, USA), rabbit polyclonal anti-Iba-1 (1:500, Fujifilm, Wako
Chemicals, Richmond, VA, USA), and mouse monoclonal anti-GFAP (1:100, BD Biosciences,
Franklin Lakes, NJ, USA). FITC-, and Rhodamine-conjugated secondary antibodies (1:500
concentration, 2 h at room temperature incubation) were from Jackson Immunoresearch.
DAPI staining was used to visualize nuclei. Imaging was performed using Zeiss LSM 800
Airyscan confocal microscope, using single-scan and tile-scan image acquisitions.

2.5. Next Generation Sequencing (NGS) Analysis

Tissue samples were sent to Qiagen (Carlsbad, CA, USA) for RNA isolation and
miRNAseq library preparation. miRNA and small RNA sequencing was performed using
Illumina NGS sequencing platform. The resulting NGS data were analyzed using the
CLC Genomics Workbench (version 20.0.2) and CLC Genomics Server (version 20.0.2),
developed by QIAGEN, Aarhus, Denmark. First, quality and adapter/common sequence
trimming on the reads was performed, and the trimmed reads were grouped according
to Unique Molecular Identifiers (UMIs) and aligned to miRbase v22. Reads were normal-
ized for expression analysis using trimmed mean of M-values method (TMM). miRNA
differential expression analysis was performed using the EdgeR Bioconductor package 3.14.

Whole Transcriptome RNA-Sequencing Analysis: The unmapped reads from the
NGS miRNA analysis were extracted, deduplicated and mapped to the genome. Gene
expressions were calculated by counting number of reads mapping to the annotated
gene loci.

All NGS sequencing data have been deposited in NCBI’s Gene Expression Omnibus
and are accessible through GEO Series accession number GSE155257 at: https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE155257 (accessed on 29 July 2020).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155257
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155257
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2.6. Statistical Analysis

Statistical analysis was performed using the EdgeR Bioconductor package (version
3.36). p-values for significantly differentially expressed miRNAs and genes were estimated
by an exact test assuming a negative binomial distribution. As a result, a list of miRNAs
and their target genes with differential expression between the stroke and control tissue
samples were generated and further analyzed to interpret their biological significance.
The Empirical analysis of gene expression data was implemented as the ‘Exact Test’ for
two group comparisons incorporated in the EdgeR Bioconductor package. This test was
implemented to calculate miRNA differential expression, in particular, for calculations of
“Log-Fold-Change” and “FDR corrected p-values” which are the main result of the statistical
testing. Only the miRNAs and genes with 2-fold change in expression in Stroke group
(compared to Control group) and FDR p < 0.05 are reported as differentially expressed. The
volcano and PCA plots were visualized using the Enhanced Volcano Bioconductor package
(version 1.12.0) and EdgeR Bioconductor package respectively.

2.7. Evaluation of miR-155 Target Genes

Human miR-155 Targets RT2 Profiler PCR Array (Qiagen) was used to assess the
expression of currently known experimentally verified and bioinformatically predicted 84
human genes regulated by miR-155. Three RNA samples per stroke and control groups
were evaluated. The PCR Array Data analysis was performed using an automated PCR
Analysis Web Portal and GeneGlobe Data Analysis (Qiagen). The p-values are calculated
using a Student’s t-test followed by a Benjamini-Hochberg correction method.

2.8. Bioinformatics Analysis of miRNA Sequencing, Whole Transcriptome RNA-Sequencing, and
PCR Array Data

For each differentially expressed miRNA, the experimentally validated and predicted
target gene list was generated using a multimiR package. Subsequently, a degree of
association between miRNA target genes and specific GO terms from GO Biological Process
domain was determined using the Gene Ontology Consortium Resource [34–36]. GO
analyses were applied to determine the functional meaning of the miRNA sequencing
results by detecting: (1) comprehensive sets of functional annotation tools to identify
enriched biological processes, (2) relations that operate between the identified GO terms,
and (3) association of miRNAs and genes with specific disease. To investigate the signaling
pathways mediated by the target genes for each of the differentially expressed miRNA, GO
using “Biological Process” and “Molecular Function” were performed. Only pathways
with an FDR-adjusted p < 0.05 are represented. Additional KEGG pathway enrichment
analysis from Database for Annotation, Visualization and Integrated Discovery (DAVID)
bioinformatics tool was applied to determine molecular pathways and biological processes
associated with miR-155 target genes.

