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Abstract: In recent years, the debate in the field of applications of Deep Learning to Virtual Screening
has focused on the use of neural embeddings with respect to classical descriptors in order to encode
both structural and physical properties of ligands and/or targets. The attention on embeddings with
the increasing use of Graph Neural Networks aimed at overcoming molecular fingerprints that are
short range embeddings for atomic neighborhoods. Here, we present EMBER, a novel molecular
embedding made by seven molecular fingerprints arranged as different “spectra” to describe the
same molecule, and we prove its effectiveness by using deep convolutional architecture that assesses
ligands’ bioactivity on a data set containing twenty protein kinases with similar binding sites to CDK1.
The data set itself is presented, and the architecture is explained in detail along with its training
procedure. We report experimental results and an explainability analysis to assess the contribution of
each fingerprint to different targets.

Keywords: deep learning; drug design; virtual screening; embedding

1. Introduction

Drug discovery is a very long and expensive process that includes many stages such
as drug target identification, target validation, virtual screening (VS), hit-to-lead generation,
lead optimization, and so on [1] . Moreover, developing a new drug has a mean pretax
expenditure above 2 billion USD and takes about 10–15 years [2,3]. Despite the huge
investment of time and money, the estimated clinical approval success rate of innovative
small molecules during the drug discovery process is about 13%; thus, the overall risk of
failure is very high. Drug design is supported by computational methods in almost every
stage. Yu and MacKerell [4] report a review that describes the drug discovery process and
the corresponding computer-aided drug design methods. Computational methods do not
guarantee a systematical assessment of molecular characteristics (e.g., bioactivity, ADMET
properties, selectivity, and physicochemical properties) but generate lead molecules with
favourable properties in silico.

In particular, Virtual Screening (VS) is an often discussed topic in Chemoinformatics
and Medicinal Chemistry and is widely applied in pharmaceutical research. VS consists of
screening large small-molecule databases searching for bioactive molecules with respect to
the target under investigation. This enables the researcher to cut the cost of experimentally
testing thousands of compounds through a severe reduction in the number of candidate
molecules. Research in the field of VS gained increasing importance in the last decade
when Deep Learning (DL) became a mature discipline [5] . In this field, the scientific debate
is very rich with respect to the proper method for representing molecular structures that are
learned by the network. The very first architectures used classical representations such as
molecular fingerprints [6] and SMILES notation [7] . Recently, molecular graphs have been
investigated along with neural embeddings, essentially a learned low-dimension vector
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representation for discrete and/or categorical data. Embeddings can be used suitably to
train a neural network in place of the original samples. In fact, neural embeddings represent
a way to fit the input data representation in the numerical constraints posed by the training
procedures of a neural model. On the other hand, embeddings mask the original features of
the input data, and it is hard to devise an explanation of the model behaviour. Explainable
AI (XAI) is aimed at providing a description of how the model uses features to build its
predictions, and this is a crucial topic to make extensive uses of neural models viable in
the general context of life sciences. In this work, we propose EMBER, a simple but novel
neural embedding for molecular structures that allows explainability in a multitarget VS
task. The major contributions of the presented study are reported in the following:

• The EMBER (EMBedding multiplE molecular fingeRprints) embedding is proposed,
which is made by multiple molecular fingerprints that have been generated using
complementary methods to search for molecular substructures and are stacked as
the spectra of a sort of “molecular image”; such an embedding aims at exploiting
the ability of Convolutional Neural Networks (CNN) in learning the proper features,
as they do for images;

• A multi classifier has been developed to prove the previous claim, which performs
very well in screening ligands on twenty protein kinases presenting the closest binding
sites to CDK1; moreover, our architectural design lowers the parameter numberl

• A curated data set made by nearly 90,000 ligands labeled as active/inactive against 20
Kinase target selected as the most similar to CDK1.

• An explainability analysis has been performed to assess the most relevant features for
the classification task, and the results of this analysis confirm some very recent in vitro
studies that outline the relevance of pharmacophore-like description fingerprints
when addressing bioactivity classification for kinase inhibitors

Our study is part of a wider research study aimed at screening novel compounds with
anti-cancer properties.

In cancer therapeutics, it is well known that protein kinases are key regulators of cell
function and constitute one of the largest and most functionally diverse protein families.
By adding phosphate groups to the substrate, they regulate the activity, localization, and
overall function of many proteins and serve in orchestrating the activity of almost all
cellular processes. Kinases are involved in signal transduction and coordination of complex
functions, such as the cell cycle. Kinases have been considered one of the most promising
target family in oncology. In the search of the best protein family to be focused on, the choice
is usually guided by the possibility to have mutated targets that can be used for selectivity
issues. Mutated kinases can become active by constitution and, thus, cause diverse cellular
anomalies resulting in cancer initiation or growth. One of the most well-known mutated
kinase example is BRAF, which is frequently mutated on Val-600 (p.V600E) and is a driver
mutation in several cancers, including colorectal cancer, melanoma, and thyroid cancer [8] .

Between different kinases, CDK1 is a central regulator that drives cells through G2
phase and mitosis. Diril et al. [9] generated a conditional-knockout mouse model to study
CDK1 functions in vivo. From this study, it was found that the low presence of CDK1
in the liver confers complete resistance against tumorigenesis induced by activated RAS
and P53 silencing. Considering the large role of cycline-dependant kinases in the tumor
progression, our research group has been focusing all efforts on the design of new CDKs
inhibitors, with a special focus on CDK1.

