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Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of

such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out

a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy patients before and a mean of

4.5 months after anterior temporal lobe resection. The whole-brain analysis technique tract-based spatial statistics was used to

compare pre- and postoperative data in the left and right temporal lobe epilepsy groups separately. We observed widespread,

significant, mean 7%, decreases in fractional anisotropy in white matter networks connected to the area of resection, following

both left and right temporal lobe resections. However, we also observed a widespread, mean 8%, increase in fractional an-

isotropy after left anterior temporal lobe resection in the ipsilateral external capsule and posterior limb of the internal capsule,

and corona radiata. These findings were confirmed on analysis of the native clusters and hand drawn regions of interest.

Postoperative tractography seeded from this area suggests that this cluster is part of the ventro-medial language network.

The mean pre- and postoperative fractional anisotropy and parallel diffusivity in this cluster were significantly correlated with

postoperative verbal fluency and naming test scores. In addition, the percentage change in parallel diffusivity in this cluster was

correlated with the percentage change in verbal fluency after anterior temporal lobe resection, such that the bigger the increase

in parallel diffusivity, the smaller the fall in language proficiency after surgery. We suggest that the findings of increased

fractional anisotropy in this ventro-medial language network represent structural reorganization in response to the anterior

temporal lobe resection, which may damage the more susceptible dorso-lateral language pathway. These findings have import-

ant implications for our understanding of brain injury and rehabilitation, and may also prove useful in the prediction and

minimization of postoperative language deficits.
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Introduction
Temporal lobe epilepsy (TLE) is the most common cause of med-

ically intractable partial epilepsy in adults (Engel, 1998). In �40%

of patients with TLE, seizures continue despite trials with three or

more antiepileptic drugs (Semah et al., 1998). For this group of

patients, anterior temporal lobe resection is now a well-established

and effective means of treatment (Wiebe et al., 2001). Though up

to 80% of these patients may be rendered seizure free by surgery,

up to 40% are also at risk of postoperative decline in memory and

language functioning (Wiebe et al., 2001). Several functional

magnetic resonance imaging (fMRI) and magnetoencephalogra-

phy (MEG) studies have attempted to elucidate the functional

reorganization that occurs after surgery (Backes et al., 2005;

Noppeney et al., 2005; Pataraia et al., 2005; Maccotta et al.,

2007; Cheung et al., 2009; Wong et al., 2009). Few studies

have assessed the structural consequences of epilepsy surgery

(Concha et al., 2006, 2007; Schoene-Bake et al., 2009; Yasuda

et al., 2009). Moreover, none of these studies have longitudinally

assessed the nature of white matter changes after neurosurgery,

and how these changes relate to functional and neuropsychologic-

al outcome in patients.

Diffusion tensor imaging (DTI) is an advanced MRI technique,

which measures the magnitude and direction of diffusion of water

molecules within each voxel in an image (Basser, 1995). It can be

used to probe the microstructure of white matter tracts, and pro-

vides the basis for non-invasive diffusion tensor tractography that

can be used to map white matter pathways (Mori and van Zijl,

2002). The non-invasive in vivo nature of this technique allows for

the longitudinal evaluation of white matter tracts in individuals.

Whole-brain voxel-wise analysis of data obviates the need for re-

striction to a priori regions, which can bias the interpretation of

such data, and provides morphometric information regarding the

changes that may occur in white matter after neurosurgery. There

are several voxel-based methods that can be applied; tract-based

spatial statistics (TBSS) encompasses high sensitivity to, and excel-

lent interpretation of, white matter tract changes in patients with

temporal lobe epilepsy (Focke et al., 2008). This method uses a

nonlinear form of registration specifically optimized for diffusion

data, and projects data from individual patients onto an alignment

invariant, group tract representation. This precludes the need for

spatial smoothing of data, which can hinder the sensitivity and

interpretation of the results (Jones et al., 2005; Smith et al.,

2006). Significant clusters identified at a group level by such meth-

ods can then be deprojected and back normalized into individual

subjects in order to provide quantitative information in each sub-

ject that can be statistically analysed. These regions can also be

used as seed regions for tractography that provides complemen-

tary information regarding the morphology of those areas identi-

fied with voxel-based methods.

We applied these techniques to a group of patients with TLE in

whom DTI data was acquired before and after anterior temporal

lobe resection. The aims of this study were, first, to assess on a

voxel-wise basis, and without any a priori hypothesis, the location

and extent of structural white matter changes after temporal lobe

surgery. Second, to investigate the causes of these changes and

how they relate to expressive language function outcome in these

patients.

Methods

Subjects
We studied 26 left (mean 37 years, range 18–62 years, 10 male) and

20 right (mean 37 years, range 22–52 years, 8 male) TLE patients, all

of whom were medically refractory. All patients underwent pre-surgical

evaluation, and subsequent anterior temporal lobe resection for the

treatment of their epilepsy, at National Hospital for Neurology and

Neurosurgery, London, UK. All patients had undergone structural MRI

at 3 Tesla (3T) (Duncan, 1997), and video EEG had confirmed seizure

onset in the temporal lobe ipsilateral to the resection. Six out of 26 left

and two out of 20 right TLE patients also had intracranial recordings to

localize seizure onset to the temporal lobe ipsilateral to the resection.

Four of the 26 patients with left TLE had normal structural MRI, and

histopathology of the resected specimen revealed end folium sclerosis.

Two of the 20 right TLE patients had anterior temporal lobe cavernomas

and one had a normal structural MRI, and histopathology of the re-

sected specimen revealed end folium gliosis. All remaining patients had

hippocampal sclerosis identified on MRI ipsilateral to seizure onset, and

all patients had a normal, contralateral hippocampus based on qualita-

tive and quantitative MRI (Woermann et al., 1998). Postoperative histo-

pathology confirmed the MRI findings in all cases. All patients were

taking anti-epileptic medication and all, except two patients with TLE,

spoke English as a first language. Handedness was determined using the

Edinburgh handedness inventory (Oldfield, 1971), and language dom-

inance was determined using a range of fMRI tasks, which have been

described previously, and include the use of verbal fluency measures

(Powell et al., 2006). In brief, this paradigm consisted of a blocked

experimental design with 30-s activation blocks alternating with 30 s

of cross-hair fixation during the baseline condition over 5.5 min.

During the activation phase, subjects were asked to covertly generate

different words beginning with a visually presented letter (A, S, W, D

and E). The data were analysed using statistical parametric mapping

(SPM5) [Wellcome Trust Centre for Imaging Neuroscience

(http://www.fil.ion.ucl.ac.uk/spm/)]. Scans from each subject were re-

aligned using the mean image as a reference, spatially normalized into

standard space (using a scanner-specific template created from 30

healthy controls, 15 patients with left hippocampal sclerosis and 15 pa-

tients with right hippocampal sclerosis) and spatially smoothed with a

Gaussian kernel of 10 mm FWHM. Lateralization indices were derived in

subjects using the bootstrap method of the SPM lateralization index

toolbox (Wilke and Lidzba, 2007), which was applied to the verbal

fluency contrast in the middle and inferior frontal gyri. Patients with a

laterality index of less than �0.4 or more than 0.4 were described as left

and right dominant, respectively, while those patients with laterality in-

dices between �0.4 and 0.4 were described as having bilateral repre-

sentation of language (Briellmann et al., 2003).