3. Results

Brain tissue specimens from five non-consecutive patients with malignant hemispheric
stroke and three non-stroke patients were used in our study. Patients were selected
based on the need for stroke resection for severe swelling in the opinion of the attending
neurosurgeon. Detailed information about the stroke and control samples is provided in
Supplemental Table S1. Representative neuroimaging is shown in Figure 1. The figure
describes a typical case with pre-operative and post-operative images demonstrating the
large region of stroke (Figure 1A,B) and subsequent stroke tissue removal (Figure 1C).
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Figure 1. Representative pre-operative and post-operative images from the same stroke patient.
(A): Axial computed tomography (CT) scan at one day post stroke demonstrating left sided middle
cerebral artery infarct with loss of grey-white matter differentiation in a large territory. The white dot-
ted line points out the approximate infarct border. (B): Post-operative CT scout image demonstrating
the large craniotomy defect (dotted line). (C): Post-operative axial CT scan demonstrating completed
infarct, bony decompression, and the region of partial stroke resection in the temporal lobe (arrow).

3.1. Morphology of the Brain Tissue Collected from Stroke Patients
3.1.1. Brain Tissue Damage

The representative images of the temporal lobe tissue obtained from non-stroke control
and stroke patient (HE staining) are demonstrated in Figure 2 and Supplemental Figure S1.
The tissue from non-stroke patient cortex did not present any signs of edema or vascular
damage, and comprised normal neurons with abundant lightly eosinophilic cytoplasm
and good nuclear detail with prominent nucleoli (Figure 2A,B). All stroke patient samples
were characterized by classic hypoxic-ischemic changes including bright eosinophilic
cytoplasm and lack of the nuclear detail in neurons. The tissue was characterized by acute
neuronal degeneration and classic appearance of the “eosinophilic neurons” (also termed
“red” neurons), identified by cell body shrinkage, darkly stained pyknotic nuclei, and
an intensely stained red eosinophilic cytoplasm (black arrows, Figure 2C,D). While all
pyramidal neurons were severely damaged, some of them had a relatively intact chromatin
pattern, and others comprised the necrotic “ghost” pyramidal neurons with absent affinity
for hematoxylin and nuclei (blue arrows, Figure 2D). Peri-vascular and peri-neuronal
widening was consistent with edema (stars, Figure 2D).

3.1.2. Leukocyte Infiltration

Pathological processes associated with stroke are exacerbated following hypoxia-
induced blood-brain barrier damage and infiltration of different types of leukocytes, includ-
ing macrophages and neutrophils. Recruitment of circulating leukocytes in the ischemic
brain contributes to neuroinflammation, BBB damage, and further loss of brain tissue
following stroke [4]. Neutrophils are among the first cells infiltrating the brain after is-
chemic stroke; they are detected in the blood vessels within first 7 h and peak at 1 to 3 days
after stroke offset. Monocyte infiltration is detected within the first 24 h post-ischemia,
peak at 4 days, and some of these cells persist for weeks and acquire features of tissue
macrophages [37,38]. We did not observe any notable monocyte/macrophage infiltration
in the obtained samples, which was expected based on the early (17–72 h after stroke
onset) time point of tissue collection. We, however, detected vascular damage and so called
neutrophil margination and “pavementing” along the endothelium, a process that occurs
before the leukocyte extravasation (Figure 2E,F). A significant accumulation of neutrophils,
both in the perivascular space and in the vicinity of the blood vessels was observed (ar-
rowheads, Figure 2E,F). Neutrophils were also detected in the brain parenchyma, at a
considerable distance from the blood vessels (arrowheads, Figure 2G,H). This observa-
tion is important given the controversy around the question of whether neutrophils are
detectable in the stroke brain parenchyma [38,39].
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Figure 2. Morphology of human stroke brain tissue. Morphological evaluation of the temporal lobe
tissue, HE staining. (A,B), Control non-stroke samples; (C,D), Brain tissue collected at 48 h after
stroke onset. Black arrows: eosinophilic (red) neurons with darkly stained pyknotic nuclei. Blue
arrows: necrotic “ghost” neurons with an absent nuclear detail. Stars: peri-neuronal and peri-vascular
space widening associated with edema. Neutrophils (arrowheads) were detected in the vicinity of
large vessels and capillaries (E,F), tissue collected at 60 h after stroke onset), as well as in the brain
parenchyma (G,H), tissue collected at 28 h after stroke onset). (E) and higher magnification in (F):
Margination and pavementing of neutrophils along the blood vessel wall; some neutrophils migrated
out and are detected in the blood vessel vicinity. (G) and higher magnification in (H): Neutrophils
are detected at a considerable distance from the blood vessels, which demonstrates the process of
neutrophil invasion into the damaged brain tissue. BV- blood vessel. Bars: (A,C): 50 µm; (B,D,E–H):
20 µm.
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3.1.3. Immunofluorescence Microscopy