1.1. Theoretical Remarks

In this section, some remarks are reported about both Deep Neural Networks for
Virtual Screening and molecular embeddings.

1.1.1. Deep Neural Networks for Virtual Screening

In the last few years, DL has been used in all research fields related to life sciences:
Angermueller et al. [10] report a review of DL techniques in computational biology, while
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Anwar et al. [11] propose a comprehensive report on DL for medical imaging. DL solutions
have been proposed in support of all stages in drug design workflows [12]; moreover, in
general, AI-based techniques such as Decision Support Systems and robotic platforms
are expected to be in synergy with the human medical chemist, in the near future, in
order to perform drug discovery [13] . Virtual Screening is undoubtedly one of the most
investigated topics for DL applications. The reader is referred, in particular, to the work
by Kimber et al. [14] for structure-based approaches and to the paper by Sydow et al. [15]
for ligand-based ones. The very first DNN for QSAR prediction was a multi task classifier
presented by Dahl et al. [16] where the same candidate was tested for its bioactivity on
different assays. Wallach et al. [17] presented AtomNet, which is regarded as the first CNN
for structure-based screening. Duvenaud et al. [18] proposed a CNN to learn circular
fingerprints from molecular graphs, and some experiments were carried out to prove their
efficacy both in solubility and drug efficacy prediction. Pereira et al. [19] proposed DeepVS:
Such a CNN makes use of the notion of the context of an atom in the protein–compound
complex that is a vector representation of the structural properties of its neighborhood.
Hiroara et al. [20] used SMILES notation by describing the compound to create a feature
matrix where each column is a one-hot encoding of the presence of a particular SMILES
symbol at a certain position. Such a representation is fed to a CNN in order to detect
“chemical motifs” that are relevant binding substructures.

1.1.2. Molecular Embeddings

The presented review outlines that a great effort in DL applications for VS has been
devoted to arranging all molecular representations as CNN input tensors. In recent years,
the debate on DL applications relative to drug discovery has broadened: The topics related
to model explainability attracted the attention of the scientific community [21] . In the
context of eXplainable AI (XAI), using the proper input representation is a crucial topic
for assessing model behavior. In fact, a direct description of the molecular structure
in the form of graphs or SMILES allows the immediate comprehension of the chemical
meaning of model results. In this respect, many recent approaches to drug design tasks are
oriented to nonconvolutional models. De novo drug design exploits the use of Long Short-
Term Memory cells (LSTM) [22] or transformers [23] to process molecular information.
Bjerrum [24] proposed LSTMs for QSAR learning from SMILES. All these approaches allow
for model explainability by feature attribution, which is building a function of the model
inputs r = E(x), where ri is a relevance score of the i-th feature xi.

Moreover, molecular graphs are very explainable input descriptions because they
represent molecules in an immediate manner, but GNN architectures, in general, make an
extensive use of the notion of embedding. Neural network embeddings were introduced first
in the context of NLP [25] and are one of the most remarkable findings in DNN research.
A neural embedding is a continuous vector representation for discrete and/or categorical
variables and is used with the two-fold purpose of reducing the dimensionality of the
original input space and achieving better numerical stability in activation functions that are
designed to cope with small real values. A neural embedding can be computed explicitly
by using a function that maps the inputs to a vector representation, but they are learned
through a proper DNN in many cases. A molecular graph conveys structural information
through both categorical and numeric data at each node or edge: atoms and bonds types,
presence of rings, aromaticity, formal and partial charge, and so on. As a consequence,
the use of embeddings is a common practice when designing a GNN for molecular analysis.

After the work by Duvenaud [18] where circular neural fingerprints were learned by
molecular graphs, molecular Graph Convolution Networks were introduced by
Kearnes et al. [26] where a systematic definition of suitable convolutional layers is pre-
sented to process feature vectors in either single atoms or atom pairs when a chemical
bond connects them. The overall architecture uses many layers where both atom–atom
and atom–pair interactions at the k-th layer are used to build the k + 1-th layer. On top of
the last atom layer, global molecular features are computed by using fuzzy membership
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functions representing the extent to which an atom contributes to each molecular feature.
This representation, in turn, is used for classification tasks. Coley et al. [27] proposed a
representation learning approach where a suitable “fingerprint” is learned by convolutional
layers that start from single atoms’ feature vectors and use an increasing neighborhood
radius to collect information from connected atoms, thus taking into account structural
features depending from the chemical environment. Molecular tensors obtained from con-
volutions are then flattened to form a fingerprint that is used to predict aqueous solubility,
octanol solubility, melting point, and toxicity. Previous GNNs belong to the family of
so-called Message Passing Neural Networks (MPNN) that were introduced thoroughly by
Gilmer et al. [28] . MPNNs perform learning at each state by using a “message function,”
passing information between nodes along the edges, followed by an “update function” that
computes the new state at each node.