The standard neurosurgical procedure undergone by these patients

consisted of the removal of the temporal pole, opening of the tem-

poral horn, followed by en bloc resection of the hippocampus with a

posterior resection margin at the mid-brainstem level. Typically, the

anterior–posterior extent of the temporal lobe resection as measured

from the temporal pole to the posterior margin of resection is 30%

and 35% of the distance from the temporal pole to the occipital pole

after left and right anterior temporal lobe resection, respectively.
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The study was approved by the National Hospital for Neurology and

Neurosurgery and the Institute of Neurology Research Ethics

Committee, and informed written consent was obtained from all pa-

tients. Patient demographics, clinical information and surgical outcome

data [based on the ILAE classification of postoperative seizure outcome

(Wieser et al., 2001)] at the time of the postoperative scan following

epilepsy surgery are listed in Table 1.

Neuropsychology
All patients, except the two in whom English was not their first lan-

guage, completed the McKenna Graded Naming Test pre- and post-

operatively. In this test, the subject is asked to name 30 black and

white line drawings of increasing difficulty. The total number of items

correctly named is the performance indicator (McKenna and

Warrington, 1983). The same patients also performed two verbal flu-

ency tests pre- and postoperatively. In the first-letter fluency test, the

patient is given 60 s to produce as many words starting with the letter

‘S’, and in the second category fluency test, the subject is asked to

name as many animals as possible. The total number of words cor-

rectly produced is the performance indicator (Spreen and Strauss,

1998). Using these raw values, the percentage change following sur-

gery of each parameter was calculated using the following formula:

post operative value� preoperative value

preoperative value

� �
� 100

We expected a high degree of correlation between the letters ‘S’

and ‘A’ in the preoperative scores, postoperative scores and percent-

age changes in verbal fluency. Therefore, we used a principal compo-

nents analysis within SPSS v14.0 (SPSS Inc. Chicago, IL, USA) to

identify a factor accounting for the largest component of variance

amongst each of these three pairs of scores. For all three pairs, both

measures were entered into a principal components analysis, from

which the first principal component was extracted and used to repre-

sent overall pre- and postoperative verbal fluency and change in verbal

fluency following surgery.

MR data acquisition
MRI studies were performed on a 3 T GE Excite II scanner (General

Electric, Wakashua, Milwaukee, WI, USA). Standard imaging gradients

with a maximum strength of 40 mT m�1 and slew rate 150 T m�1 s�1

were used. All data were acquired using a body coil for transmission,

and 8-channel phased array coil for reception. The scanning protocol

also included a coronal T1-weighted volumetric acquisition sequence

with 1.1-mm thick slices, and hippocampal volumes were determined

using a previously described method (Moran et al., 1999). A single

investigator (M.Y.) manually segmented the surgical resection area of

each patient’s postoperative T1-weighted volumetric MR scan, creating

individual regions of interest (ROI). These ROIs were used to quantify

the volume of resection in each patient.

Diffusion tensor image acquisition
The DTI acquisition sequence was a single-shot spin-echo planar

imaging (EPI) sequence, cardiac gated with TE = 73 ms. Sets of

60 contiguous 2.4-mm thick axial slices were obtained, covering the

whole brain, with diffusion-sensitizing gradients applied in each of

52 non-collinear directions [maximum b value of 1200 mm2 s�1

(�= 21 ms, � = 29 ms, using full gradient strength of 40 mT m�1)]

along with six non-diffusion-weighted (b = 0) scans. The gradient dir-

ections were calculated and ordered as described elsewhere (Cook

et al., 2007). The parallel imaging factor (SENSE) was 2. The field of

view was 24 cm, and the acquisition matrix size was 96�96, zero

filled to 128� 128 during reconstruction so that the reconstructed

voxel size was 1.875� 1.875�2.4 mm3. The DTI acquisition time for

a total of 3480 image slices was �25 min, depending on subject heart

rate.

Diffusion tensor image processing
All scans were transferred to a Linux Sun Ultra 40 workstation and

processed with FSL 4.1.3 (http://www.fmrib.ox.ac.uk/fsl/) (Smith

et al., 2004). The DICOM files of each DTI acquisition were converted

into a single multivolume NifTI file. This image was then corrected for

eddy current distortion and movement artefact by affine registering

every individual volume to the first b = 0 volume. After this

co-registration step the six b = 0 volumes of each patient were ex-

tracted and averaged. A single investigator (M.Y.) used the average

of the postoperative b = 0 images to manually segment the surgical

resection area in each patient, creating individual ROIs. Each ROI was

then transformed into an inverse binary mask. The main diffusion

Table 1 Summary of the clinical characteristics of left and right temporal lobe epilepsy patients

LTLE (range) RTLE (range)

No of subjects 26 20

Sex—no. of males 10 8

Average age in years 37 (18–62) 37 (22–52)

Average age of epilepsy onset in years 9 (1–26) 10 (1–37)

Average duration of epilepsy in years 28 (8–60) 27 (6–47)

Average language lateralization index �0.64 (�0.97–0.63) �0.41 (�1–0.48)

Average surgical resection volume in mm3 21 087 (8809–30 761) 24 942 (10 368–39 025)

Average interval from surgery to scan in days 127 (90–193) 141 (85–351)

Number of patients of given ILAE class at time of postoperative scan Class 1—21/81%
Class 2—2
Class 3—1
Class 4—1
Class 5—1

Class 1—14/70%
Class 2—1
Class 3—4
Class 4—1

Average number of preoperative medications 2 (0–4) 2 (2–3)

Average number of postoperative medications 2 (1–4) 2 (1–3)
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tensor and its eigenvalues (�1, �2, �3) and eigenvectors were then esti-

mated for each voxel (Basser et al., 1994), along with the summary

parameters fractional anisotropy (FA) and mean diffusivity (MD)

(Pierpaoli and Basser, 1996). By sorting the eigenvalues in the order

of decreasing magnitude for each voxel (�14�24�3), �1 represents

the diffusivity along the primary diffusion direction, that is, along the

fibre axis, and is referred to as the axial diffusivity � k. The averaged

water diffusivities perpendicular to the axonal fibres, �2 and �3 are

referred to as �T = (�2, + �3)/2, or the radial diffusivity (Song et al.,

2002).

In order to align all FA data into a common space, the following

procedure was applied separately for left and right TLE patients. First,

all patients’ preoperative FA data were aligned to the FMRIB58_FA

standard space template supplied with FSL, using the nonlinear regis-

tration tool FNIRT (Andersson et al., 2007a, b), which uses a b-spline

representation of the registration warp field (Rueckert et al., 1999).

Secondly, each patient’s postoperative FA image was co-registered to

its preoperative FA image using the linear registration tool FLIRT

(Jenkinson and Smith, 2001; Jenkinson et al., 2002) and FNIRT.

During this registration step the surgical ROI created from the post-

operative b = 0 image was used to de-weight this area, such that the

registration process ignores the information under the mask and pre-

vents the surgically resected area contributing to the image registration

(Brett et al., 2001; Crinion et al., 2007). Finally, the warps derived

from each of the two steps were combined, and the resulting warp

was applied to the native, postoperative FA image in each subject. In

this manner, all pre- and postoperative data for subjects were aligned

in a common space, and all images including postoperative data were

re-sampled only once.

Following this, voxel-wise statistical analysis of the FA data was

carried out in the left and right TLE groups separately, using TBSS

(Smith et al., 2006). The mean FA image across all pre- and post-

operative images in each group was created, thinned and thresholded

at FA40.2 to create a mean FA skeleton that represents the centres of

all tracts common to the group (Smith et al., 2006). Each patient’s

aligned FA and MD data were then projected onto this skeleton and

the resulting data fed into voxel-wise cross-subject statistics.