Immunofluorescence staining of the same stroke tissue samples demonstrated that small
(unipolar and bipolar) cortical neurons (Figure 3A) and spindle-like neurons (Figure 3B)
retained their morphology and cytoarchitecture. Pan-neuronal marker antibody staining
revealed a sophisticated neuronal network with still intact processes and intercellular connec-
tions (Supplemental Figure S2). Astrocytes were characterized by the low GFAP expression
and damaged appearance (Figure 3C), while microglia were represented by normal looking
spindle-shaped cells (Figure 3D).

Figure 3. Immunofluorescence analysis of human stroke brain tissue IF staining of human stroke
brain tissue collected at 48 h after stroke onset. A, B: Pan-neuronal antibody staining (red) visualizing
small unipolar and bipolar (A) and spindle-shaped (B) neurons. (C): GFAP (green) immunostaining
for astrocytes. (D): Iba-1 (red) immunostaining for microglia. Bars: (A,C,D): 20 µm, and (B): 50 µm.

To summarize, morphological evaluation demonstrated that human stroke samples
used in our study represented a severely damaged cortical tissue characterized by early
ischemic changes. While tissue edema was intense and tissue damage was irreversible,
the observed morphological and cytological characteristics pointed to a transitional stage
between a severe acute hypoxic injury and tissue necrosis.

3.2. miRNAs Differentially Expressed in Stroke Brain Tissue

NGS analysis of stroke and non-stroke control human brain tissue specimens was per-
formed to assess stroke-related changes in expression of 1815 miRNAs. At the first stage of
elimination from the list of miRNAs dysregulated in stroke tissue, a p < 0.05 cutoff resulted
in a group of 172 miRNAs with impaired (>1.5 fold increased or decreased) expression in
stroke patient vs. non-stroke control samples. Of these miRNAs, 75 (58 upregulated and 17
downregulated) miRNAs were previously reported to be differentially expressed in the
whole blood, serum, or CSF samples from stroke patients (Supplemental Table S2 [40–50]).
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Further FDR adjusted p-value cutoff resulted in a list of 34 miRNAs differentially expressed
in stroke brain tissue. Volcano plot on Figure 4A displays magnitude changes of miRNAs
in stroke vs. control samples. Principal Component analysis (PCA) was used to reduce the
dimension of large data sets and explore sample clusters arising naturally based on the
expression profile (Figure 4B).

Figure 4. Visualization of miRNA expression in stroke and control tissue. (A): Volcano plot showing the magnitude of
the difference in expression values of the samples in Control and Stroke groups. The graph is constructed by plotting the
−log10(FDR corrected p-value) on the y-axis, and the log2(fold-change) on the x-axis from the group of 172 miRNAs with
impaired expression in stroke patient vs. control samples. Grey circles represent samples with FDR p-value > 0.05, green
circles represent miRNAs that have a fold-change > 1.5 and FDR p-value > 0.05, blue circles represent miRNAs that have
an FRD p-value < 0.05 and a fold-change > 1.5, and red circles represent miRNAs that have an FDR p-value < 0.05 and
fold-change >2.0. (B): Principal component analysis (PCA) plot for stroke and control samples. The PCA was performed
on 34 miRNAs identified to be differentially expressed between stroke and non-stroke control samples using the miRNAs
that have the largest coefficient of variation based on TMM normalized counts. Each asterisk represents a sample. Red
asterisk–stroke samples from patients S1–S5; black–control non-stroke samples C1–C3. (C): A heat map demonstrating
expression levels of 50 microRNAs in three different control samples. Each column represents one miRNA and each
row represents one sample. The color represents the difference of the count value to the row mean. N = 5 stroke and 3
control samples.
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PCA analysis demonstrated that control samples were segregated into a separate
cluster, while, with the exception of sample 4, stroke samples clustered together. A portion
of a heat map on Figure 4, C shows the profiles of 50 miRNAs, demonstrating a similarity
between the control samples from three different non-stroke patients. miRNA expressions
were not statistically different between control samples.

