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The Scaffolding Protein IQGAP1 Co-localizes with
Actin at the Cytoplasmic Face of the Nuclear

Envelope
Implications for cytoskeletal regulation
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cytoskeleton; MT, microtubules; MTOC, microtubule organising centre; N-WASp, neural-Wiskott–Aldrich syndrome protein; ONM,
outer nuclear membrane; TAN line, transmembrane actin-associated nuclear line

IQGAP1 is an important cytoskeletal regulator, known to act at the plasma membrane to bundle and cap actin filaments,
and to tether the cortical actin meshwork to microtubules via plus-end binding proteins. Here we describe the novel
subcellular localization of IQGAP1 at the cytoplasmic face of the nuclear envelope, where it co-located with F-actin. The
IQGAP1 and F-actin staining overlapped that of microtubules at the nuclear envelope, revealing a pattern strikingly
similar to that observed at the plasma membrane. In detergent-extracted cells IQGAP1 was retained at cytoskeletal
structures at the nuclear envelope. This finding has new implications for involvement of IQGAP1 in cell polarization and
migration events and potentially in cell cycle-associated nuclear envelope assembly/disassembly.

Introduction

The nuclear envelope of eukaryotic cells separates nucleus from
cytoplasm and mediates many cellular processes ranging from
nuclear protein transport, cell polarization and cell migration, to
chromatin regulation and cell cycle events.1 The nuclear envelope
consists of two phospholipid bilayers, the inner and outer nuclear
membranes (INM and ONM, respectively), and is permeated
with channels called nuclear pore complexes (NPCs) that facilitate
selective movement of macromolecules between the two com-
partments.2 Many of the proteins that traverse the INM and
ONM have roles in chromatin regulation and cytoskeletal and
nucleoskeletal tethering to the nuclear envelope.3

Repositioning of the nucleus is mediated by all three cytoskeletal
networks—microtubules, intermediate filaments and actin fila-
ments.4 Each cytoskeletal network associates with distinct outer
nuclear envelope proteins that belong to large linker of
nucleoskeleton and cytoskeleton (LINC) complexes.4 These
interactions can affect nuclear/microtubule organizing center
(MTOC) repositioning events. LINC complexes comprise nesprin
proteins that bind INM Sun proteins within the lumenal space of
the nuclear envelope; Sun proteins in turn bind the nuclear lamina,

which lies beneath the INM.3 Several other cytoskeletal and
nucleoskeletal elements are known to coordinate with LINC
complexes to facilitate nuclear/MTOC repositioning. Cell polar-
ization requires reorientation of the MTOC between the nucleus
and the leading edge of the cell to drive locomotion.5 Recent
evidence suggests that an actin-dependent Cdc42/myosin II-driven
mechanism repositions the nucleus behind a static MTOC during
cell polarization of fibroblasts.6 Actin-associated LINC complexes
align along actin filaments adjacent to the nucleus to form TAN
(transmembrane actin-associated nuclear) lines. These actin
filaments exhibit retrograde flow and when coupled with LINC
complexes drag the nucleus along with the forces of actin flow.7

Cytoskeletal associations with the ONM are also important
for nuclear envelope break down and re-assembly at the start and
end of mitosis. Microtubules attached to the outer face of
the ONM around centrosomes inflict invaginations in the
nuclear envelope, causing mechanical tearing apart of the nuclear
membranes.8 The disintegration of the nuclear envelope permits
the mitotic spindle access to the duplicated chromosomes
enabling mitosis to proceed.1

IQGAP1 orchestrates diverse cytoskeletal rearrangements,
disseminating cortical cell signaling events for functions in cell:
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cell adhesion, cell migration, cell polarization and cell cycle.9,10