In order to achieve accurate inference, including appropriate correc-

tion for multiple comparisons over space, we used permutation-based,

non-parametric inference on a voxel-by-voxel basis (Nichols and

Holmes, 2002). A paired t-test (5000 permutations) was used to

assess the location and extent of significant increases and decreases

in the FA and MD between pre- and postoperative scans in each

group. Threshold-free cluster enhancement was used to correct results

for multiple comparisons, and results were considered significant for

P50.05. Threshold-free cluster enhancement is more sensitive than

traditional cluster-based methods of thresholding and does not require

the setting of an arbitrary, initial cluster-forming threshold or need a

large amount of data smoothing (Smith and Nichols, 2009). Significant

clusters were superimposed on the mean FA image and the MNI152

template supplied by FSL. FSLview and its atlas tools (International

Consortium of Brain Mapping DTI-81 white matter labels atlas and

John Hopkins University white matter probabilistic tractography atlas)

in addition to general neuroanatomy atlases (Jackson and Duncan,

1996; Mori et al., 2005) were used to anatomically label the location

of significant clusters in MNI152 space.

In order to both validate and investigate our results further at an

individual subject level, we de-projected and reverse-normalized sig-

nificant clusters of changes in FA into their native pre- and postopera-

tive images. Using these native clusters, mean pre- and postoperative

FA, MD, � k and �T values were calculated by masking the corres-

ponding whole-brain diffusion parameter images with the clusters.

Pre- to postoperative percentage changes in each parameter in these

clusters were then calculated using the equation above. These clusters

were also masked with the b = 0 derived surgical masks in order to

exclude those CSF-filled areas within the area of resection, which

would confound the results.

Tractography
In order to assess the patterns of connections of selected clusters

derived from the whole-brain analysis, fibre tracking was carried out

using FMRIB’s Diffusion toolbox (FDT) v2.0 (http://www.fmrib.ox.ac

.uk/fsl/) (Smith et al., 2004). In both groups, the diffusion character-

istics were calculated in each voxel in each patient using a Markov

chain Monte Carlo sampling method (Behrens et al., 2003). In order

to improve tractography in areas of crossing fibres, a two-tensor

model was applied to the data (Behrens et al., 2007). Probabilistic

tracking was then seeded using the local maxima derived from

the significant clusters obtained with the whole-brain TBSS analysis.

Tracking was carried out in individual native space, and therefore,

the seeding mask was deprojected and reverse-normalized before

tracking was initiated. Tractography used default parameter settings

(5000 iterations, 80 degrees curvature threshold) and tracts

were thresholded at 10% of the number of streamlines generated.

The resulting, thresholded, native space tracks were then spatially

normalized by applying the same transformation matrix used to

normalize the FA map in each patient. Tracts were then binarized

and averaged to form a group map, which was superimposed upon

the FSL MNI-152 T1 template with FSLview for the purpose of visu-

alization. In these ‘group variability’ maps, each pixel reflects the per-

centage of subjects that contained a particular tract seeded with

clusters derived from the whole-brain analysis. This approach enables

the visualization of the consistency of the core of such tracts across a

group of subjects.

Statistical analysis of clinical data and
native clusters
Statistical analyses were performed with SPSS v14.0 (SPSS Inc.

Chicago, IL, USA), and the threshold for statistical significance was

set at P50.05. The normality of distribution of continuous, clinical

variables was tested using the Kolmogorov–Smirnov test. Clinical vari-

ables (age, sex, age of onset of epilepsy, duration of epilepsy, resec-

tion volume, interval from surgery to postoperative scan, number of

seizure-free patients at the time of postoperative scan, the average

number of drugs before and after surgery) in left and right temporal

lobe epilepsy groups were then compared using the independent

samples t-test (continuous normally distributed variables), the Mann–

Whitney U-test (continuous non-normally distributed variables) and

the chi-squared exact test (categorical variables).

The Kolmogorov–Smirnov test was also used to test the distribution

of all DTI-related native cluster parameters and the mean pre- and

postoperative cluster diffusion parameters were compared using

paired t-tests (continuous normally distributed variables), and the

Wilcoxon signed ranks test (continuous non-parametrically distributed

variables). The relationship between diffusion parameters, and Graded

Naming Test and verbal fluency scores was assessed using Pearson’s

correlation test. A repeat partial correlation controlling for IQ and

language laterality was also carried out.
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Results

Clinical data
The clinical characteristics of the subjects studied are listed in

Table 1. There were no significant differences in the age or dur-

ation of epilepsy of the left TLE and right TLE patients at the time

of surgery, and no significant difference in the number of pre- or

postoperative medications between left TLE and right TLE patients.

The mean left anterior temporal lobe resection volume was

18% smaller than the mean right-sided resection [t =�2.04 (44),

P = 0.047]. There were no significant differences in pre- and post-

operative numbers of medications in either left TLE or right TLE

patients. There was no significant difference in the age of onset,

duration of epilepsy or interval from surgery to postoperative scan

between left TLE and right TLE groups. There were no significant

differences in either the gender distribution or number of patients

seizure free at the time of postoperative scan.

Whole-brain analysis—left TLE patients
Following left anterior temporal lobe resection, there were signifi-

cant decreases in FA in the main fibre tracts ipsilateral to the side

of surgery, and also to a lesser extent in the contralateral hemi-

sphere (Fig. 1). The areas of decreased FA corresponded to one

contiguous, large cluster of 15 240 voxels (P50.001). The local

maxima of this cluster were determined in order to investigate the

anatomy of this cluster further (Table 2). The most significant

decreases in FA were on the left side in the geniculo-calcarine

tract and its projection to the lingual/occipital fusiform gyri, and

intracalcarine cortex, part of the inferior longitudinal fasciculus,

parahippocampal gyrus, crura of the fornix, anterior commissure

and the anterior temporal portions of the superior longitudinal

fasciculus. There were also significant decreases of FA in the tem-

poral portion of the left uncinate fasciculus that connects to the

temporal pole and the anterior floor of the external capsule. The

latter structure contains fibres of the uncinate and inferior

Figure 1 Threshold-free cluster-enhanced corrected (P50.05) results of the whole-brain tract-based spatial statistics analysis of fractional

anisotropy after left anterior temporal lobe resection. The left side of the brain is on the right side of the image. R = right. Significant

clusters representing increases (red to yellow) and decreases (blue to light blue) in fractional anisotropy after surgery are projected onto the

mean fractional anisotropy template derived from all pre- and postoperative left temporal lobe epilepsy patients. For clarity, the group

fractional anisotropy skeleton is not shown. The area of resection is visible inferiorly in the left temporal lobe where the white matter

bundles are absent. Fractional anisotropy reduction after left anterior temporal lobe resection is apparent in the left temporal and occipital

lobes, fornix, splenium and anterior commissure. There are also decreases in fractional anisotropy to a lesser extent in the contralateral

hemisphere. Fractional anisotropy increases are present in the external capsule, posterior limb of the internal capsule and corona radiata.

See Table 2 for more details regarding the anatomical location of local maxima.
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fronto-occipital fasciculi. Less-significant decreases in FA were also

noted on the contralateral side in the fornix, anterior commissure

and temporal portion of the inferior longitudinal fasciculus.

Analysis of the de-projected, pre- and postoperative native clusters

(Table 3) confirmed that there was a significant mean 7.08% de-

crease in FA in these areas postoperatively (z =�3.845, P50.001)

due mainly to a mean 7.77% increase in �T (z =�3.883,

P50.001). M.D. was also significantly increased by a mean

4.75% postoperatively in these areas (z =�3.735, P50.001).