Of the detected 34 differentially expressed miRNAs, 19 (17 upregulated and 2 down-
regulated) were identified as stroke-related miRNAs with >2-fold changed expression in
stroke samples. Based on the available literature, the aberrant expression of these miRNAs
and their family members is associated with stroke progression and outcome (Table 1).
miRNA-based regulation of various cellular and biological processes is mediated via their
direct target genes and proteins. To explore the functional significance of the differentially
expressed miRNAs, we identified their experimentally verified and predicted target genes
and subsequently applied GO pathway enrichment analyses, as described in Methods.
In agreement with previous reports, our analyses detected that biological processes sig-
nificantly influenced by the identified miRNAs (including neuronal death, inflammatory
response, blood coagulation, glutamate and acetylcholine secretion, synaptic plasticity,
and vascular permeability) are critical for stroke progression and outcome. Importantly,
the upregulation of miR-1246, miR-4516, miR-320a-3p, miR-320c, miR-204-3p, miR-17-5p,
miR-16-5p, and miR-423-5p detected in stroke brain tissue is in agreement with the re-
ported induction of these miRNAs and their family members in stroke patient blood or
CSF [51–58].

Table 1. Differential (>2-fold change, FDR p < 0.05) expression of miRNAs in human stroke
brain tissue—significantly dysregulated stroke-related miRNAs. Red—upregulated and blue—
downregulated miRNAs.

Name Fold-Change p-Value FDR p-Value Reported in:

hsa-miR-1246
hsa-miR-4516

hsa-miR-182-5p
hsa-miR-320d

hsa-miR-1255b-5p
hsa-miR-320c

hsa-miR-183-5p
hsa-miR-196b-5p
hsa-miR-204-3p
hsa-miR-17-5p

hsa-miR-193b-5p
hsa-miR-16-5p
hsa-miR-320b

hsa-miR-423-5p
hsa-miR-320a-3p
hsa-miR-505-5p
hsa-miR-652-3p
hsa-miR-135a-3p
hsa-miR-196a-5p

334.46
32.68
15.44
10.80
9.53
9.29
8.87
5.64
3.23
3.20
2.87
2.78
2.54
2.46
2.41
2.34
2.19
−9.00
−31.65

0
0

3.98 × 10−6

5.73 × 10−11

0.0001
2.30 × 10−11

0.0001
0.0011
0.0008
0.0005
0.0004
0.0002
0.0017
0.0015
0.0008
0.0014
0.0015

0.000536
3.33 × 10−16

0
0

0.0002
8.67 × 10−9

0.0059
3.79 × 10−9

0.0059
0.0347
0.0251
0.0180
0.0142
0.0090
0.0465
0.0416
0.0263
0.0416
0.0416
0.0180

1.01 × 10−13

[51–53]
[54]
[18]

[18,59]
[60]
[51]
[18]
[18]
[57]
[56]
[61]
[58]
[18]
[52]
[55]
[18]
[18]
[57]
[18]

Newly Detected Group of miRNAs Dysregulated in Stroke Brain Tissue

NGS analysis of stroke and non-stroke patient samples detected 15 differentially
expressed miRNAs with no previously reported association with human stroke (Table 2).
The list included 5’ or 3’ strands of the mature miRNAs.
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Table 2. Differential (>2-fold change, FDR < 0.05) expression of newly detected miRNAs in human
stroke brain tissue. Red—upregulated, blue—downregulated miRNAs.