Reduced expression of IQGAP1 slows cell migration in several cell
types.11-13 The role of IQGAP1 in cell migration is through direct
action on filamentous actin (F-actin), either via bundling14 or
capping the barbed-ends15 of actin filaments. IQGAP1 also targets
actin nucleating complexes to lamellipodial structures—plasma
membrane regions of cell migration—thereby regulating actin
polymerisation dynamics and its role in cell motility.16 Silencing
IQGAP1 expression also inhibits MTOC reorientation in several
cell types.12,17 This effect is proposed to result from cortical cell
polarization cues from IQGAP1-mediated tethering of peripheral
actin meshworks to microtubules via plus-end
proteins APC, CLIP-170 and others.18 IQGAP1 at
the plasma membrane also regulates stability of the
adherens junction complex,18 maintenance of which
is vital for correct apical-basal polarity of the
epithelium. Increased IQGAP1 expression augments
these processes and can drive oncogenic transforma-
tion of various cancer types.19,20

In addition to the plasma membrane, IQGAP1 has
been detected at other subcellular sites in mammalian
cells including cell cycle-dependent localizations to the
nucleus21 and the midbody.9,22-24 Here we describe the
first observation of IQGAP1 at the cytoplasmic face of
the nuclear envelope and postulate its role in
regulating nucleo-cytoskeletal events.

Results

IQGAP1 is generally regarded as a plasma mem-
brane-associated scaffolding protein as it is most
commonly detected at cell:cell membrane junctions
and membrane ruffles.19 We previously confirmed
the specificity of IQGAP1 polyclonal antibody
H-109 (Santa Cruz Biotech) by siRNA-mediated
knockdown, and showed that this antibody detects
similar endogenous IQGAP1 staining patterns to
that of ectopically-expressed GFP-tagged IQGAP1.21

A careful analysis of IQGAP1 subcellular localization
with this antibody has revealed a ‘nuclear halo’
pattern of IQGAP1 by immunofluorescence micro-
scopy, reminiscent of that previously reported for
actin in interphase NIH 3T3 cells.25 IQGAP1 is
inextricably linked to F-actin,14 therefore we co-
stained for F-actin with FITC-conjugated phalloidin
to determine the degree of co-localization. Human
epithelial-derived breast (MCF-7) and colon
(HT29) cancer cells, as well as immortalized non-
tumorigenic mouse fibroblasts (NIH 3T3), each
showed IQGAP1 nuclear halos that co-localized
with F-actin (Fig. 1A). The nuclear halo staining
was also detected in SW480 (colon cancer), U2OS
(osteosarcoma) and HeLa (cervical) cancer cells, but
not in HCT116 colon cancer cells, and the staining
pattern was abolished by IQGAP1 knockdown (data
not shown).

To determine whether the IQGAP1 nuclear halo correlates
with INM or ONM localization we co-stained MCF-7 cells with
IQGAP1 and with the nucleoporin (Nup) monoclonal antibody
(mAb414) to highlight the nuclear pore complex. Confocal
imaging of transverse-sections through the cell nucleus showed
that IQGAP1 coats the outside of the nuclear envelope, locating
at the cytoplasmic face of the nuclear membrane (Fig. 1B), in
~60% of asynchronous MCF-7 cells (Fig. 1C). To confirm this
finding and better define the ultrastructural localization of
IQGAP1 we analyzed cells by transmission electron microscopy.
Electron micrographs of ultrathin cryosections of MCF-7 cells

Figure 1. Novel nuclear envelope localization of IQGAP1. (A) Nuclear halo staining of
IQGAP1 occurs in several cell lines. Deconvolution fluorescence cell images of human
epithelial-derived MCF-7 and HT29 cancer cells and mouse fibroblast NIH 3T3 cells.
Cells were immunolabelled and stained for IQGAP1 (H-109, Santa-Cruz; red), F-actin
(phalloidin-FITC; green) and DNA (Hoechst; blue). (B) IQGAP1 locates to the cytoplasmic
face of the outer nuclear membrane. Deconvolution microscopy fluorescence cell
images of MCF-7 cells stained with IQGAP1 (red) and FxFG-repeat nucleoporins
(mAb414; green). The graph depicts pixel intensity of IQGAP1 (red) and nucleoporin
(green) staining from the indicated cross-section in the enlarged micrograph (toward
cytoplasm on right). (C) High resolution scoring of IQGAP1 co-localization with nuclear
envelope in MCF-7 cells (n = 62). (D) Electron micrographs of ultrathin cryosections of
MCF-7 cells immunolabelled with IQGAP1 pAb. Cells with no primary antibody showed
no specific staining pattern (not shown). Thin closed arrow indicates nuclear rim; broad
open arrow indicates immunogold-labeling of IQGAP1. White bar, 200 nm.
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labeled with IQGAP1 H-109 pAb show distinct
immunogold labeling at the nuclear envelope
(Fig. 1D). The EM staining of IQGAP1 was
occasionally seen at nuclear pores but more often at
electron dense structures emanating from the
nuclear envelope.