There were also widespread increases in FA evident an average

of 4.5 months after left anterior temporal lobe resection, consist-

ing of a single contiguous cluster of 3412 voxels (P50.001)

(Fig. 1). This cluster extended across a number of regions that

included the anterior, posterior and superior corona radiata, the

posterior limb (including the retrolenticular region) and dorsal part

of the anterior limb of the internal capsule, and the external cap-

sule (Table 2). Analysis of the deprojected, native pre- and post-

operative clusters (Table 3) using paired t-tests confirmed a mean

7.84% postoperative increase in FA in this area [t =�7.470 (25),

P50.001]. This was due to a mean 2.95% postoperative increase

in � k [t =�3.363 (25), P = 0.002] and a mean 4.74% decrease in

�T [t = 3.336 (25), P = 0.003] (Table 3). There was no significant

difference in MD values (mean �0.76%) in these clusters between

pre- and postoperative patients.

Postoperative increases in MD were more limited consisting of a

cluster of 2917 voxels (P50.001). This cluster was restricted in

distribution to those anterior portions of the inferior longitudinal

fasciculus and uncinate fasciculus lying predominantly within the

area of resection in patients (Supplementary Fig. 1 and Table 2).

There were no significant decreases in MD after surgery.

Whole-brain analysis—right TLE
patients
There were similar patterns of decreases in FA after right anterior

temporal lobe resection, with a single significant cluster consisting

of 19 248 voxels (P50.001) (Fig. 2). The local maxima of this

cluster are described in more detail in Table 4. Analysis of the

pre- and postoperative de-projected, native cluster confirmed

that there was a significant mean 6.76% reduction in FA in

these areas (z =�4.178, P50.001), which was predominantly

due to a mean 8.43% increase in �T (z =�3.709, P50.001)

(Table 3). MD was also significantly increased postoperatively in

these areas by a mean of 5.36% (z =�3.467, P50.001) (Table 3).

The location of the increase in MD was similar to that seen after

left anterior temporal lobe resection and consisted primarily of a

cluster of 5850 voxels located within the surgical resection zone

itself as well as its penumbra (P50.001) (Supplementary Fig. 2).

Table 2 Summary of significant local maxima clusters found in whole-brain analysis of left TLE patients

Postoperative reduction of FA after left
anterior temporal lobe resection

Left inferior longitudinal fasciculus (P50.001) (may also contain fibres of
left fronto-occpital fasciculus posteriorly)

Right inferior longitudinal fasciculus—temporal portion (P = 0.025)
Left parahippocampal gyrus (P50.001)
Left cerebral peduncle (P50.001) (containing cortico-pontine,

cortico-spinal and cortico-bulbar fibres)
Left uncinate fasciculus—temporal portion and portion lying on

anterior floor of external capsule (P50.001)
Left inferior fronto-occipital fasciculus—portion lying in anterior floor

of the external capsule superior to left uncinate fasciculus (P50.001)
Left fornix (crura and columns) (P50.001)
Right fornix (crura and columns) (P50.001)
Body of fornix (P50.001)
Left geniculo-calcarine tract (P50.001)
Splenium of corpus callosum/forceps major (P50.001)
Left superior longitudinal fasciculus—temporal portion connecting to

superior and middle temporal gyri (P50.001)
Left anterior commissure (P50.001)
Right anterior commissure (P = 0.022)
Right retrolenticular internal capsule (P = 0.021)

Postoperative increase in FA after left
anterior temporal lobe resection

Left anterior corona radiata (P = 0.014)
Left posterior corona radiata (P = 0.006)
Left superior corona radiata (P = 0.006)
Left anterior–dorsal limb internal capsule (P = 0.001)
Left posterior limb internal capsule (P = 0.005)
Left retrolenticular region internal capsule (P = 0.015)
Left external capsule (P = 0.008)
Left superior frontal gyrus white matter (P = 0.014)
Left inferior frontal gyrus white matter (P = 0.013)

Postoperative increase in MD after left
anterior temporal lobe resection

Left inferior longitudinal fasciculus—temporal portion (P50.001)
Left uncinate fasciculus—temporal portion (P50.001)
Part of left anterior commissure (P = 0.014)
Left anterior floor external capsule—containing fibres of uncinate

fasciculus and inferior fronto-occipital fasciculus (P = 0.03)

Maximum P-values of local maxima clusters are given in brackets.
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In contrast to the effects of left anterior temporal lobe resection,

there was a very limited pattern of postoperative FA increases

after right anterior temporal lobe resection. A small, 255 voxel,

peripheral white matter cluster within the anterior corona radiata

was noted (P50.001) (Fig. 2). In view of the comparatively, small

nature of this cluster, and its location in the periphery of the white

matter skeleton, where mis-registration between scans is more

likely, it was not analysed further. There were no significant post-

operative decreases seen in MD using whole-brain analysis.

ROI analysis
In order to ensure that these results were not related to potential

confounds associated with the realignment and spatial normaliza-

tion of white matter tracts, we defined manual ROIs over the

ipsilateral internal and external capsule on the raw, untransformed

pre- and postoperative FA images of all patients who underwent

left and right anterior temporal lobe resections. The ROIs were

drawn over three consecutive axial slices beginning with the first

slice in which the internal capsule could be clearly delineated from

the external capsule. The anterior and posterior extents of the ROI

were defined by lines tangential to the splenium and genu of the

corpus callosum, respectively (Supplementary Fig. 3). After left

anterior temporal lobe resection, there was a significant mean

5.80% increase in FA in this regions [t = 3.709 (25), P = 0.001].

In contrast, there was no significant change in FA in this region

after right anterior temporal lobe resection.

Analysis of cluster of increased FA after
left anterior temporal lobe resection
Having identified the increase in FA after left anterior temporal

lobe resection, we explored potential artefactual causes for this

finding. While scan–scan variability between pre- and postopera-

tive acquisitions may confound results, previous assessments of

such variability that have been carried out by our group suggest

that this variability is of the order of 1–2% (Vollmar et al., 2010).

This is significantly smaller than the changes observed in the pre-

sent study. FA represents the degree of directionality of diffusion

within individual voxels and is therefore higher in voxels contain-

ing a single-fibre population compared with two, crossing or kis-

sing fibre populations. It is plausible, therefore, that if this cluster

contains a predominance of voxels with two fibre bundles

preoperatively, and one of these bundles is directly or indirectly

connected to the area of resection, downstream Wallerian degen-

eration may cause an apparent increase in FA (Hoeft et al., 2007).

We rejected this explanation as there was no significant difference

in the proportion of voxels within the pre- and postoperative

deprojected native clusters modelled as containing two fibre popu-

lations by the DTI processing.

An alternative explanation for the changes observed relates to

the mechanical shift that can occur in the brain after surgery.