Name Fold-Change p-Value FDR p-Value

hsa-miR-10395-3p
hsa-miR-4732-5p

hsa-miR-7704
hsa-miR-9901

hsa-miR-4772-3p
hsa-miR-412-5p
hsa-miR-142-3p
hsa-miR-619-5p
hsa-miR-1270
hsa-miR-3615

hsa-miR-539-3p
hsa-miR-3912-5p
hsa-miR-6500-3p

hsa-miR-5683
hsa-miR-892a

17.13
16.35
15.42
14.91
8.35
6.75
5.14
5.08
2.96
2.62
−2.08
−2.65
−2.83
−3.68
−3.88

1.00 × 10−7

0.0002
1.61 × 10−10

0.0001
0.0005

1.10 × 10−7

0.0001
0.0001
0.0008
0.0005
0.0012
0.0001
0.0002
0.0007
0.0019

9.08 × 10−6

0.0062
2.24 × 10−8

0.0048
0.0172

9.08 × 10−6

0.0060
0.0050
0.0254
0.0175
0.0363
0.0051
0.0090
0.0243
0.0514

Bioinformatic analysis using the GO database revealed the association of this group of
miRNAs with multiple diseases and pathological conditions, including coronary artery
disease, stroke, amyotrophic lateral sclerosis, and Parkinson’s disease. Functional GO
pathway enrichment analyses detected a significant association of these miRNAs with
various stroke-related biological processes. As summarized in Figure 5, the identified
miRNAs are significantly associated with biological processes and signaling pathways,
which play an important role in stroke progression and recovery.

Supplemental Figure S3 demonstrates some of the multiple predicted and experimen-
tally validated target genes regulated by the identified miRNAs. In order to validate the
dysregulation of newly detected miRNAs, we assessed the expression of their known direct
target genes in stroke and control brain tissue. Table 3 presents the list of the miRNAs and
their target genes; 20 genes with the greatest up- or downregulation in stroke vs. control
tissue are displayed. As expected, microRNAs and their target genes had the opposite
expression pattern; a number of genes were targeted by several newly detected microRNAs
(Table 3, stars). We were unable to verify the expression of target genes for miR-10395-3p,
miR-9901, and miR-412, due to a very limited number of their known predicted targets.
Among the deregulated target genes were: SMAD genes implicated in regulating inflam-
mation, myelination, and vascular function after stroke [62]; WNT1, the regulator of Wnt
signaling pathway mediating neurogenesis and vascular remodeling [63]; MAPK81P2, a
critical activator of mitogen-activated protein kinase (MAPK) pathway contributing to
neuroinflammation and neuronal survival after stroke [64]; NOTCH2 influencing neuronal
viability [65]; PDGFRA, regulating platelet-derived growth factor signaling contributing to
post-stroke atherosclerosis [66]; ADAMTS5, a member of matrix metalloproteinase family,
regulating degradation of extracellular matrix proteins, tissue repair, and remodeling [67];
FGF12, a member of fibroblast growth factor (FGF) family implicated in neuroprotective
effect after stroke [68]; and NOS1 encoding neuronal nitric oxide synthase 1, associated
with stroke-induced neurotoxicity [69].



Genes 2021, 12, 1860 11 of 18

Figure 5. Pathway enrichment analysis for newly detected miRNAs. Diagram showing selected groups of GO terms
(with the corresponding FDR p-value) significantly associated with the identified miRNAs (depicted in the box). The
annotations describe molecular functions and signaling pathways, as well as general and brain-specific biological processes.
Abbreviations: BMP- bone morphogenetic protein; MAPK—mitogen-activated protein kinase; PDGF—platelet-derived
growth factor; RIG-I—retinoic acid-inducible gene receptor I; TGF-beta—transforming growth factor beta.
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Table 3. Differentially (>2-fold change, FDR p < 0.05) expressed miRNA target genes in human stroke brain tissue. Red—
upregulated and blue—downregulated miRNAs and genes. Target genes shared by at least 2 different miRNAs are marked
with a star.

miRNA Differentially Expressed Target Genes

hsa-miR-4732-5p UHMK1, TOX *, TMEM183A *, TMED8, TGOLN2, SMAD2, SAMD12, RORB, RAP2A, RALYL*, PURG *,
PTCH1 *, PSD3 *, PRPF40A, PKIA *, PHKA1 *, PDE4D, PCDH17, PARM1, PAPOLA *

hsa-miR-7704 SPATA17, LDLRAP1, IWS1, DERL3, SEMA6A *, CACNA1E, ATG12, OPA1, PAK3, EPS8, CHMP3, POLR2L,
GPR85, C4orf33, LETMD1, MEIS2 *, SPATA6, KLF12 *, ROBO1, PTCH1 *