Torng et al. [29] investigated drug–target interaction by using graph autoencoders.
A neural embedding for target pocket features is learned by using a graph variational
autoencoder (VAE) that is a DNN trained to learn a latent representation of the inputs in
an unsupervised manner: two mirrored CNNs are coupled, and the overall network is
trained with its inputs. The activations of the innermost layer form a low-dimensional
latent representation of the input space. The weights of the trained encoder in the Graph-
VAE are used to perform fine tuning in a target Graph-CNN that is trained in parallel
to a ligand Graph-CNN. The two Graph-CNNs are fed in parallel to a fully connected
“interaction” layer and then to the output binding classifier. Koge et al. [30] proposed a
molecular embedding where hypergraph molecular representations are learned by VAEs
based on RNNs along with a regression model for physical molecular properties so that
anchor positive and negative molecular samples with respect to a particular property
have a latent representation that maintains similarity. Finally, Ishiguro et al. [31] made
use of the Weisfeiler–Lehman (WL) embedding of the molecular graph as the input for
an MPNN. The WL embedding is a simple algorithm that enumerates the neighbors of
each atom so that the input of the MPNN is formed by the atom label and the vector of its
neighbors’ labels.

2. Results

Tables 1 and 2 report the results of the proposed multiclassifier on the test set. In par-
ticular, Table 1 reports the accuracy and loss values obtained for single target. The overall
performance of the network remains high in terms of global accuracy when analysing
each single target: this finding is confirmed by high AUC values. In general, sensitivity
values are low because the data set is strongly unbalanced with respect to reflecting true
operational screening conditions.

Table 1 reports also the values of the Matthews Correlation Coefficient (MCC), which
is a well known index used for binary classification that returns a value in [−1; 1] and can
be related to the chi-square statistic for a 2× 2 contingency table, which is a binary classi-
fier’s confusion matrix. In particular, the relation with chi-square statistic is expressed by
‖MCC ‖ =

√
χ2/n where n is the number of observations so it measures the dependency

of the predictions from true (i.e., expected) labels. The form of this indicator is related to the
results reported in Table 2, which is devoted to explaining the actual screening capabilities
of our model and contains both Enrichment Factors (EF) and True Positives versus Positives
(TP/P) ratio for each target at different percentages.
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Table 1. Accuracy metrics for all the targets. Best/worst values for each column are in bold/italic.

Target Acc. Loss Sensitivity MCC AUC F1-Score

ACK 0.9957 0.0226 0.5000 0.6742 0.9834 0.6463
ALK 0.9930 0.0402 0.6575 0.7913 0.9904 0.7804
CDK1 0.9910 0.0314 0.4537 0.6397 0.9850 0.6059
CDK2 0.9859 0.0431 0.5281 0.6338 0.9845 0.6287
CDK6 0.9966 0.0210 0.5865 0.7523 0.9895 0.7305
INSR 0.9893 0.0329 0.3779 0.5830 0.9858 0.5342
ITK 0.9945 0.0232 0.5886 0.7302 0.9905 0.7154
JAK2 0.9898 0.0472 0.8474 0.9090 0.9950 0.9114
JNK3 0.9967 0.0154 0.5905 0.7610 0.9901 0.7381
MELK 0.9957 0.0229 0.7081 0.8270 0.9897 0.8188
CHK1 0.9895 0.0512 0.6385 0.7650 0.9846 0.7565
CK2A1 0.9942 0.0253 0.5166 0.6944 0.9857 0.6667
CLK2 0.9936 0.0259 0.2255 0.4137 0.9771 0.3485
DYRK1A 0.9916 0.0321 0.4080 0.5987 0.9776 0.5591
EGFR 0.9845 0.0604 0.7536 0.8331 0.9874 0.8357
ERK2 0.9881 0.0563 0.7295 0.8292 0.9886 0.8272
GSK3 0.9843 0.0554 0.5827 0.6892 0.9762 0.6856
IRAK4 0.9936 0.0287 0.7611 0.8611 0.9938 0.8571
MAP2K1 0.9931 0.0319 0.5497 0.7184 0.9795 0.6954
PDK1 0.9945 0.0271 0.6310 0.7757 0.9875 0.7613

EFs after x% of the focused library were calculated according to the following formula:

EF =
Nexperimental

x%

Nexpected
x% =

Nexperimental
x%

Nactive · x%
(1)

where Nexperimental is the number of experimentally found active structures in the top x%
of the sorted database, Nexpected is the number of expected active structures, and Nactive is
total number of active structures in database [32] . EF computes the number of predicted
true actives, in decreasing probability order, in a fixed percentage of the test set. Typical
percentages are 5% and 10%, but in this study, we also tested the performance at 1%. Such
a measure is intended to provide the number of times a particular screening procedure
performs better than a pure random process.

EF values reported in Table 2 are considerably high and drop to 9 only at 10%. This
result is truly remarkable even though no drug designer takes into account such large test
set percentages. Moreover, all such values are considerably higher than the ones considered
sufficient for a good model [32] .

In order to measure explicitly the classifier’s ability to prioritize ligands, we also
reported values of the ratio between the True Positives (TP), which is the number of correct
predictions prioritized at the top x% of the test set, and the Positives (P), which is the total
number of positives in the test set for each target. We calculated this parameter at different
percentages of the test set. The use of the TP/P indicator explains some controversial
EF values. The worst EF values (less than 20 at every percentage) are obtained for the
JAK2 and EGFR targets, respectively. This result comes from the high abundance of active
molecules in the test set that are much higher than the the number of ligands considered
at each percentage. In fact, the TP/P ratio reported in the same table confirms that the
classifier correctly prioritizes as many active molecules as it can for the considered test set
percentage for both target proteins.