Removal of the anterior temporal lobe may cause deformation

of other parts of the brain, leading to stretching of nerve fibre

bundles that may result in an increase in FA. If this hypothesis is

correct, larger volumes of resection should cause greater shift in

the remainder of the brain and potentially more stretching ofT
ab

le
3

Su
m

m
ar

y
o
f

th
e

m
ea

n
d
if

fu
si

o
n

p
ar

am
et

er
s

o
f

b
ac

k-
n
o
rm

al
iz

ed
cl

u
st

er
s

id
en

ti
fi

ed
fr

o
m

th
e

w
h
o
le

-b
ra

in
an

al
ys

is

Le
ft

T
LE

n
at

iv
e

cl
u
st

er
FA

in
cr

ea
se

Le
ft

T
LE

n
at

iv
e

cl
u
st

er
FA

d
ec

re
as

e
R

ig
h
t

T
LE

n
at

iv
e

cl
u
st

er
FA

d
ec

re
as

e

P
re

o
p
er

at
iv

e
P
o
st

o
p
er

at
iv

e
C

h
an

g
e

(%
)

P
re

o
p
er

at
iv

e
P
o
st

o
p
er

at
iv

e
C

h
an

g
e

(%
)

P
re

o
p
er

at
iv

e
P
o
st

o
p
er

at
iv

e
C

h
an

g
e

(%
)

FA
(S

E)
0
.4

7
(0

.0
0
6
)

0
.5

1
(0

.0
0
7
)

7
.8

4
(1

.0
6
)

0
.3

7
(0

.0
0
6
)

0
.3

5
(0

.0
0
5
)

�
7
.0

8
(0

.9
4
)

0
.3

9
(0

.0
0
7
)

0
.3

6
(0

.0
0
5
)

�
6
.7

6
(1

.1
2
)

M
D

m
m

2
s�

1
�

1
0
�

6
(S

E)
7
7
0

(7
.1

2
)

7
6
4

(7
.7

7
)

�
0
.7

6
(1

.0
6
)

8
5
6

(2
0
.1

0
)

8
9
5

(1
8
.9

0
)

4
.7

5
(1

.0
8
)

8
1
9

(1
1
.9

0
)

8
6
4

(1
7
.9

0
)

5
.3

6
(0

.9
8
)

�
k

m
m

2
s�

1
�

1
0
�

6
(S

E)
1
2
0
8

(1
2
.2

2
)

1
2
4
2

(1
1
.3

0
)

2
.9

5
(0

.8
5
)

1
2
1
0

(1
8
.6

7
)

1
2
2
6

(1
7
.9

0
)

1
.4

2
(0

.7
7
)

1
1
7
7

(1
0
.4

6
)

1
2
0
3

(1
9
.5

0
)

2
.1

3
(0

.8
1
)

�
T

m
m

2
s�

1
�

1
0
�

6
(S

E)
5
5
1

(6
.7

0
)

5
2
4

(8
.1

7
)

�
4
.7

4
(1

.4
1
)

6
8
0

(2
1
.0

0
)

7
3
0

(1
9
.6

0
)

7
.7

7
(1

.4
0
)

6
4
0

(1
3
.0

0
)

6
9
4

(1
7
.3

0
)

8
.4

3
(1

.2
8
)

N
o
te

in
le

ft
an

d
ri
g
h
t

T
LE

p
at

ie
n
ts

,
th

e
ar

ea
o
f

re
se

ct
io

n
in

ea
ch

p
at

ie
n
t

h
as

b
ee

n
m

as
ke

d
o
u
t

so
th

at
re

su
lt
s

ar
e

n
o
t

co
n
fo

u
n
d
ed

b
y

th
e

C
SF

-fi
lle

d
su

rg
ic

al
la

cu
n
ae

(S
E

=
st

an
d
ar

d
er

ro
r)

.

2354 | Brain 2010: 133; 2348–2364 M. Yogarajah et al.



white matter. We refuted this hypothesis as there was no signifi-

cant correlation between the surgical resection volume and the

percentage change in FA, � k or �T after surgery. Further, the

mean right anterior temporal lobe resection volume was greater

than the equivalent resection on the left and the increases in FA

were seen only after left-sided resections.

In order to assess the relationship of the increase in FA to

seizure freedom and language, we stratified all patients undergo-

ing a left anterior temporal lobectomy into several subgroups.

These included seizure-free (ILAE Class I—21 patients) and non-

seizure-free (ILAE Class II to IV—5 patients) groups at the time

of their postoperative scan, and left (19 patients), bilateral

(4 patients) and right (1 patients) hemisphere language dominant

patients at the time of their surgery. A formal statistical compari-

son between the two groups is limited by the small numbers

of patients in the non-seizure-free and right hemisphere

dominant groups. However, both non-seizure-free and left

hemisphere/bilaterally dominant patients had greater increases in

FA compared with seizure-free (9.0% versus 7.4%) and right

hemisphere dominant (7.6%/7.4% versus 3.9%) patients,

respectively.

Verbal fluency and naming after left
anterior temporal lobe resection and
relationship to cluster of increased FA
As expected, there were significant correlations between the

category and letter fluency scores preoperatively (r = 0.689,

P50.001) and postoperatively (r = 0.686, P50.001), and between

the percentage change in category and letter fluency after surgery

(r = 0.421, P = 0.020). Three principal components were therefore

extracted and used to represent pre- and postoperative verbal

fluency and the percentage change in verbal fluency. There was

no significant correlation between pre- or postoperative mean FA

in this cluster and preoperative verbal fluency (Fig. 3A and B).

However, there was a significant correlation between the

pre- and postoperative mean FA in this cluster, and postoperative

verbal fluency (r = 0.482, P = 0.009 and r = 0.469, P = 0.010, re-

spectively) (Fig. 3C and D). These correlations remained significant

after correction for IQ and language lateralization (r = 0.443,

P = 0.020 and r = 0.435, P = 0.022).

This association was primarily underpinned by � k, and there

was a correlation between percentage change in both verbal

Figure 2 Threshold-free cluster-enhanced corrected (P50.05) results of the whole-brain tract-based spatial statistics analysis of fractional

anisotropy after right anterior temporal lobe resection. The left side of the brain is on the right side of the image. R = right. Significant

clusters representing increases (red to yellow) and decreases (blue to light blue) in fractional anisotropy are projected onto the mean

fractional anisotropy template derived from all pre- and postoperative right temporal lobe epilepsy patients. For clarity, the group frac-

tional anisotropy skeleton is not shown. The area of resection is visible inferiorly in the right temporal lobe where the white matter bundles

are absent. Fractional anisotropy reduction after right anterior temporal lobe resection is apparent in the right temporal lobe, occipital lobe,

fornix, splenium, anterior commissure and both cerebral peduncles. There are also decreases in fractional anisotropy to a lesser extent in

the contralateral hemisphere. In comparison to patients undergoing a left anterior temporal lobe resection, there is only a very small area

of increased fractional anisotropy in the anterior corona radiata.

Brain plasticity following temporal lobe resection Brain 2010: 133; 2348–2364 | 2355



fluency and � k after left anterior temporal lobe resection. That is,

patients with the biggest increases in � k after surgery had the

smallest declines in verbal fluency (r = 0.398, P = 0.027). Again this

correlation remained significant after correction for IQ and

language lateralization (r = 0.457, P = 0.016). It should be noted

that all of the above correlations remained significant when

letter and category fluencies were considered separately.

There was also a significant correlation between pre- and post-

operative � k in this cluster and the postoperative graded naming

test score (r = 0.388, P = 0.030 and r = 0.480, P = 0.009, respect-

ively), but not the preoperative graded naming test score. In view

of the apparent importance of � k, we tested for a correlation

between the percentage increase in this parameter and the interval

between temporal lobe resection and postoperative scanning.

Although there was a positive trend this was not significant due

to the presence of an outlier who was the only patient with an

ILAE outcome of Class V in this group (Fig. 4). After exclusion of

this outlier, this trend was significant (r = 0.400, P = 0.024), and

the correlations between the diffusion parameters and verbal flu-

ency and graded naming test scores remained significant.

In order to assess the specificity of these correlations we also

calculated the global, mean pre- and postoperative FA across the

whole brain. Neither of these measures correlated with pre- or

postoperative verbal fluency or graded naming test scores.

Furthermore, there was no correlation between the global per-

centage change in � k and the interval between temporal lobe

resection and postoperative scanning.