hsa-miR-4772-3p CTDSP2, TMEM183A *, PURA *, RHOU, CSRNP3, ARHGAP31 *, SH3BGRL2, CADM2 *, LRRC28 *, METTL15
*, PHKA1 *, TAOK1 *, GUCY1A2, MLLT3 *, CHIC1 *, RNF141 *, TOMM20 *, ZDHHC21 *, HS6ST3 *, PURG *

hsa-miR-142-3p PDGFRA, TSPAN3, MTF2, FOXP1, REPS2 *, MTX3, MEIS2 *, PIK3CA, MAP2K6, CLSTN2, HMGCLL1 *,
FGF12 *, SNTB2 *, NUCKS1, PURA *, CADM2 *, MAGI2, CHIC1 *, LRP1B, TOX *

hsa-miR-619-5p EIF4EBP2, CADM2 *, LRRC28 *, METTL15 *, ATRNL1, NKAIN2, TAOK1 *, MLLT3 *, GALC, CHIC1 *, KDM3B,
AMBRA1, IL1RAPL1, RNF141 *, TOMM20 *, RPS6KA6, ZDHHC21 *, KCNH5, HS6ST3 *, PURG *

hsa-miR-1270 LRRTM4, THADA, PCDH9, KLF12 *, STX17, MMP16, HMGCLL1 *, CNOT7, PURB, RALYL *, PTAR1, PKIA *,
NOVA1, OLFM3, NUBPL, FGF12 *, SNTB2 *, PAPOLA *, DPP6 *, CNR1

hsa-miR-3615 REPS2 *, SEMA6A *, ARHGAP15, MAMLD1, FOXB1, CCDC80, MEIS2 *, SLITRK5, PSD3 *, CBX5, DIRAS2,
PKIA *, BTBD3, DPP6 *, ARHGAP31 *, TAOK1 *

hsa-miR-539-3p AQP7 *, ADAMTS5, HAVCR1 *, GOLGA8G, ZNF266, TMCO5A, NOTCH2 *, PLCL1 *, HCN4, RYR2, PHKB *,
ABCA13, LYN *, C18orf25, WIPF2, GATA3 *, FBLN2, TMPRSS4 *, TNFAIP3, ZC3H4 *

hsa-miR-3912-5p FZD8 *, WNT1, PID1 *, ADAM8, GATA3 *, KLHDC7B, JAG2, DLST, RBMS3, FIG4, TMEM63A, IQSEC3

hsa-miR-6500-3p FZD8 *, HIC1, AQP7 *, MRGPRF, DMRT1, CTCFL, HSPA1A, UNC45B, SLCO5A1, SBSPON, FOXJ3, HAVCR1 *,
PID1 *, NR5A1, COX20, NOXRED1, SCNN1G *, UBAP1, PLCL1 *, LYN *

hsa-miR-5683 LSM4, LOXL4, PPM1N, ARSI, GATA3 *, NUTM2D *, TMOD4, NLRP2, ZNF217, NGB, HOXD3, CYTH3,
DACT3, CTPS2, MOB2, CD74, CLDN10, GALNT1, FZD8 *, MAPK8IP2

hsa-miR-892a NOTCH2 *, SCNN1G *, ACTG2, PHKB *, LYN *, ZBTB42, CASC4, NUTM2D *, FTCDNL1, IRX2, SLC16A3,
RCL1, TMPRSS4 *, DPEP1, VSIG10, ZC3H4 *, SAP30BP, POTEG, NOS1, IRAK3

To summarize, based on the performed bioinformatic and RNA-sequencing analyses,
we concluded that the aberrant expression of the newly detected miRNAs has a signif-
icant functional implication and thus, these miRNAs could prominently influence the
progression and outcome of human stroke.