Finally, MCC values in Table 1 are in line with TP/P values, as it was expected, due to
the very similar form of these indicators. In fact, the highest MCC was obtained exactly for
the JAK2 target.
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Table 2. True Positives versus Positives ratio and Enrichment Factors computed on the entire test set.

Protein TP/P 1% * TP/P 2% * TP/P 5% * TP/P 10% * EF 1% EF 2% EF 5% EF 10%

ACK 72/106 84/106 95/106 101/106 68 40 18 10
ALK 131/254 202/254 229/254 247/254 52 40 18 10
CDK1 111/205 150/205 189/205 196/205 54 37 18 10
CDK2 118/303 194/303 264/303 289/303 39 32 17 10
CDK6 79/104 90/104 98/104 101/104 76 43 19 10
INSR 110/217 145/217 195/217 206/217 51 33 18 9
ITK 107/158 125/158 148/158 155/158 68 40 19 10
JAK2 134/832 268/832 669/832 804/832 16 16 16 10
JNK3 81/105 88/105 95/105 102/105 77 42 18 10
MELK 130/185 157/185 178/185 181/185 70 42 19 10
CHK1 134/343 233/343 300/343 324/343 39 34 17 9
CK2A1 100/151 117/151 141/151 146/151 66 39 19 10
CLK2 59/102 73/102 87/102 96/102 58 36 17 9
DYRK1A 97/174 126/174 152/174 162/174 56 36 17 9
EGFR 134/702 268/702 586/702 664/702 19 19 17 9
ERK2 133/525 267/525 471/525 505/525 25 25 18 10
GSK3 132/393 226/393 327/393 353/393 34 29 17 9
IRAK4 134/339 263/339 320/339 333/339 40 39 19 10
MAP2K1 118/191 142/191 167/191 178/191 62 37 17 9
PDK1 123/187 149/187 170/187 181/187 66 40 18 10
∗ Percentage relative to the evaluated test set evaluated (13400 compounds), i.e., 1% = 134 molecules.

In order to prove the practical effectiveness of our approach, we conducted a simple
experiment on ligands prioritized by our classifier for the CDK1 target. We explicitly
extracted ChEMBLIDs of the top five molecules prioritized by our system in the test set
and inspected both their chemical structure and their activity parameters. Table 3 reports
the results, and it can be observed that all of them are strongly active against the target.

In line with our commitment to provide an explanation of the role of each fingerprint
in our embedding, we conducted an analysis of our trained network using the well known
SHAP framework. SHAP stands for SHapley Additive exPlanations [33] , and it is a game-
theoretic approach that was proposed first by Lipovetsky and Conklin [34] . In this work,
the relevance of each predictor in a linear regression model is measured by using the Shapley
Value (SV) imputation, which is a method that ranks the importance of each player in a
multiplayer game over all possible combinations of players. The authors use SHAP values
as the unique measure for feature relevance in an additive feature attribution explainability
model, which is defined by a linear combination of the features to be explained (zi) weighted
by some importance factors (φi). The SHAP value for feature zi is estimated as the SV (φi)
of a conditional expectation function E[ f (z)|zi] describing the expected prediction over
the entire feature set z conditioned to zi. Both model-agnostic linear explanations and
model-specific computations of SHAP values are proposed.

In our case, we adopted the so-called Deep SHAP explanation model that is suited
for CNN because it combines SHAP values with recursive relevance score computations
proposed in DeepLIFT [35] . The DeepLIFT explainability model assumes that a difference
(∆t = t− t0) in an output neuron between actual activation t and a reference one t0 is related
to the activation difference ∆xi in whatever contributing neuron by the summation-to-delta
property ∑i C∆xi∆t = ∆t, which is a constraint on the relevance scores (C∆xi∆t). Deep SHAP
applies the DeepLIFT approach to the expectation function’s, E[ f (z)|zi], reference value.

The results of our analysis are reported in Figure 1; on the left, we reported the
SHAP values for each target and for each fingerprint averaged on the entire test set, while,
on the right, the CDK1-only analysis is reported as an example of the results obtained
target-by-target. Here, each fingerprint has been grouped in 64 bins to enhance readability.

As we expected, SHAP values are arranged in a manner that some fingerprints are
relevant as a whole for predicting a target, while others have no contribution, which
includes all SHAP values that are almost zero for each bit of the fingerprint. All targets
exhibit the same relevant fingerprints even if actual SHAP values differ from each other.
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Table 3. The top five test set molecules prioritized by our classifier as the most active on the
CDK1 target.

Molecule ChEMBLID Chemical Structure IC50

CHEMBL192216 2 nM

CHEMBL3644025 82 nM

CHEMBL445125 500 nM

CHEMBL2403087 183 nM

CHEMBL2403084 148 nM

(b)(a)

Figure 1. Explainability results using SHAP; (a) average SHAP values for each fingerprint computed
on the entire test set separately for each target; (b) example of single target explainability analysis for
CDK1: SHAP values are reported for each fingerprint, and each row has been grouped in 64 bins to
enhance readability.

