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Abstract

In this work, we implemented an automated method using a correlation coefficient to select

a time interval with a minimum movement or rest interval, together with analysis of variance

for measurement of blood vessel diameter in the cremaster muscle. Video images binariza-

tion using analysis of variance resulted in an enhanced and a clearly defined vessel wall.

Histamine (1 mM) induced a marked reduction in vascular diameter (vasoconstriction) in the

cremaster muscle from mice fed with standard (SD) and high fat diet (HFD). However, the

effect of histamine was reduced in HFD mice compared to SD mice. Thus, the change in

vascular diameter was 87.14% ± 7.44% and 52.63% ± 16.27% in SD and HFD mice, respec-

tively. In conclusion, determination of a rest interval with minimal movement and the use of

analysis of variance resulted useful to evaluate vascular diameter in small arteries. We sug-

gest this method to streamline experiments facilitating cardiovascular research.

Introduction

The microvasculature is a dynamic cellular system, composed of blood vessels ranging in

diameter from 5 to 100 μm, that include small arteries and veins, arterioles, venules, and

capillaries [1, 2]. Microvascular function depends on the function and structure of the vessel

wall. Arterioles are assembled as one to several layers of vascular smooth muscle with an over-

laying layer of endothelial cells while the capillary is formed by a single layer of these cells.

Regulation of the microvascular function is mostly associated with the endothelial cells by

interacting with a variety of endothelial-dependent inflammatory mediators as histamine,

serotonin, and bradykinin [3]. This network of microvessels transports and exchanges oxygen

and nutrients between blood and tissue, removing CO2 and metabolic products and partici-

pates in tissue defense and cell repair [3–5]. Alterations in the function of microvasculature

including capillary flow velocity and permeability have been associated with several pathologi-

cal conditions as hypertension [4, 6], and type 1 diabetes [4, 7]. Impaired coronary microcircu-

lation in human has also been associated with obesity [4, 8].

Regulation of blood flow is achieved through changes in the vascular resistance, the force

exerted by blood vessels on circulating blood to generate blood pressure [9]. In accord with
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Poiseuille’s law, very small decrease in vessel radius dramatically reduces flow, demonstrated

by the directly proportional relationship between flow and radius to the fourth power, and the

inversely proportional relationship between the flow to vessel resistance [10, 11]. The active

regulation of vascular resistance is regulated by the vascular tone that in turn depends on

blood pressure as well as the balance between vasoconstrictor and vasodilator signals acting on

the vessel wall [9, 12]. Arterioles play an important role in controlling peripheral resistance

and tissue perfusion. An early report demonstrated the substantial participation of precapillary

arterioles with a diameter of 10 to 30 μm in the regulation of the capillary circulation [13].

Therefore, a robust analysis of microvascular regulation requires quantification of changes in

vessel diameter and blood flow dynamic conditions [14]. A variety of methods have been used

for the measurement of arterial diameter. Manual tracking can be used particularly in isolated

blood vessel preparations and requires trained personnel to continuously monitor vascular

edges and make manual adjustments. Automated tracking of changes in diameter are based in

video images of a transilluminated blood vessels using several thresholding methods to analyze

the image. These methods are appropriate for isolated vessels with a clean outer edge [15].

Indeed, ex vivo measurements of arterial diameter as indicator of changes in vascular tone

have been performed using a combination of video camera and microscope. Pressure myogra-

phy is one of the most useful tools to measure diameter in small arteries and is widely used in

cardiovascular research [16, 17]. The measurement of small arteries diameter in living systems

implies several difficulties as the arterioles embedded within a scattering medium or motion of

vessels resulting of blood flow and/or respiration. Thus, intravital microscopy and a video cali-

per with a spatial resolution of� 2 μm have been used to determine in vivo arterioles lumen

diameter [18]. An important contribution for determination of vessel diameter and analysis of

endothelium-dependent Ca2+ signaling in vivo was the use of transgenic mice expressing