Due to the co-localization of IQGAP1 with
F-actin (Fig. 1), we sought to determine whether
IQGAP1 was anchored by cytoskeletal structures at
the nuclear rim. MCF-7 cells were transfected with
plasmid DNA encoding GFP-tagged emerin, an
insoluble INM protein that anchors lamina and
chromatin to the INM,26 and the cells then
permeabilized with Triton X-100 to wash out all
soluble material. Emerin-GFP expressing cells were
either fixed-first (-CSK buffer) or detergent-
extracted (+CSK buffer; soluble material washed
out) then fixed and stained for IQGAP1 (Fig. 2A
and B). After mild CSK extraction, IQGAP1
remained clearly visible at the nuclear rim by
confocal microscopy (Fig. 2B), where it overlapped
emerin staining in punctate clusters at the envelope
but predominantly was anchored at structures on
the cytoplasmic side of the pores.

At the plasma membrane IQGAP1 often co-
localizes with both F-actin and microtubules.18 In
CSK-extracted MCF-7 cells tri-labeled with
IQGAP1, F-actin and tubulin, IQGAP1 staining
was also found to overlap with both F-actin and
microtubules at the ONM (Fig. 2C), implicating a
cytoskeletal tethering role analogous to that at
plasma membrane sites.

Discussion

We provide here the first reported detection of
IQGAP1 at the outer nuclear envelope. We
previously showed that IQGAP1 accumulates in
the nucleus of cells but only when cells are arrested
in late G1/early S phase, implicating a nucleoplas-
mic role of IQGAP1 in the DNA replication stress
response.21 The observed co-staining with emerin
at punctate clusters in the nuclear envelope is
interesting in light of a recent study that linked
emerin with IQGAP1. Emerin is an INM protein
occasionally also detected at the ONM, and is
thought to stabilize the nuclear lamina through its
association with lamin A and chromatin-binding
proteins.27 A proteomics study identified IQGAP1
within two distinct emerin-containing multi-
protein fractions from HeLa cell nuclei.28

Interestingly, emerin also binds and stimulates
actin polymerisation through a pointed-end cap-
ping mechanism.29

At the plasma membrane, IQGAP1 regulates actin
filaments at dynamic membrane ruffles—through

Figure 2. IQGAP1 is associated with cytoskeletal architecture at the nuclear envelope.
(A and B) IQGAP1 is anchored at the nuclear rim. MCF-7 cells transiently expressing
emerin-GFP were either (A) fixed-first (-CSK) and detergent permeabilized or (B) CSK-
extracted (+CSK) and fixed, then stained for IQGAP1 (red). (C) Confocal fluorescence
microscopy images of CSK-extracted MCF-7 cells tri-labeled for IQGAP1 (a; red), F-actin
(b; green) and b-tubulin (c; blue). Bottom panel and enlarged image on right show
merged fluorescence micrographs. (D) Schematic proposing the roles of IQGAP1 at the
cytoplasmic face of the nuclear rim. (a), At plasma membrane sites involved in cell
migration, IQGAP1 coordinates actin rearrangments and also tethers microtubule
networks to the cortical actin mesh via the MT +end protein APC for cell polarization cues.
(b), Tethering for polarization cues? At the cytoplasmic face of the NE, IQGAP1 overlays
with MTs and actin and may tether these cytoskeletal networks via APC. (c), Nuclear
repositioning? TAN lines in mesenchymal cells assist in nuclear repositioning during cell
polarization and cell migration. (d), Orchestrating actin polymerisation and rearrange-
ments? IQGAP1 targets numerous actin-associated proteins to subcellular sites. IQGAP1
anchors actin-branching and nucleating proteins to membrane ruffles and to yeast
cytokinetic rings9 to orchestrate actin rearrangements. IQGAP1 may target other proteins
to the nuclear envelope during cell migration or cell cycle events such as during nuclear
envelope breakdown.