3. Discussion

In this section, we will discuss two main topics covered in the present study that
constitute the definition of EMBER and of the related data set.
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EMBER is not a fixed embedding; rather, it has to be intended as a general criterion
for embedding molecular fngerprints. An explainability analysis helps the researcher to
tune the embedding toward the most effective fingerprints for the task at hand. In this
respect, FeatMorgan and Layered and RDKIT fingerprints demonstrated a major influence
on prediction results when compared to the others. We tried to rationalize this observation
related to the fingerprint composition. In detail, FeatMorgan is a kind of FCFP circular
fingerprint where the ligand is characterized by the functional descriptions of atoms directly
related to its binding capability (e.g., hydrogen donor/acceptor, polarity, aromaticity, and so
on). Most likely, for such a kind of classification that is not merely based on the chemical
path but also on the ligand’s capability to bind specific protein residues, such forms of
ligand description outperform when compared to the simple ECFP circular fingerprint, only
relative to atom-type paths. RDKIT and Layered fingerprint are both based on substructure
decomposition (e.g., aromatic rings). In a recently published work by Zhu et al. [36], the
authors conducted a chemoinformatic analysis of 2139 Protein kinases inhibitors and found
the majority of these molecules as “flat” with a very low fraction of sp3 carbons and a
high number of aromatic rings. From the study, it was also demonstrated that the average
weighted hydrogen bond count was inversely proportional to the number of aromatic rings.
In detail, it seems that, in the binding affinity to protein kinases, there was a correlated
compensation between H-bond interactions and aromatic and non-bonded interactions.
Such an inverse relationship strongly suggests the importance of the balanced presence
of hydrogen bond donors and acceptors and aromatic moieties within the ligand for the
molecular recognition of protein kinase inhibitors.

In our opinion, the interpretation of the above-described interaction elements for ki-
nase inhibitors is better performed by the FCFP, RDKIT, and Layered fingerprints compared
to the other fingerprints mainly based on the mere description of the chemical path, and not
on the pharmacophoric role of molecular elements.

With respect to our new data set we want to outline some points. We claim that the
definition of a completely new publicly available data set is a valuable contribution to the
scientific community for many reasons. Firstly, the data set contains curated data where
both ingestion from public databases and annotation with activity data have already been
performed. This data set is aimed at serving as a benchmark for novel DL approaches in
VS. Moreover, it has been conceived explicitly for training DL models, while keeping in
mind the size of a VS task in the real world. One of the main strengths of our approach is
the use of a data set containing ligands with annotated activity data. This differentiates the
approach compared to the mass use of decoys. We did not use decoys as it is well known
that such data introduce bias in machine learning models toward the class they have been
labeled in. Moreover, our data set contains many real samples to allow suitable training,
but class balancing is purposely uneven with a 1 : 100 ratio between active and inactive
ligands. The use of molecules annotated for more than one kinase receptor allowed our
model to consider the selectivity of target assignation, as is usually performed in wet lab
assays. Finally, a careful annotation procedure has been adopted where we empirically
choose the thresholds for activity parameters IC50, KI , KD to minimize the risk that some
weakly active ligands being mislabeled as inactive and vice-versa. We tried to overcome
mislabeling by direct inspection of the activity values in our data using clustering to assess
the effective number of classes to be used. Actually, two clusters were devised in our data
with respect to the chosen activity parameter, and the relative threshold value was chosen
according to the scientific literature after having verified that it is falling in between the
two clusters. The only objection to our line of reasoning is that there is no guarantee that
our labels are correct in every case due to an absence of certain biological information with
respect to inactivity coming from assays that can exhibit reduced sensitivity.
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4. Materials and Methods

In this section, the main idea behind EMBER is presented along with implementation
details of the classifier proposed to prove its efficacy. Moreover, the data preparation
procedure is reported.

4.1. EMBER Multi-Fingerprint Embedding

A major contribution of this work is the introduction of EMBER, an embedding that
is obtained using different molecular fingerprints bundled as the “channels” of the input
tensor of a 2D CNN. This section is devoted to explaining the motivations of our choice.

In our approach, molecular fingerprints are regarded as different “spectra” of the
same molecular image. In fact, different fingerprints collect information about atomic neigh-
borhoods using heterogeneous criteria: moving along bond-connected paths, exploring
circular regions, encoding atom pairs and their bond distance, and so on. As a consequence,
different fingerprints convey diverse structural information about the same molecule. Some
of the authors in a recent work [37] present a comparison between different deep classifiers
and ML approaches for assessing ligands’ bioactivity on Ciclyn Dependent Kinase 1 (CDK1).
In that work, the authors made the same assumptions expressed here, and they used seven
fingerprint families: RDKit, Morgan, AtomPair, Torsion, Layered, FeatMorgan, and ECFP4.
The idea under fingerprint generation is to apply a kernel to a molecule for generating
a bit vector. Typical kernels extract features from the molecule, hash them, and use the
hash to determine bits that should be set. The typical fingerprint size range is from 1K
to 4K bits: In the cited work, we used the 1024-bit size. With respect to the fingerprint
types we selected, they can be grouped into two classes: pathway-based, also known as
topological, and circular. Pathway-based fingerprints encompass RDKit, Atompair, Torsion,
and Layered. In this case, the kernel is linear, and each fingerprint differs in atom types and
bond types. For example, RDKit’s atom types are set by atomic number and aromaticity.
In Layered, both atom and bond types contribution are determined by the particular layers
included in the fingerprint. Circular fingerprints include Morgan, Featmorgan, and ECFP4.
In this case, the kernel is circular and takes into account the neighborhood of each atom
based on the selected radius (usually from 1 to 3).