GCaMP2, a GFP-based Ca2+ sensor in vascular endothelium [19, 20]. A similar approach

using transgenic mice that express genetically encoded Ca2+ biosensors was used to evaluate

Ca2+ signaling in smooth muscle of skeletal muscle arterioles in vivo [21]. Moreover, tech-

niques using intravital microscopy and high-speed digital video system have been developed

to study microvascular dynamics. A high-resolution particle image velocimetry (PIV) tech-

nique aimed to improve dynamic range, spatial resolution, and measurement accuracy of red

blood cells (RBCs) in a rat mesentery arteriole; however, the measurement accuracy of velocity

was low [2]. Also, cross-correlation algorithms, a Hough transform method, and an optical

flow method have focused on the automatic analysis of microcirculatory blood flow employing

microscopic video imaging [14, 22]. However, certain limitations concerning video quality

remain to be addressed, particularly in complex vascular structures in vivo [23]. Thus, in this

work, we used a correlation coefficient to select a time interval with a minimum movement,

defined as rest interval, in high-speed videos of mouse cremaster muscle. We also proposed

the analysis of variance of gray scales to improve definition of the vessel wall and accurately

determine diameter and blood flow velocity in histamine-stimulated cremaster muscle of

obese and control mice fed with standard diet.

Materials and methods

Cremaster muscle preparation

Male C57BL/6 mice (6–7 week-old) were obtained from the Experimental Animal Care Center

from Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional

(CINVESTAV-IPN), México. All the procedures were conformed to the National Institutes of

Health “Guide for the Care and Use of Laboratory Animals (1996)” and were approved by the

Institutional Ethics Review Committee for Animal Experimentation of CINVESTAV-IPN
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(approval no. 0170–15). All animals had free access to food and water. Mice were divided into

two groups: control group fed with standard diet (SD, n = 4) and obese group (Research Diets,

n = 4). Obese animals were fed with a high-fat diet for 8 weeks.

The surgical preparation was performed as previously described [24, 25]. Briefly, mice were

anesthetized with ketamine/xylazine (100 mg/10 mg /kg i.p., respectively), additional anes-

thetic was administered throughout the experiment as needed. A heat lamp was used to main-

tain mouse temperature. The cremaster muscle was pinned and secured on a PDMS pedestal.

Exposed tissue was irrigated continuously with phosphate buffered solution (in mM: 137

NaCl, 4.7 KCl, 1.2 MgSO4 2 CaCl2, 10 Na2HPO4, 18 KH2PO4, pH 7.4, 37˚C). After 20 min of

stabilization, the cremaster muscle was stimulated with increasing concentrations (1 uM,10

uM,100 uM and 1 mM) of histamine, recording started 1 min later. Video analysis was per-

formed using 1 mM of histamine that produced the maximal contraction.

Diameter of vessels were measured in microns (μm). To calculate the changes in vascular

diameter, data were first normalized considering the basal diameter (μm) as 100%, then reduc-

tion of diameter as % was calculated. At the end of the experiment mouse was euthanized by

cervical dislocation.

Statistical analysis

All data are expressed as mean ± standard error of the mean (SEM). The one-way analysis of

variance (ANOVA) and Tukey test were used for multiple comparisons. Data were evaluated

using GraphPad (GraphPad software, San Diego, CA, USA).

Intravital microscopy and high-speed video recording

Intravital imaging was performed on an optical microscope (OLYMPUS BX51), equipped

with a 100 W halogen lamp, 1.1 N.A. Abbe condenser, and a long working distance ×50 objec-

tive (LMPLFLN, infinity-corrected optical system, working distance = 10.6 mm, NA = 0.5,

Olympus, Center Valley, PA, USA). With this setup, the resolving power and depth of focus

are 0.67 μm and 2.5 μm, respectively. A 335–610 nm bandpass filter (FGB37M, Thorlabs, New-

ton, NJ, USA) was used to enhance image contrast. After the muscle was exposed, stabilization

of 20–30 min was allowed before measurements.