3.3. miR-155 Expression in Stroke Brain Tissue

Due to our long-standing interest in the role of miR-155 in human stroke, we per-
formed a separate investigation of its deregulation in stroke brain tissue. miR-155 is an
evolutionarily conserved multifunctional miRNA, expressed in all human tissues and
implicated in contributing to various pathological processes [70,71]. A number of our pre-
vious studies have been focused on the role of this miRNA in ischemic stroke. In a rodent
model of stroke, an elevated miR-155 expression in the brain was linked to higher stroke
severity, while miR-155 inhibition reduced the infarct size, preserved BBB integrity, and
supported the functional recovery [72,73]. In the present study, miR-155 was significantly
(>1.5-fold, p = 0.04) elevated in human stroke tissue (Supplemental Table S2). However, due
to a high variability among five stroke samples, an average miR-155 transcript expression
change did not reach the significance cutoff after the FDR p < 0.05 adjustment. Interestingly,
miR-155 levels tended to be higher in samples S1, S2 and S5 collected within 48–72 h after
stroke onset, and lower in samples S3 and S4 collected within 17–28 h after stroke. In order
to evaluate stroke-related changes of miR-155 activity, we performed miR-155 target gene
profiling of samples S1, S2 and S3 (Figure 6). miR-155 Targets PCR Array analysis detected
a significant (>1.5-fold, FDR p < 0.05) downregulation of 50 miR-155 direct target genes
in stroke samples compared to controls (Figure 6A,C, blue). Interestingly, a significant
decrease in target gene expression was also detected in the S3 patient sample characterized
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by a moderate increase in miR-155 (Figure 6B). Based on the whole transcriptome data,
additional 23 miR-155 target genes (not included in the PCR Array panel) were significantly
downregulated in stroke samples (Figure 6A, green). GO and KEGG pathway enrichment
analyses revealed that the detected group of genes is involved in the regulation of critical
signaling pathways, including TGF-β, ERK, NF-kB, Wnt, MAPK, ErbB, Ras, PI3K-Akt, and
VEGF signaling cascades. Moreover, bioinformatic analysis identified several stroke-related
and brain-specific biological processes regulated by this set of genes, including glial cell
differentiation, endothelial morphogenesis, leukocyte activation, macrophage cytokine
production, neurodegeneration, and synaptic function. Raw data demonstrating miR-155
direct target expression are uploaded in GEO database. Based on the obtained results,
we concluded that: (1) even moderate miR-155 expression changes induce a significant
downregulation of its direct targets, and (2) 73 detected genes differentially expressed in
stroke tissue could be regulated on the RNA level via miR-155-induced mRNA degradation.

Figure 6. miR-155 target gene analysis. (A) A list of miR-155 direct target genes significantly downregulated in stroke
tissue, compared to control samples. Blue—genes identified by PCR Array, green—additional genes identified by whole
transcriptome sequencing. (B) A portion of a heatmap (after non-hierarchical clustering) displays a group of target genes
with significantly lower (green) expression in the stroke samples. The heat map was generated based on delta Ct values.
Genes with higher expression levels are shown in red, whereas genes with lower expression levels are shown in green.
Genes with average expression levels are shown in black. (C) Scatter plot compares the normalized gene expression
between the stroke and control samples. The central line indicates unchanged gene expression. Red circles identify genes
significantly upregulated in stroke tissue, blue—genes significantly downregulated in stroke group. The graph plots the
log10 of normalized gene expression levels in control samples (x-axis) versus stroke samples (y-axis). N = 3 samples per
control and stroke groups.

4. Discussion

The underlying mechanisms of malignant cerebral infarction include general cel-
lular and molecular processes associated with all types of strokes. Besides the known
stroke-induced pathophysiological cascades leading to brain tissue damage and BBB dis-
ruption, additional contributing factors to malignant infarction and brain swelling include
the involvement of the autonomic nervous system [24,74], and cortical spreading depo-
larization [22,75–77]. Based on the morphological evaluation of freshly removed stroke
tissue, we propose that miRNA sequencing results obtained in our study could reflect
molecular mechanisms attributed to (1) stroke-associated brain edema and tissue damage,
and (2) transition from ischemic damage and selective neuronal death to tissue necrosis
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and infarction. We propose that our findings contribute to better understanding of these
concomitant processes occurring at the early stages of stroke.

The main limitation of our study is the small number of analyzed samples. The reason
for this is that DC with stroke-ectomy is a very rare procedure that is restricted to a select
group of patients. To minimize the data variability, we analyzed only the temporal lobe
samples from patients with an MCA/ICA territory infarction. This further reduced the
number of specimens included in the analysis. To control false discovery rate, greater than
2-fold change and FDR p < 0.05 cutoff were applied to all miRNA and mRNA sequencing
data reported in Tables 1, 2, and 3. We believe that low FDR p-values, which often ranged
between 1.61 × 10−10 and 0.01, are the indicators of the strength and reliability of our study.