The Morgan algorithm was presented as a method for solving the molecular isomor-
phism problem: identifying when two molecules, with different atom numberings, are the
same. It provides numeric identifiers to each atom using an iterative process that begins
with a rule that encodes the numbering invariant atom information into an initial atom
identifier and ends with identifiers from the previous iteration. As a result, the created
identifiers are unaffected by the atoms’ original numbering. The process is repeated until
each atom’s identifier is unique.

It has often been argued that Morgan and EFCP fingerprints are the same, but it is not
entirely true because the ECFP generation procedure is actually derived from the Morgan
algorithm with significant improvements, especially in relation to aromatic groups. Such a
process stops after a predefined number of iterations rather than when identifier uniqueness
is attained. Initial atom IDs and all subsequent identifiers are grouped into a collection that
determines the extended-connectivity fingerprint. The ECFP algorithm retains intermediate
atom identifiers rather than discarding them. This means that the iterative process does
not have to proceed all the way to the end (that is maximum disambiguation); rather, it
is carried out for a fixed number of iterations. Moreover, algorithmic optimizations are
available in ECFP because perfect accuracy is not necessary for disambiguation [38] .

The architecture presented in the cited work exploits the contribution of each finger-
print by parameter sharing where seven convolutional branches are merged in a unique deep
CNN, and the training procedure is in charge of merging the information conveyed by
each single branch. The resulting architecture performed very well but it used 51,449,735
parameters to classify ligands on only a single target.

The lesson learned by our previous architecture is that parameter sharing provides
a coupling that is too loose between inputs to achieve the high model capacity that is
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needed for an effective VS where multiple targets have to be taken into consideration. As a
consequence, in this study, we regard the input fingerprints as the features of our molecular
representation and use a unique deep CNN that is the ideal model for multi-channel
image classification to perform our analysis. Molecular fingerprints have been widely
used for many decades as a key technique in Virtual Screening, and they are no doubt an
algorithmic embedding for molecular information with all the pros and cons of using such
an approach. The two-phases fingerprint algorithm are as follows: At first, information
is collected from an atomic neighborhood; then, hashing is used to set the actual bits in
the binary string and makes a molecular fingerprint “opaque” with respect to the direct
explanation of the molecular graph, even if it retains global information about the presence
of particular substructures in the molecule. On the other hand, this algorithm ensures a
similar computational process for each fingerprint family, and this enforces our claim about
their use as channels of the same input tensor.

Finally, even if very recent research moves quickly towards learned molecular embed-
dings, we want to use a solid reference framework for assessing the explainabilty of our
approach due to the loss of explicit structural information induced by the use of finger-
prints. In this respect, our multitarget classifier will be analyzed by using a well-known
framework for feature attribution, which is the standard approach in CNNs.

4.2. Data Preparation

The targets considered in the study were derived from the similarity approach reported
below. This method consisted of the IFPs Tanimoto Similarity calculation for proteins with
high similarity relative to CDK1 (Cyclin-dependent kinase 1). Binding site similarity was
calculated on both amino acid sequences and interaction patterns with known ligands
(experimental data of relative crystallography to ligand–receptor interaction). We took the
top twenty proteins with a similarity coefficient, ≥0.80.

At the same time, In order to enrich inactive molecule libraries, we used the opposite
of the concept of similarity, which is dissimilarity (similarity coefficient < 0.1).

Of these twenty proteins, we have extracted a portion of data from the CheMBL
molecular database [39] where the biological activity of compounds was measured mainly
using the half maximal inhibitory concentration parameter (IC50), which is the amount of
substance needed to inhibit the target protein by one half. In order to identify the largest
number of molecules, we used all other parameters available on ChEMBL, such as inhibition
constant KI and dissociation constant KD. A good rule of thumb used for both IC50 and KI
is that values less than 1.0 µM imply good bioactivity, while values greater than 10.0 µM
indicate low or negligible bioactivity. The literature does not report a precise KD threshold
to be used for labeling a compound as active or inactive. Therefore, we clustered our data
by using the well known K-means algorithm with respect to the KD value separately for
each target and devised a suitable threshold by using the well known elbow method. This
heuristic consists in clustering data points (x) with a variable number of clusters k while
plotting the Within-Cluster Sum of Squares:

WCSS =
k

∑
i=1

∑
x∈Ci

(x− µi)
2 (2)

where Ci is the i-th cluster, and µi is its centroid. The plot will exhibit an “elbow” in
correspondence of the optimal value for k. In this manner, we obtained k = 2 for each
target as it was expected, and we were also able to evaluate the centroids and the extent of
each cluster. By analyzing clustering results, we obtained the value KD = 7µM as a good
threshold to separate data correctly for each target.

Based on the available data in ChEMBL, the number of inactive compounds for each
protein evaluated in this study was too low to build a deep learning model. The authors
preferred not to use Decoys molecules for the inactives set because of some known issues
about their use, especially in DL methods. Madhavi Sastry et al. [40] had already reported a
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variable performance of decoys based on targets and the method used for virtual screening
in 2013. Then, in more recent literature, mainly focusing on the use of decoy data sets for
DL has revealed some hidden biases when testing CNN virtual screening performance
evaluation [41] . Moreover, Yang et al. in their recent work [42] pointed out the importance
and, at the same time, the lack of publicly available DBs that are sufficiently large and
unbiased data sets used for robust AI models. In addition, the work enlightened once more
how the use of decoy data sets to train the model presents some critical issues. In light of
these considerations and since this workflow is based on a multitarget affinity approach,
the authors preferred to create their own data set starting from the ChEMBL database and
exploiting dissimilarity metrics to enrich a diversity-based inactive DB. Therefore, in order
to enrich the library of inactive compounds for each kinase, two different approaches were
used. The first one was based on the collection of active ligands on targets presenting
different ligand binding interaction patterns compared to the 20 reference ones in the study.
The second one relied on the search for dissimilar compounds compared to co-crystallized
kinase inhibitors.