Video frames were recorded with a high-speed video camera (640 × 640 pixels, 2000

frames/s, shutter speed = 1/2000 s, Fastcam 60K-M1, Photron, San Diego, CA, USA). The spa-

tial resolution of the images was 0.34 μm/pixel. The same arterioles chosen at baseline were fol-

lowed throughout the experiment. Only arterioles in the range of 20 to 30 μm in diameter

were used.

Video analysis

The videos were analyzed using a custom-made algorithm implemented in MATLAB (Math-

Works, Natick, MA). Fig 1 illustrates the different steps used to measure the diameter and

blood flow of arterioles in a mice cremaster muscle preparation.

Algorithm description

A. Selection of a rest interval. 1. An interrogation window (IW) with X pixels wide and Y

pixels high, for every frame outside the most prominent vessels was selected.
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2. The correlation coefficient between frames was calculated:

rk ¼

X

x

X

y
f x; yð Þ � f
� �
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2.1 Image frame k was transformed to a numerical matrix (x,y) containing the grayscale val-

ues from IW. The average values f for f(x,y) and g for g(x,y) were calculated.

2.2 To identify the rest interval (50 frames), the maximum correlation coefficients were

determined.

B. Analysis of variance of grayscale values for segmentation of the most prominent ves-

sels. 1. The variance of the grayscale values of each pixel throughout the 50 frames of the rest

interval was calculated:

s2 ¼
1

N � 1

XN

i¼1

jsi � sj2;

where N is the number of frames, si is the grayscale value of frame i, and s is the mean grayscale

of the N frames. This was repeated for every pixel in the rest interval. At the end, an image

with the variance of grayscale values in this interval was obtained.

2. The image obtained with the variance of each pixel was binarized by selecting a gray level

threshold.

3. Additional image processing using morphological filters was performed to eliminate

noise outside blood vessels.

C. Measurement of vessel diameter. 1. A region of interest (ROI) in the binarized image

of the rest interval frame was manually selected.

2. The Hough transform was used for detecting straight lines and calculate the orientation

angle and rotate the image to display the ROI in horizontal position.

3. The white pixels were counted to calculate the area of the rotated image. Vessel diameter

was determined using this area and the length of the analyzed segment.

D. Assessment of blood flow. 1. A mesh of 15 x 5 IWs of 20 x 20 pixels (46.24 μm2), that

is close to the physical size of an RBC was generated in the previously selected ROI (in hori-

zontal position) of the vessel. These IWs automatically started at the center of vessel continuing

towards the vessel wall. To obtain a high density of velocity vectors, IWs were partially over-

lapped depending on the diameter of arteriole.

Fig 1. Schematic representation of the algorithm.

https://doi.org/10.1371/journal.pone.0277851.g001
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2. Once IWs were located, they were tracked in the subsequent images using the normalized

2-D cross-correlation:

g u; vð Þ ¼

X

x;y
f x; yð Þ � f u;v
� �

IW xþ u; yþ vð Þ � IW
� �

X

x;y
f x; yð Þ � f u;v
� �� �2X

x;y
IW xþ u; yþ vð Þ � IW
� �2

n o0:5
;

where f(x,y) indicates the intensity level of grayscale at coordinates x, y of the searching area,

IW is the interrogation window or template, and (u, v) are the shift indexes. f u;v and IW are

average intensities of the windows.

3. The velocity was calculated using the displacement from the initial position of the IW

and the time between frames (determined by the camera frame rate).

Spurious velocity vectors were eliminated using Tukey´s fences to determine outliers below

the first quartile and above the third quartile, since the normalized 2-D cross-correlation parti-

cle image velocimetry (PIV) is prone to generate spurious velocity vectors due to noise on

images or/and intrinsic limitations of the algorithm.

4. To calculate blood flow, the average velocity of RBCs in the ROI was determined. First,

the time-average velocity profile of the 5 columns in the IW were calculated. Then, a spatial

average of the 5 velocity profiles was performed to obtain a single velocity profile.