Tractography
Postoperative tractography from those areas demonstrating an in-

crease in FA after surgery in left anterior temporal lobe resection is

shown in Fig. 5. The group variability map of this network of

connections consisted of two predominant pathways. Firstly,

there was a network of connections running from the precentral

gyrus, through the posterior limb of the internal capsule limb to

the corticospinal tract and pons. The second pathway consisted of

connections from premotor and prefrontal areas, the superior and

inferior frontal gyrus (including the deep frontal operculum), and

passed via the external capsule to the posterior, superior temporal

gyrus and angular gyrus. As this pathway passes through the ex-

ternal capsule, it is ventral and medial to the arcuate fasciculus/

superior longitudinal fasciculus whose anatomical location is also

shown in Fig. 5 for reference. Part of the distribution of the group

variability maps (Fig. 5) approximates to the ventro-medial lan-

guage network that is distinguishable from the arcuate

Table 4 Summary of significant local maxima clusters found in whole-brain analysis of right TLE patients

Postoperative reduction of FA
after right anterior temporal
lobe resection

Right inferior longitudinal fasciculus (P50.001) (may also contain fibres
of left fronto-occpital fasciculus posteriorly)

Left inferior longitudinal fasciculus (P = 0.013) (may also contain
fibres of left fronto-occpital fasciculus posteriorly)

Right parahippocampal gyrus (P50.001)
Right cerebral peduncle (P50.001) (containing cortico-pontine,

cortico-spinal and cortico-bulbar fibres)
Left cerebral peduncle (P = 0.012) (containing cortico-pontine,

cortico-spinal and cortico-bulbar fibres)
Right uncinate fasciculus—temporal portion and portion lying

on anterior floor of external capsule (P50.001)
Right inferior fronto-occipital fasciculus—portion lying in anterior floor of

the external capsule superior to left uncinate fasciculus (P50.001)
Left external capsule (P = 0.012)
Right fornix (crura and columns) (P50.001)
Left fornix (crura and columns) (P50.001)
Body of fornix (P50.001)
Right geniculo-calcarine tract (P50.001)
Splenium of corpus callosum/forceps major (P = 0.015)
Right superior longitudinal fasciculus—temporal portion connecting

to superior and middle temporal gyri (P50.001)
Right anterior commissure (P50.001)
Left anterior commissure (P = 0.013)
Left posterior limb of internal capsule (P = 0.012)

Postoperative increase of FA
after right anterior temporal
lobe resection

Right superior corona radiata (P = 0.034)

Postoperative increase in MD
after right anterior temporal
lobe resection

Right inferior longitudinal fasciculus—temporal portion (P50.001)
Right uncinate fasciculus—temporal portion (P50.001)
Part of right anterior commissure (P = 0.015)
Right anterior floor external capsule—containing fibres of uncinate

fasciculus and inferior fronto-occipital fasciculus (P = 0.007)
Part of body of fornix (P = 0.029)
Right crura of fornix (P = 0.026)
Left crura of fornix (P = 0.026)

Maximum P-values of local maxima clusters are given in brackets.
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Figure 3 Scatterplots of verbal fluency scores against the mean fractional anisotropy in left posterior limb internal capsule, external

capsule and corona radiata before (black dots) and after (red dots) left anterior temporal lobe resection. There was a significant correlation

between the mean fractional anisotropy in this cluster before and after left anterior temporal lobe resection, and postoperative

verbal fluency (r = 0.482, P = 0.009 and r = 0.469, P = 0.010, respectively) (Fig. 3C and D) but not pre-operative verbal fluency

scores (Fig. 3A and B).
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Figure 5 Group variability map (thresholded at 0.2) of tractography results after seeding from the local maxima of the cluster identified as

showing an increase in fractional anisotropy after left anterior temporal lobe resection. Tracts are superimposed upon the

MNI152_T1_1mm_brain image supplied with FSL. The group variability map (yellow–red, with yellow representing voxels identified by

the tractography in all subjects) visualizes connections from the precentral gyrus via the internal capsule, and connections from the

premotor and prefrontal areas, the superior and inferior frontal gyrus (including the deep frontal operculum), which pass via the external

capsule to the posterior, superior temporal gyrus and angular gyrus. This network of connections is medial to the traditional dorso-lateral

language pathway composed of the arcuate fasciculus and inferior longitudinal fasciculus. The latter pathway is shown for reference in

blue and is derived from the JHU white matter tractography atlas supplied with FSL. Also shown is the group variability map for the

surgical resection area (dark pink to light pink) created from the postoperative b = 0 images (thresholded at 0.3). It is evident that after an

anterior temporal lobe resection the dorso-lateral language connections may be more susceptible to resection and damage than the

ventro-medial connections. MNI coordinates are shown on each slice. (DPA = dorsal premotor area; PCG = precentral gyrus; SFG = superior

frontal gyrus; EC = external capsule; AG = angular gyrus; FOG = fronto-orbital gyrus; STG = superior temporal gyrus; IFG = inferior frontal

gyrus).

Figure 4 Scatterplot and regression line of percentage change in � k in the cluster showing an increase in fractional anisotropy after left

anterior temporal lobe resection against interval between surgery and imaging. The circled point is an outlier, and when removed from the

analysis, the correlation is significant (r = 0.400, P = 0.024).
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fasciculus/superior longitudinal fasciculus, which make up the

dorso-lateral language network (Saur et al., 2008).

Discussion
This study demonstrates the structural consequences of anterior

temporal lobe resection on white matter networks in patients

with temporal lobe epilepsy. Areas of decreased FA and increased

MD were evident after both left- and right-sided resections.

There were also significant focal postoperative increases in FA

after left anterior temporal lobe resections. The location of these

changes, their correlation with language function and presence

only after left-sided temporal lobe surgery and with greater in-

creases occurring after longer intervals from surgery suggest that

they may be related to structural plasticity relevant to language

function after surgery. This information is likely to be important for

the planning of epilepsy surgery and prediction of postoperative

language function, and for the understanding of brain recovery

following injury.

Postoperative reduction in FA
Three published studies have assessed the structural consequences

of epilepsy surgery on white matter (Concha et al., 2006, 2007;

Schoene-Bake et al., 2009). Schoene-Bake et al. carried out a

TBSS analysis of diffusion data of 21 right and 19 left temporal

lobe epilepsy patients. All but two of the patients underwent a

selective amygdalo-hippocampectomy. Healthy controls were used

as a comparison group for postoperative patients due to lack of

preoperative data. Overall, the distribution of reduction in FA was

similar to the current study, both ipsilaterally and contralaterally,

although we have observed more extensive changes postopera-

tively. This is not surprising given that anterior temporal lobe re-

section removes more brain tissue than an amygdalo-

hippocampectomy, and the lack of preoperative data in the

Schoene-Bake et al.’s study (2009).

Decreased FA can be caused by decreased diffusivity parallel to

axonal fibres or by increased perpendicular diffusivity (Beaulieu,

2002; Chahboune et al., 2009). In the present study, the decrease

in FA in those white matter networks connected to the area of

resection was caused by an increase in �T that was relatively larger

than the decrease in FA. Concha et al. assessed the effects of a

corpus callostomy in three subjects, and reported similar findings

(Concha et al., 2006). The changes in diffusion parameters after

surgery evolved from an acute pattern �1 week after surgery, to a

more chronic pattern several months after surgery. The biggest

and most significant reductions in FA were closest to the surgical

lesion. In the present study, the contralateral reductions in FA,

which were furthest from the area of resection, also appear to

be less marked than those areas close to the area of resection.