Molecules retrieved by these two approaches were then examined to avoid the pres-
ence of duplicates. The advantage of using these two different approaches allowed the
creation of a data set with a wide chemical space of compounds.

Both methods are based on a workflow built with KNIME Analytics Platform [43]
(Knime version 3.7.1).

In the first approach, the idea was to identify kinases with less similar binding sites
compared to the 20 targets under investigation; for each of them, active compounds
were chosen. In order to perform this analysis, a workflow was built using “3D-e-Chem-
KLIFS” nodes, which return information on the entire human kinome from the “Kinase-
Ligand Interaction Fingerprints and Structures” database [44] (KLIFS - release version 2.4,
developed by the Pharmaceutical Chemistry Division—VU University Amsterdam).

In fact, this database contains detailed information about structural kinase–ligand
interactions relating to all the structures of the catalytic domains of the human protein
kinases deposited in the Protein Data Bank. The Structures Overview Retriever node was
used to obtain the structure IDs of each reference kinase and all other human kinases
(total 555). All kinases data were processed as input by the Interaction Finger print Retriever
node to generate the protein–ligand interaction (IFP) fingerprints for subsequent chemoin-
formatics analysis. Additionally, this node corrects fingerprints for gaps and missing
debris within binding pockets, thus enabling free-for-all comparisons. Once interaction
fingerprints for each protein–ligand complex were obtained, a dissimilarity analysis was
performed between each kinase’s IFP by using the KNIME Similarity Search node. For
this purpose, the Tanimoto coefficient was used as a method to calculate the distance (or
dissimilarity) between each and all other human kinase IFPs. The results were also filtered,
setting a coefficient range of [0–0.15]. For each kinase, a list of proteins that satisfy this
dissimilarity criterion was obtained, and for each of them, the compounds considered as
actives in the literature were collected. In particular, for each kinase that was dissimilar
to a reference one, only compounds with IC50 values < 1.0 µM were collected using the
ChEMBL Database v26.

Nevertheless, we wanted to further expand the number of inactive molecules by
using a second approach. This second approach consists of a ligand chemical diversity
search. Specifically, it was based on structurally diverse ligands compared to known active
co-crystallized ligands for each protein used in this work.

The ligands in sdf format for each 3D structure of the twenty proteins (see ligand
code in Table 4) were downloaded from the Protein Data Bank [45,46] (RCSB). Actives
compounds were downloaded from crystal structures with a resolution less than two.

In order to enlarge our data set, 601,810 small molecules were downloaded from the
entire ChEMBL DB v26 and used for dissimilarity analysis with ligands obtained from
PDBs. All small molecules that were not relevant for classification purposes were removed
according to the following criteria:
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• Molecular weight > 100;
• Number of carbon atoms > 10;
• Number of nitrogen atoms > 2;
• Number of oxygen atoms > 2;
• At least one aromatic ring.

Similarity analysis was conducted by calculating the Tanimoto coefficient using ECFP4
fingerprints. Different compounds with respect to kinase inhibitors that were previously
downloaded were selected from ChEMBL DB in order to possess diverse chemotypes.

As result, the use of three different methods to enrich the inactive data set allowed
us to obtain a diverse set. The inactive set, in fact, was mainly composed by the inactives
found on Chembl in the end to which other molecules actives on different proteins were
added. Such an approach had two advantages. The first one was the possibility to have
a large and diverse chemotypes space. Moreover, using these three different approaches
(that is, using different approaches to select molecules), we minimized the possibility of
having analogue bias and artificial enrichment typical of the usage of decoys or uncurated
data sets [47].

Table 4. A summary of all proteins (active and inactive) obtained from preprocessing methods.

Target PDB ID Ligand Code ∗ Actives Inactives

ACK 5ZXB 9KO 746 159,775
ALK 6E0R HKJ 1665 227,247
CDK1 6GU2 F9Z 1241 124,473
CDK2 6INL AJR 1924 225,087
CDK6 5L2S 6ZV 646 256,561
INSR 5E1S 5JA 1423 195,990
ITK 4RFM 3P6 1001 135,007
JAK2 6M9H J9D 5526 577,409
JNK3 2B1P AIZ 658 95,252
MELK 6GVX TAK 1215 246,662
CHK1 6FC8 D4Q 2175 21,763
CK2a1 6JWA 5ID 1053 10,534
CLK2 6FYL 3NG 671 6800
DYRK1A 4YLK 4E2 1126 11,274
EGFR 5GNK 80U 4757 47,541
ERK2 6OPH 6QB 3525 35,237
GSK3B 5F94 3UO 2578 25,768
IRAK4 6EG9 OLI 2131 21,282
MAPK2K1 4AN9 ACP; 2P7 1254 12,508
PDK1 3NAX MP7 1117 11,166

∗ Most affine lingands.

The overall data set was built starting from two separate sets. The first one was made
by 64,600 compounds that are inactive for all the targets. The second data set contains
all ligands that are active on at least on one target. In the end, we merged the two data
sets to obtain a final one that has a 1:100 active/inactive rate, which is referred to the less
abundant class (CDK6) (see Table 4).