The average velocity profile was fit to the following function:

V ¼ Vmax � 1 �
r
R

� �k
� �

;

where Vmax is the maximum speed value, r is the radial coordinate from the arteriole center, R

indicates average radius of the arteriole in the ROI, and k is the bluntness index. The best fit

for k was evaluated by using the least squares method.

Results

Image processing

The algorithm used in this work was validated by videos generated by computer simulating the

flow of RBCs and the known displacement between frames. A representative image of a frame

from the blood flow simulation shows the complex layout of blood vessels (Fig 2).

In the cremaster muscle, under basal conditions, the border of blood vessels can be

observed, however likeness of grayscale values complicates definition of the wall (Fig 3A). A

global thresholding segmentation on the image helped to sharpen the body vessel, however the

vessel wall was poorly defined (Fig 3B). Thus, the lack of good contrast close to the vessel wall

makes difficult to precisely calculate the blood vessel diameter. This effect is particularly rele-

vant in analysis of in vivo preparations mainly due to the blurriness associated with movement

of the tissue.

To overcome this effect, we selected within the video, a time interval with a minimum

movement (rest interval). An interrogation window was selected outside the largest blood

Fig 2. Simulated blood flow. Representative image of computer-generated simulation of the blood flow.

https://doi.org/10.1371/journal.pone.0277851.g002
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vessel (Fig 4A). The calculated correlation coefficients (Fig 4B) with the highest values corre-

spond to absence of movement where the function has constant values (black arrow). In addi-

tion, the lowest values of the correlation coefficient indicate the time span of muscle

contraction (red arrow).

Subsequently, blood vessel image was enhanced with analysis of variance of the gray scale

values. Fig 5A shows the arteriole chosen ROI without rest interval. The same image using the

rest interval is shown in Fig 5B. Binarization of this image with analysis of variance is shown in

Fig 3. Thresholding. (A) ROI of an arteriole in mouse cremaster muscle. This image depicts the poor definition of the blood vessel border (arrows). (B)

Segmentation of image with a global thresholding sharpened the vessel body, however the vessel wall remained poorly defined.

https://doi.org/10.1371/journal.pone.0277851.g003

Fig 4. Rest interval and correlation coefficients. (A) A rest interval (black square) meaning the area with the least movement, was selected in the ROI.

(B) Graph showing the calculated correlation coefficients. The black arrow shows the highest and constant values of correlation coefficients. The red

arrow shows the peak generated by muscle contraction.

https://doi.org/10.1371/journal.pone.0277851.g004
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Fig 5C, then a morphological filter was applied (Fig 5D). These steps enhanced the image and

clearly defined the vessel wall.

Measurement of blood vessel diameter

After segmentation of blood vessels, the diameter of arteriole was calculated in a sub-image of

100 x 100 pixels (1156 μm2, Fig 6A). The irregular pattern of the vessel wall was highlighted in

white (Fig 6B). By applying the Hough transform, we calculated the angle of orientation of the

Fig 5. Enhancement of image. (A) The rest interval and analysis of variance improved the outline of the blood vessel. (B) Image of arteriole without

rest interval. (C) Binarization of the image (D) A morphological filter applied to the binarized image.

https://doi.org/10.1371/journal.pone.0277851.g005
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blood vessel that allowed us to rotate the image to a horizontal position (Fig 6C). The angle

with respect to the horizontal was of 140˚. The arteriole average diameter measured in the

binarized image was 27.5 μm (Fig 6D).

Blood flow velocity detection

To determine blood flow velocity, a mesh was automatically placed in the blood vessel lumen.

This mesh consisted of 5 columns of interrogation windows partially overlapped and bounded

by the vessel walls (Fig 7A). The velocity vectors (Fig 7B) showed some asymmetric velocity

profiles that might be due to the variability of diameter along the blood vessel. Velocity profiles

also showed a nearly parabolic shape (Fig 7C). The distribution of these velocity profiles along

the segment of blood vessel analyzed was inversely proportional to the diameter of the

arteriole.