140 BioArchitecture Volume 2 Issue 4



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

bundling, cross-linking and barbed-end capping of actin
filaments—for roles in cell migration and macropinocytosis.14,18,30

IQGAP1 functions as a cross-linking agent at the plasma
membrane, as it also tethers microtubules through its interaction
with plus-end binding proteins APC and CLIP-170 for cortical
cell polarization cues (Fig. 2D).18 Our combined confocal and
ultrastructural EM data strongly suggest a similar cytoskeleton
scaffolding role for IQGAP1 at the nuclear envelope (Fig. 2D).
Indeed, the IQGAP1 partner, APC, was reported to bind the
nucleoporin Nup153 to promote nuclear envelope anchorage of
proximal microtubules emanating from the centrosome.31

Perinuclear actin has been shown to polymerise at the cytoplasmic
face of the nuclear envelope.32 We thus speculate that one role of
IQGAP1 might be to tether microtubules to perinuclear actin to
regulate MTOC and nuclear positioning for cell polarization
during cell migration.

In migrating fibroblasts, repositioning of the nucleus can be more
important than that of the MTOC in cell polarization.6 Retrograde
flow of actin cables coupled to TAN lines provide the physical forces
to move the nucleus into an appropriate nuclear-centrosome axis
during polarized cell migration (Fig. 2D).5,7 Silencing IQGAP1
expression in Vero fibroblasts inhibitedMTOC reorientation.12 This
effect may not only have been due to a deficiency in IQGAP1
cortical polarization cues, signaled from IQGAP1-APC-microtubule
complexes, as suggested, but perhaps also attributable to defects in
actin dynamics at the perinuclear zone. IQGAP1 targets several actin
regulating proteins to membrane ruffles, including APC,12

Diaphanous133 and N-WASp.34,35 By analogy, we therefore predict
that IQGAP1 can determine ONM localization of specific actin-
associated binding partners for cytoplasmic actin rearrangements at
the perinuclear zone (Fig. 2D). Moreover, a cytoskeletal cross-
linking role of IQGAP1 could contribute to regulation of nuclear
envelope breakdown or reassembly, a mitosis-timed process
involving both actin and microtubule motor proteins.8 Future
proteomics experiments aimed at defining the composition of ONM
IQGAP1 protein complexes will help resolve its functional roles, and
determine whether this protein might coordinate actin/microtubule
rearrangements at the nucleus and plasma membrane.

Materials and Methods

Cell culture, reagents and transfection. MCF-7, HT29 and NIH
3T3 cells were cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal calf serum and antibiotics
(penicillin and streptomycin) at 37°C in 5% CO2 humidified
atmosphere. Cells were grown on glass coverslips in 6-well dishes
(Nunc) for immunofluorescence microscopy analysis. Cells were
transfected with plasmid DNA as previously described.30

Immunocytochemistry, antibodies and plasmids. Cells were
washed, fixed and immuno-stained as previously described,30

then visualized by fluorescence microscopy. The following
antibodies and dilutions were used for immunofluorescence
(IF): IQGAP1 polyclonal antibody (1:150; Santa Cruz H-109),
FxFG-repeat nucleoporin monoclonal antibody (1:2000 by
MeOH fixation; 1:500 by formalin fixation; Covance mAb414
(MMS-120P)) and β-tubulin monoclonal antibody (IF 1:2000;