4.1. Dysregulation of miRNAs with Known Association with Stroke

Our investigation established a strikingly similar expression pattern of 8 miRNAs
detected in our brain tissue samples and blood/CSF samples reported by other groups.
Therefore, we propose that the impaired expression of these miRNAs is associated not
only with malignant infarction, but with cerebral stroke in general. Based on our analysis
and reports by other groups, miR-1246, miR-4516, miR-320a-3p and miR-320c, miR-204-
3p, miR-17-5p, miR-16-5p, and miR-423-5p, were upregulated both in stroke brain tissue
and patient blood/CSF. Thus, signatures of these miRNAs in the blood or CSF samples
accurately reflect their dynamics in the brain tissue. We, therefore, propose that these
miRNAs could be regarded as potential candidate biomarkers for stroke prognosis and
outcome. This statement is supported by the data from previous studies demonstrating
the functional significance of several miRNAs from the identified group. miR-1246 is
dramatically increased in CSF of patients with larger infarction [53]. Upregulation of
miR-320 family miRNAs is associated with the modulation of aquaporin family proteins
and stroke-induced edema [55,78,79]. Increased plasma miR-16 is associated with large
infarction [58]. Based on these reports and our data, we propose that profiling of these
microRNAs in the blood or CSF could provide a timely and valuable information for
choosing a potentially successful therapeutic approach.

Among the identified significantly dysregulated miRNAs, miR-182-5p, miR-183-5p,
miR-320b and d, miR-505-5p, and miR-196a-5p had an opposite shift in expression levels
in our stroke brain tissue samples and blood samples detected by other groups. These
discrepancies reflect the dynamics of miRNA exchange between the brain tissue and
circulating blood, and could be associated with a different sample collection time. This
interesting observation will be addressed in our future studies where miRNA profiling
will be performed in the brain tissue and blood samples from the same patient. Due to
a long-standing interest in miR-155, we performed a separate investigation of its activity
in human stroke samples. Our findings revealed that, despite the moderate increase in
miR-155 expression in some samples, activity of this miRNA resulted in a significant
downregulation of 72 direct target genes. Based on bioinformatics analysis, 30 of the
detected genes represent the shared targets between miR-155 and at least one miRNA from
the list provided on Table 1. Therefore, further investigation is needed to properly evaluate
miR-155 activity in the stroke brain tissue. Dysregulation of miR-155 and its possible
correlation with the time of stroke onset will be a subject of our upcoming study involving
a larger group of stroke patients.

4.2. Newly Detected miRNAs Dysregulated in Human Stroke Tissue

A group of miRNAs differentially expressed in stroke brain tissue included 15 signifi-
cantly dysregulated miRNAs with no previously reported changes in stroke patient blood
or CSF. Most of them are the recently identified miRNAs with yet unexplored functions.
Based on our bioinformatics approach, they can regulate molecular processes that are
critical for stroke progression. We suggest that dysregulation of these newly detected
miRNAs could reflect: (1) brain tissue-specific changes, and (2) miRNA signatures specific
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to malignant infarction and brain swelling. The role of this novel group of miRNAs will be
further investigated in the functional studies utilizing in vitro or animal models of stroke.

5. Conclusions

In this first analysis of human stroke brain tissue biopsy samples, we described mor-
phology and cytoarchitecture of the temporal lobe cortex at 17–72 h after the hemispheric
infarction. microRNA profiling detected 34 miRNAs aberrantly expressed in stroke-tissue,
which could influence stroke progression and outcome. We anticipate that the obtained data
will contribute to knowledge of the molecular basis of stroke, and provide a foundation for
the miRNA-based intervention strategies focused on stroke outcome and prevention of
malignant brain swelling.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12121860/s1, Figure S1: Morphology of human stroke brain temporal lobe tissue,
Figure S2: Visualization of neuronal network in human brain tissue, Figure S3: Target genes regulated
by newly identified dysregulated miRNAs, Table S1: Stroke and non-stroke control patient samples
used for analyses, Table S2: Stroke-related miRNAs dysregulated in human stroke brain tissue.
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