The mean blood flow velocity of RBCs in the third and fifth columns were 1312.8 μm/s and

1787.6 μm/s, respectively, corresponding to vessel diameters of 30.3 and 25.2 μm, respectively.

The mean blood flow velocity in the ROI was obtained averaging velocity profiles from 5

columns of velocity vectors. This mean blood flow velocity was fitted using eq. 4 and the resul-

tant parameter k was 2.

Fig 6. Measurement of the arteriole diameter. (A) To measure the diameter of arteriole, a sub-image of 100 x 100 pixels was generated (black square).

(B) In this new image, the vessel wall was highlighted in white. (C) The Hugh transform was applied, and the image rotated to horizontal position. (D)

The arteriole diameter was calculated in the binarized image.

https://doi.org/10.1371/journal.pone.0277851.g006

Fig 7. Measurement of blood flow velocity. (A) Automated generation of a mesh in the lumen of the blood vessel sub-image for measurement of blood

flow. (B) Velocity vectors indicates the direction of blood flow. Color ranges from light yellow at the minimum velocity to deep red at maximum

velocity detected. (C) Measured speeds (red dots) were fitted with the parameter k = 2 (black curve).

https://doi.org/10.1371/journal.pone.0277851.g007

PLOS ONE Image analysis of agonist-mediated vasoconstriction response in mouse

PLOS ONE | https://doi.org/10.1371/journal.pone.0277851 November 17, 2022 8 / 16

https://doi.org/10.1371/journal.pone.0277851.g006
https://doi.org/10.1371/journal.pone.0277851.g007
https://doi.org/10.1371/journal.pone.0277851


Effect of histamine on cremaster muscle arterioles

We evaluated the effect of histamine in the microcirculation of mice cremaster muscle. Hista-

mine can influence tissue blood flow eliciting contraction by activation of H1-receptors [18,

26]. Hence, we measured diameter and blood flow velocity in arterioles from the cremaster

muscle from SD and obese mice using our automatized method of binarization.

Stimulation with histamine (1 mM) elicited a marked contraction of arterioles (Fig 8A).

Under this condition, presence of the vessel wall and RBCs flow was unclear compared with

Fig 8. Effect of histamine on microcirculation of mice cremaster muscle. (A) Contracted arteriole elicited by stimulation with histamine (1 mM). (B)

Arteriole in basal condition. (C) Processed image of arteriole stimulated with histamine. (D) Processed image of arteriole in basal condition.

https://doi.org/10.1371/journal.pone.0277851.g008
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basal condition without histamine (Fig 8B). Processed and enhanced images allowed a

precise measurement of the reduced diameter in blood vessel stimulated with histamine

(3.46 ± 4.01 μm, Fig 8C) compared to vessel in basal condition (26.28 ± 0.77 μm, Fig 8D).

Blood flow velocity was decreased from 1423.3 ± 844.33 μm/s to 570.77 ± 717.47 μm/s after

histamine administration.

Furthermore, our automated image analysis allowed us to compare vascular response to

histamine in arterioles from SD and obese mice (Fig 9). Histamine promoted vasoconstriction

in both groups, however the change in the response was different. Thus, the change in the

vasoconstriction response dependent of histamine was reduced in arterioles from obese mice

(52.63% ± 16.27%) compared to arterioles from SD mice (87.14% ± 7.44%).

In addition, a time-course evaluation showed reduction in the vessel diameter after stimula-

tion with histamine (1 mM) followed by time-dependent vasodilation of the vessel diameter

(Fig 10).