Sigma #T0198). FITC-phalloidin (0.5 mg/ml) was used to label
F-actin and Hoechst dye was used to stain chromatin; each were
purchased from Sigma. Secondary antibodies used were anti-
mouse Alexa-Fluor-405 (1:50), anti-mouse or anti-rabbit Alexa-
Fluor-488 (1:500) and anti-mouse or anti-rabbit AlexaFlour-594
(1:1500) (Molecular Probes). Emerin-GFP plasmid DNA was a
kind gift from Ewa Markiewicz (Durham University).26

In situ retention assay. To determine the extent of nuclear
retention in situ, a detergent extraction assay was used to remove
soluble proteins from cells prior to fixation. Cells were grown on
poly-L-lysine (Sigma) coated coverslips. For CSK-extraction
(+CSK), cells were incubated in CSK extraction buffer (10 mM
Pipes (pH 6.8); 300 mM sucrose; 5 mM MgCl2; 100 mM NaCl;
0.1% Triton X-100) containing protease inhibitor cocktail
(Roche) for 1 min on ice. The processed cells were fixed with
3.7% formaldehyde/PBS for 15 min at RT and processed
according to the immuno-staining protocol. For control cells
(-CSK), the cells were prepared in a similar way except that they
were first fixed with 3.7% formaldehyde before they were
processed with CSK extraction buffer. Immunofluorescence
images were taken at equal exposures in each condition.

Immunofluorescence image acquisition. For basic fluorescence
analysis for subcellular localization studies samples were observed
under an Olympus BL51 fluorescence microscope. For advanced
fluorescence image analysis, cells were visualized through a 60 x
oil immersion lens using Olympus FV1000 confocal laser
scanning microscope with images processed using Fluoview
Version 1.6a software, or cells were visualized through a 100 x
1.4 numerical aperture oil immersion lens with an inverted
Olympus IX-70 microscope (DeltaVision Image Restoration
Microscope; Applied Precision/Olympus) and a photometrics
CoolSnap QE camera. We acquired 10–20 serial optical sections
of 0.2–0.5 mm. Then the images were deconvolved and generated
volume projections of the entire z-series using DeltaVision
SoftWoRx software (version 3.4.4.) The images were compiled
in Adobe Photoshop CS5.

Electron microscopy and image acquisition. MCF-7 cells were
grown in DMEM to 70% confluence. On day of harvest, cells
were rinsed in serum-free media for 30 min at 37°C. Media was
replaced with 4% formaldehyde (freshly prepared from para-
formaldehyde) (PF)/Sorensens phosphate buffer (SPB) + 0.1%
EM grade glutaraldehyde at RT for 30 min. Fixative replaced with
fresh 4% PF/SPB for a further 30 min. Cells were then
resuspended in 12% gelatin. Cell/gelatin pellet was infiltrated in
2.3 M sucrose for ~3–5 d at 4°C with over-end mixing and then
frozen in LN2.
70–90 nm sections were cut at –80 to –100°C in a Leica

Ultracut S/FCS cryo- ultramicrotome using a Diatome 35° cryo
diamond knife. Sections were collected on Formvar/Pioloform-
coated nickel grids (GCu200tbh, PST), then incubated in 50 mM
glycine/PBS for ~15 min at RT and blocked in BSA for 30 min.
Sections were immunolabelled with IQGAP1 polyclonal antibody
(1:10; Santa Cruz H-109) overnight at 4°C. Secondary
immunolabelling with 10 nm gold-conjugated goat anti-rabbit
IgG (ProSciTech; JB15726) was performed at RT using a Leica
EM IGL immunolabelling machine. Sections were embedded in
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methylcellulose (2%) and uranyl acetate (0.3%) for ~15 min
on ice.

Samples were imaged using a Philips CM10 Transmission
Electron Microscope operated at 80 kV. Images were recorded
using an SIS Megaview G2 digital camera and iTEM software.
Post processing of images for cropping and contrast / brightness
adjustment was performed using Adobe Photoshop CS5.
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