This final data set consisted of 89,373 molecules and was separated into a training
set (68,370 molecules), test set (13,046 molecules), and validation set (7597 molecules),
respectively.

The molecules were manipulated on the Knime platform in order to generate the seven
fingerprints used as the channels of our embedding, which is used as input to the network.

Given the intrinsic sparsity of a molecular fingerprint, we chose to transform the 0 bits
in −1 in order to reduce the unwanted output bias of the convolutional units when they
receive a zero input.
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4.3. The Proposed Architecture

The architecture of our classifier is a deep CNN with nine layers using Parametric
Rectified Linear Units (PReLU) for feature extraction and a three-layer fully connected
perceptron for actual classification. Figure 2a reports the layout of the proposed network.

The PReLU activation function adaptively learns the parameters of the rectifiers
and improves accuracy at negligible extra computational costs. A learnable parameter α is
introduced, and different neurons can have different parameters or a group of neurons can
share one parameter.

PReLUi(x) =
{

x if x > 0
αix if x ≤ 0

= max(0, x) + αi min(0, x)
(3)

If αi = 0, then PReLU degenerates to ReLU; if αi is a small fixed value (such as
αi = 0.01), then PReLU degenerates to Leaky ReLU (LReLU). In our work, αi has been set
constant at 0.25.

The network is trained on 7× 1024× 1 input tensors that represent seven 1024-long
fingerprints stacked as the channels of a 1024× 1 image. Multitarget bioactivity prediction
is a multiclass, multilabel classification, which our classifier also has to assess if a ligand is
active at the same time on different targets. As a consequence, the output is a vector label
that is a binary vector where 1 s indicates bioactivity with respect to a particular target.

In line with the most recent CNNs, we implemented convolutional layers by using
Depthwise Separable Convolution (DSC) [48] to reduce network parameters and lower the
computational load. The classical convolution operator computes an element of the output
tensor Y by applying a kernel K with spatial extent s× s and depth d to the input tensor X.

Yi,j,k =
s

∑
l=1

s

∑
m=1

d

∑
n=1

Xi−l,j−m,k−nKl,m,n (4)

Here, we are using the proper index notation for convolution without kernel flipping.
In DSC, d spatial kernels KS

(h) with s× s size compute 1-depth convolutions, and a 1× 1× d

depth kernel KD provides the final convolution output.

Y
(h)
i,j =

s

∑
l=1

s

∑
m=1

Xi−l,j−m,hK
S
(h) l,m, h = 1 . . . d

Yi,j,k =
d

∑
n=1

Y
(h−n)
i,j KD

n

(5)

It can be shown that DSC can reduce the number of parameters by a factor of 1/s2 for
each layer: Our network was built using only 2,252,959 parameters, which is about a 1:25
ratio with the size of the CDK1-only classifier proposed in our previous work. Figure 2b
reports the details of the implemented model.

Classification is achieved by using an MLP with 64/32/32 ReLU units per layer, respec-
tively, while the output consists of 20 sigmoidal units because the probabilities of each class
is independent from the other classes’ probabilities. For this reason, a binary crossentropy
loss function has been used instead of the usual categorical cross-entropy. This choice is
reasonable because the network performs a “multi-label,” “multi-class” classification task.

Training was conducted using a 10-fold cross-validation training scheme, where a clas-
sic strategy was adopted with an approximate 80%:10%:10% split for training, validation,
and test set, respectively. A 1:100 active/inactive ratio compared to the less abundant class
(646 active compounds) was maintained in three data sets.

Hyperparameter tuning was performed as a grid search for the following values.
Depth separable convolution filters [1024, 512, 256, 128, 64, 32, 16] with zero padding were
tested. The learning rates tested were in the range of [10−5–10−1], where each tested value
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was 10-times the previous one. The batch sizes tested were in the range of [8–64]. Early
sopping was used to identify the optimal number of training epochs, and model checkpoint
was used to save the best model after each epoch. Hyperparameter optimization took
64 days and was performed by using an NVIDIA TITAN Xp GPU, 3840 CUDA Cores.
Notwithstanding the complexity of the architecture, each training session took about 6
hours due to the efficiency of the DSC convolution operation.
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Figure 2. The proposed architecture. (a) Network layout. (b) Model summary.

5. Conclusions

We introduced EMBER, a novel molecular embedding aimed at improving the effec-
tiveness of CNNs for VS tasks. The innovation in our approach consists in representing the
ligand’s structure by several molecular fingerprints stacked as the channels of the input
tensor. The key idea behind EMBER is that molecular fingerprints are computed by not
only using the same algorithmic process, but also by using complementary information
collected from the molecular structure such that they can be regarded as the “spectra” of a
sort of molecular image.

We proved EMBER effectiveness by using a deep neural architecture for ligand multi-
classification with respect to their bioactivity on twenty protein kinase targets. We achieved
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very satisfactory results with respect to the classification task; in general, we obtained a
very high capacity model with a very small number of parameters.

Moreover, we presented an explainability analysis by feature attribution showing that
only three molecular fingerprints play an active role in classification, which are FeatMorgan,
Layered, and RDKIT. Our findings confirm very recent studies that outline the relevance of
functional description Fingerprints (i.e., Pharmacophore-like) when addressing bioactivity
classification, especially for kinase inhibitors.
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