Electron microscopy studies of the basis of reduced FA have pro-

posed that increases in �T are caused by reduced axonal density

and increased extra-axonal fraction (Hui et al., 2007; Concha

et al., 2010) or decreased myelin (Gulani et al., 2001; Harsan

et al., 2006). In the present study, the decrease in FA is likely

to be related to Wallerian degeneration of nerve bundles

disconnected from afferent and/or efferent structures, which in

turn may cause myelin degradation and decreased axonal packing.

Concha et al. (2006) also reported a chronic increase in � k, which

we observed. Based on the evidence from animal models, in this

context, this may be due to loss of axons and intra-axonal struc-

tures such as neurofilaments and microtubules, thereby reducing

the barriers to parallel diffusivity (Kinoshita et al., 1999). Overall,

the increase in �T and � k also give rise to an increase in

MD in those areas identified as showing a decrease in FA after

surgery.

Postoperative increase in FA
We observed extensive postoperative increases in FA after left

anterior temporal lobe resection, which has not been reported

previously after adult epilepsy surgery (Concha et al., 2006,

2007; Schoene-Bake et al., 2009). In both studies by Concha

et al. patient numbers were small, and the ROI approach used

limits investigation to a priori defined regions. However, one of

the regions assessed included the external capsule (Concha et al.,

2007). Though the authors did not report significant postoperative

increases in FA in this region, their data suggest a trend towards a

postoperative increase in FA underpinned by an increase in � k

and decrease in �T. In the study by Schoene-Bake et al., the lack

of preoperative data may have reduced the sensitivity to detect

postoperative increases in FA. Finally, the patients assessed in

these three studies predominantly underwent selective

amygdalo-hippocampectomy, and not anterior temporal lobe re-

section. In the current investigation, the longitudinal design with

pre- and postoperative data, the whole-brain analysis techniques

and a relatively large number of patients undergoing anterior tem-

poral lobe resection enabled detection of increases in FA, and an

ROI analysis of the raw data confirmed these findings. This sup-

position is supported by a recent study, which assessed white

matter changes after hemispherectomy in 10 children (Govindan

et al., 2009). The authors of this longitudinal study used a

TBSS-based analysis, and reported an increase in FA in the contra-

lateral corona radiata, which also correlated with time after

surgery.

The postoperative increase in FA in the present study was

caused by both an increase in � k and a decrease in �T. For this

reason the MD of this cluster was unchanged postoperatively.

There are several potential causes of these observed changes.

We demonstrated that mechanical stretch of white matter tracts

or a decrease in the proportion of voxels modelled as containing

two fibre bundles is unlikely to be a contributing factor. The wide-

spread distribution of the increase in FA, the lack of similar

changes after right anterior temporal lobe resections and the ab-

sence of a correlation between resection volume and percentage

change in diffusion parameters argue against these possible

explanations. Furthermore, while stretching of white matter

bundles may explain a decrease in �T due to increased axonal

packing, this would not explain the increase in � k, which tends

to decrease with reduced axonal calibre (Harsan et al., 2006;

Wu et al., 2007).

Postoperative increases in FA could also be due to seizure ces-

sation after surgery. Concha et al. found persistent bilateral white
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matter diffusion changes postoperatively and proposed that these

were probably secondary to irreversible structural damage such as

myelin degradation and axonal degeneration. However, they also

acknowledged that Wallerian degeneration related to surgery may

mask structural changes associated with functional recovery

(Concha et al., 2007). More recently, Yasuda et al. carried out

a whole-brain VBM comparison of pre- and postoperative

T1-weighted data in 67 patients with TLE (Yasuda et al., 2009).

The authors identified significant increases in white matter con-

centration in the ipsilateral temporal and frontal lobes after tem-

poral lobe surgery, with a distribution similar to that observed in

the present study. However, because both left and flipped right

TLE patients were analysed together, it is impossible to ascertain

whether there were differences in these increases in left and right

TLE groups. The authors suggested that these findings were a con-

sequence of seizure cessation in association with reversible meta-

bolic dysfunction and neuronal plasticity. That interpretation is in

keeping with several PET and MR spectroscopy studies that have

suggested postoperative reversal of preoperative, extra-temporal

metabolic dysfunction in TLE (Hugg et al., 1996; Cendes et al.,

1997; Spanaki et al., 2000; Joo et al., 2005). There is also evi-

dence that the cortical and sub-cortical networks underlying

propagation of secondarily generalized seizures predominate be-

tween the mid-brain, basal ganglia and thalamus (Blumenfeld

et al., 2009). The white matter connecting these structures con-

sists primarily of sub-cortical tracts that pass through the internal

capsule and corona radiata (Schmahmann and Pandya, 2008) and

is broadly consistent with the location of the increases in FA iden-

tified in the present study. Despite this, our observation that

seizure-free patients had smaller mean increases in FA than non-

seizure-free patients suggests that seizure freedom is not the pri-

mary cause of increased FA observed after surgery. Rather, the

location of these increases in FA confined to left temporo-frontal

white matter tracts, and the observation that left hemisphere

language-dominant patients have larger increases in FA after left

temporal lobe surgery than right hemisphere dominant patients

suggests that the major cause of these changes may be related

to the structural plasticity of language networks after anterior

temporal lobe resection.

Language and structural plasticity
Advanced magnetic resonance imaging techniques and analyses

have shown that there is considerable capacity for, not only func-

tional but also structural, reorganization after brain injury in the

adult human brain (May and Gaser, 2006; Gould, 2007;

Johansen-Berg, 2007; Draganski and May, 2008). Traditional

tract-tracing techniques in animal models have highlighted the

central role of white matter reorganization in this process (Kaas

et al., 1999; Jain et al., 2000; Dancause et al., 2005), and

diffusion-based MRI techniques corroborate these findings. For

example, studies of patients with blindsight highlight the scope

of white matter reorganization underlying preservation of visual

abilities after occipital cortical lesions (Leh et al., 2006; Bridge

et al., 2008). Similarly, studies of animal models of spinal cord

injury demonstrate the correlation between diffusion MRI-derived

measurements and immunohistological markers of plasticity (Ramu

et al., 2008).

The premise that the postoperative increases in FA after left

anterior temporal lobe resection may be related to the plasticity

of language networks after surgery is substantiated for two

reasons; the location of these changes is in keeping with

the current understanding of the neuro-anatomical basis of

language, and there are significant correlations between

independent neuro-psychometric data and the mean diffusion

parameters derived from these clusters. Models of language pos-

tulate the existence of an expressive language area in the left

ventrolateral frontal region (Broca’s area) (Grodzinsky and

Amunts, 2006),which is connected to temporo-parietal language

regions via the arcuate fasciclus (Geschwind, 1970). Recent

diffusion-based MRI studies suggest that the arcuate fasciculus

has much more extensive putative cortical terminations beyond

the classical limits of Broca’s and Wernicke’s area, to include the

dorsal premotor cortex, the dorso-lateral prefrontal cortex and the

anterior middle and inferior temporal gyri (Catani et al., 2005;

Frey et al., 2008; Glasser and Rilling, 2008; Bernal and Altman,

2009). Furthermore, tract-tracing studies in primates suggest that

the arcuate fasciculus is not a single, direct, white matter connec-

tion between frontal and temporo-parietal regions, but instead is

part of a dorsal stream of connections that includes parts of the

superior longitudinal fasciculus and the middle and inferior longi-

tudinal fascicule (Schmahmann and Pandya, 2006; Frey et al.,

2008; Saur et al., 2008). Current standard tractography tech-

niques do not have the spatial resolution needed to resolve

these corticocortical pathways (Frey et al., 2008). However,

these connections have been visualized in humans and primates

using high-resolution diffusion techniques (Makris et al., 2005,

2009; Schmahmann et al., 2007). These studies have also identi-

fied a second, parallel, ventral language circuit that is located

medial to this dorsal pathway. This runs from the ventrolateral

prefrontal and orbitofrontal cortex, and inferior and middle frontal

gyri, through the extreme capsule dorsal to the uncinate fascic-

ulus, to the posterior/middle superior temporal gyri, where it

merges with the fibres of the middle longitudinal fasciculus,

which is lateral to it and connects to the inferior parietal lobe

and angular gyrus (Petrides and Pandya, 1984, 1988, 2006,

2007; Frey et al., 2008; Saur et al., 2008; Makris and Pandya,

2009). Current in vivo diffusion tensor imaging lacks the spatial

resolution to unambiguously differentiate between the external

and extreme capsules by means of FA maps alone. For this

reason, the postoperative increases in FA appear to be localized

to the external capsule of the TBSS skeleton in the present study.