Discussion

The goal of this study was to develop an improved image processing system for accurate mea-

surement of microvessels diameter and blood flow velocity in mice cremaster muscle. This

improved system would permit to evaluate the functional response of arterioles from control

and obese mice to physiological agonist histamine. Here we report a new processing algorithm

to track changes in diameter of arterioles and analyze blood flow velocity. The achievement

Fig 9. Effect of histamine in SD mice compared to obese mice. The graph illustrates the percentage of change (%) in diameter of SD mice compared

to obese mice after stimulation with histamine. n = 4 mice per group. Data represent the mean ± SEM.

https://doi.org/10.1371/journal.pone.0277851.g009
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presented here is based on determination of the variance of greyscale values and the selection

of frames in a location of tissue without movement that we called rest interval. The quality of

video images was improved obtaining images of arterioles with well-defined shapes and bor-

ders providing greater accuracy for measurements.

Previous in vivo and in vitro techniques have been used to study microvascular dynamics

including laser Doppler velocimetry [27], high-resolution particle image velocimetry tech-

nique (PIV, [2, 28]) and a modified PIV version [16]. Tsukada et al. [29] reported an auto-

mated system for measuring blood flow velocity by image correlation using a circular window,

sized equal to that of erythrocyte size. Analysis of microcirculatory blood flow in a rat cremas-

ter muscle preparation using a cross-correlation algorithm has also been reported [14]. How-

ever, some limitations for these methods are the necessity to use fluorescent markers, the error

caused by movements of the specimen or the requirement of good video images showing

venules and arterioles with well-defined shapes and borders [14, 30]. Simulations have been

also used to analyze microcirculation. Simulated microscopic video image sequences have

been evaluated with different methods including cross correlation [14], Hough transform [22],

optical flow [22], Adaptive Window based Cross-Correlation (AWCC) scheme [22, 23], and

smoothed dissipative particle dynamics (SDPD, [1]). These methods may improve accuracy of

measurements but can lack of correlation with in vivo complex vascular structures.

Fig 10. Time- course of histamine effect on vessel diameter. Microvessels diameter of SD and HFD mice cremaster muscle was evaluated during 35

min. A vasoconstrictor effect was observed after histamine (1 mM) stimulation (arrow) followed by vasodilation after histamine suspension. Data

represent the mean ± standard error of four different experiments. �p� 0.05 vs control.

https://doi.org/10.1371/journal.pone.0277851.g010
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Thus, quantitative analysis of in vivo microcirculatory function is relevant to dissect and

understand mechanisms involved in physiological and pathophysiological cardiovascular reg-

ulation [4, 31].

Since several factors affect blood flow in the microvessel, microcirculation does not neces-

sarily follow the flow velocity profile based on Poiseuille’s law.

The contractile capacities of the vascular tissue, and the fast response to physiological or

pathological stimulus that modify the vascular diameter led to the conclusion that vascular reg-

ulation may be determined by changes in vessel diameter [32]. Indeed, Jeong et al. demon-

strated in vivo that variability of capillary diameter rapidly affected the deformation of red

blood cells [33]. Automated tracking of vascular diameter is usually based in video images of a

transilluminated blood vessel, and edge transitions are determined against a typically lighter

background [15]. However, edge limits can be difficult to determine due to motion of the ves-

sel related to blood flow or respiration of the animal. An automated detection and analysis of

vessel diameter could avoid unnecessary work, thus increasing the rate of success with experi-

ments. Previous studies have demonstrated that edges of blood vessels can be clearly defined

using transgenic mice [19, 20, 21]. However, the use of a transgenic mice may not be widely

available particularly in developing countries. Thus, in the present study we propose the selec-

tion of a time interval with minimal movement to automatically compensate for image drift

or vessel wall distortion that resulted in vessel images with more clear and defined edges.

Although human pattern recognition ability is used in the first frame, the rest of the analysis is

fully automated, thus no trained personnel would be required to make manual adjustments to

measure the vessel diameter. Furthermore, this method tracks and measures diameters along

the full vessel segment of the selected image.