However, tractography seeded from these areas demonstrates the

presence of connections linking temporo-parietal areas with the

ventral prefrontal areas, and inferior frontal gyrus, which is con-

sistent with the ventro-medial language pathway (Fig. 5). The

other morphological features identified by the postoperative trac-

tography in this study are also concordant with the current under-

standing of language networks, including connections from the

dorsal prefrontal areas, superior frontal gyrus, precentral gyrus

and premotor areas, which overlap with parts of the dorsal lan-

guage network and connect to parts of the basal ganglia. These

areas are likely to be important for final speech production, and
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higher order articulatory control of speech (Duffau, 2008; Frey

et al., 2008).

Damage to this distributed network may occur following left

anterior temporal lobe resection and is most likely to affect the

dorsal rather than ventro-medial pathway because of the former’s

lateral position, and the anterior extent of fibres connecting to the

superior and middle/inferior temporal gyri. In contrast, the ventral

pathway is more medial and connects to the posterior/middle su-

perior temporal gyrus (Fig. 5) and may therefore be less suscep-

tible to injury (Moran et al., 1999). This ventro-medial pathway

may therefore have a greater propensity to undergo plasticity-

related changes relevant to language functioning after surgery.

This contention is substantiated by the presence of significant cor-

relations between pre- and postoperative mean FA and � k values

and postoperative verbal fluency and naming scores, but not pre-

operative scores. It appears that the most significant component of

this correlation is the increase in � k after surgery, demonstrated

by the correlation between the percentage change in � k and the

percentage change in verbal fluency after left anterior temporal

lobe resection. Whilst there is debate as to the specific role of each

pathway with respect to language functions (Friederici, 2009),

some functional overlap seems likely with both pathways contri-

buting to a high proficiency in verbal communication (Saur et al.,

2008). The biological interpretation of a pattern of increased � k in

concert with decreased �T is not well defined, but may be primar-

ily related to an increase in myelination (DeBoy et al., 2007) in

addition to an increase in axonal calibre (Wu et al., 2007) and

neurofilament density (Sun et al., 2008).

The predominance of the ipsilateral, rather than contralateral,

white matter network with respect to language function after sur-

gery is corroborated by the few longitudinal studies that have

assessed the functional reorganization of language after epilepsy

surgery (Pataraia et al., 2005; Helmstaedter et al., 2006; Wong

et al., 2009). Although these studies have used differing methods,

they all highlight the importance of the ipsilateral hemisphere

(Helmstaedter et al., 2006; Wong et al., 2009) and intra-

hemispheric reorganization of language after dominant temporal

lobe resection (Pataraia et al., 2005). The study by Pataraia et al.

also demonstrated ipsilateral inferior displacement of receptive lan-

guage activation after anterior temporal lobe resection (Pataraia

et al., 2005). Furthermore, larger studies in patients with other

forms of brain injury, such as stroke, also support that it is the

repair and strengthening of ipsilateral, neighbouring networks that

is more important, than the recruitment of contra-lateral homolo-

gous regions (Saur et al., 2006).

The current study suggests a structural correlate to the concept

of ipsilateral reorganization and recovery of function, with aug-

mentation of the ventro-medial language network, consequent to

surgical damage to the dorsal–lateral language pathway. We

suggest that the focal increases in FA seen in the ventro-medial

language network after left anterior temporal lobe resection rep-

resents an attempt to reorganize language function after brain

injury caused by surgery. Importantly, the observed correlation

between preoperative diffusion parameters and postoperative lan-

guage outcome suggests that the preoperative state of the

ventro-medial language network is important, and that if this net-

work is already in ‘active service’, left anterior temporal lobe

resection will have less impact on language functioning. Further

studies are needed to clarify whether diffusion imaging and trac-

tography of this ventral network might provide predictive infor-

mation regarding the risk of language dysfunction after anterior

temporal lobe resection, and moreover whether it can provide

functional landmarks that can be used to guide surgery in order

to minimize postoperative language dysfunction. Further longitu-

dinal investigations with more time points following surgery will

clarify the time course of these changes in FA, and these studies

are ongoing.

Limitations
Whole brain and tractography methods of analysis of diffusion data

have several limitations. The presence of brain lesions can cause

problems with the normalization of images to standard space

when using whole-brain methods. We have attempted to minimize

these complications by registering the postoperative images to their

preoperative counterparts using hand drawn cost function masks

over the areas of resection, before normalizing all images to a

common space. We incorporated this method within the framework

of TBSS that is specifically optimized for the registration of diffusion

data. The confirmation of our whole-brain findings, using native

cluster information, and hand-drawn ROIs lends confidence to the

robustness of the methods employed in this study. The resolution of

tractography images is several orders of magnitude lower than the

nerve bundles under examination. A single voxel contains numerous

fibre populations, some of which may be kissing or crossing, and this

is particularly problematic in the fronto-temporo-parietal areas as-

sessed in this study. Although, the multiple fibre model, and prob-

abilistic tractography approach employed in this study, may be able

to partly deal with these problems, ultimately higher resolution

in vivo diffusion imaging techniques are needed to precisely delin-

eate the many subcomponents of the language network. The de-

lineation of individual white matter tracts connecting different,

language relevant cortical areas, in association with functional

data, should facilitate a better understanding of the functional spe-

cificity of these white matter subcomponents. The use of a language

laterality index derived from an expressive, rather than receptive,

fMRI task that activates the frontal lobe may also be a limiting

factor, given that the targeted surgical area is the temporal lobe.

However, though it might be useful to have a measure of receptive

language function, crossed dominance is uncommon and damage to

white matter tracts after surgery is as likely to affect frontal, as well

as temporal, lobe functioning (Catani, 2007). Further, the language

deficit encountered after anterior temporal lobe resection is com-

monly of word finding, and not of receptive function (Barr, 2009).

The correlations between neuropsychology and diffusion data noted

in this study were not corrected for multiple comparisons due to the

small numbers of patients studied. However, even with an adjusted

Bonferroni significance level of 0.05/4, the correlations remain sig-

nificant, and the broad theme of this study is consistent.

Conclusion
We have used whole-brain voxel-based analysis of diffusion tensor

imaging to assess the morphometric changes in white matter
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following left and right anterior temporal lobe resection. While

widespread decreases in FA occurred after left- and right-sided

resections, only the left anterior temporal lobe resections were

followed by an increase of FA in an extensive area. The location

of these changes and the results of tractography seeded from this

area suggest that it may be part of a parallel, ventro-medial lan-

guage network. This is corroborated by a significant correlation

between the diffusion parameters of this region and postoperative

language function. These findings have important implications for

our understanding of the response of the brain to injury and may

prove useful in the planning of epilepsy surgery in order to

minimize postoperative language dysfunction.
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