This manuscript presents a methodology to improve the processing of images for accurate

measurement of microvessel diameter and blood velocity evaluation. We used intravital

microscopy combined with high-speed video recordings (2000 fps) for the analysis of microhe-

modynamic activities including vasomotion and vasoconstriction in response to histamine, a

physiological agonist. The proposed method was validated by our results. Blood vessel diame-

ters were obtained in straight arteriolar segments varying from 25.45 to 27.18 μm under basal

conditions. Our data are consistent with previous reports [32]. A possible disadvantage in our

method is when vessels constrict to minimum diameter and the image become blurry and

noisier. This effect has also been reported by others [34]. However, in our data the maximal

reduction in vessel diameter was 80% and our method was able to determine blood vessel

edges.

Analysis of hemodynamic conditions under vascular agonist stimulation showed a clear

vasoconstriction of arterioles in the mice cremaster muscle treated with histamine. The analy-

sis of blood vessels response to vascular agonists as histamine and the concomitant relationship

with blood flow velocity has great implications for understanding cardiovascular physiology

[7, 8, 10, 35]. Alterations in microvascular blood flow are frequently observed in patients with

severe heart failure [36]. Impaired tissue perfusion caused by abnormality of the microvascular

system has also been observed as long-term complication of hypertension and diabetes [4].

Histamine is a modulator of blood flow. Several reports have shown that histamine promotes

arteriolar dilation while others have described vasoconstrictor effect of histamine. Thus, the

effect of histamine on vessel diameter and blood flow may be dependent on the concentration

[18, 37]. Our results showed that stimulation with histamine (1 mM) resulted in arteriolar con-

striction associated with reduced vessel diameter and decreased blood flow. This result is sup-

ported by Payne et al. [18] that reported histamine vasoconstrictor effect at concentration >

1 μM. In basal conditions, image of blood vessel is well defined (Fig 7A). However, after stimu-

lation with histamine, image of the constricted arteriole is not well delimited, particularly the

PLOS ONE Image analysis of agonist-mediated vasoconstriction response in mouse

PLOS ONE | https://doi.org/10.1371/journal.pone.0277851 November 17, 2022 12 / 16

https://doi.org/10.1371/journal.pone.0277851


border is almost impossible to find (Fig 7B). Thus, use of the computer-based method, based

on determination of the variance of greyscale values and the selection of a rest interval, resulted

in a clearly defined image that allowed evaluation of the border wall in vivo. A previous work

reported a software for measurement of the diameter of isolated retinal arterioles, with no

need for manual definition of the initial window or highlighted of the walls for vessel analysis

[38]. More recently, a study using the neural network U-Net architecture for vessel segmenta-

tion achieved discrimination of artery/vein and the automated measurement of isolated mouse

small mesenteric arteries [39]. Although these last studies were achieved in isolated vessels, the

manual selection of vessel as well as the rest interval are limitations of our method that still

need to be elucidated.

Conclusion

In conclusion, we propose an automatized method with higher resolution to evaluate in vivo

hemodynamics from microcirculation video recordings. This approach was capable of seg-

menting blood vessels of mice cremaster muscle over a time interval where the muscle is at

rest. It was based on the analysis of variance of gray levels generated by blood flow. The pre-

sented method allowed us to perform an accurate segmentation of vessels even under very low

contrast conditions particularly observed in the smallest blood vessels. Once the inner vessel

wall was found, a region of interest was selected for measurement of both vessel diameter and

blood velocity in that region. The blood velocity profile was locally asymmetric along the ves-

sels, and the maximum velocity was inversely correlated with the local diameter of the vessel.

This work further analyzed the response to histamine of blood vessels of cremaster muscle,

demonstrating that vasoconstriction response, expressed as change of the response, was

reduced in obese mice compared to control animals.

Future work will focus on extending the analysis of blood velocity profiles using this seg-

mentation approach to include bifurcations of small arterioles produced after the contraction

induced by the physiological agonist histamine. The method proposed here would be particu-

larly useful to address microvascular pathological conditions related with severe heart failure

or hypertension.
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Visualization: Oscar Aguila-Torres.

Writing – original draft: Ricardo Corro-Hernández.

Writing – review & editing: Amelia Rios, Bruno Escalante, Jesús Santana-Solano.
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