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Abstract

The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and
activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain
background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological
role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-
deleted (DROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental
strain. High level IL-12p40 production in DROP16 infection was dependent on the host cell adaptor molecule MyD88, but
surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9,
TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced
cytokine synthesis in macrophages and on IFN-c-induced nitric oxide production by astrocytes and microglial cells.
Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and
macrophages, failure to induce arginase-1 by DROP16 tachyzoites resulted in resistance to starvation conditions of limiting
arginine, an essential amino acid for replication and virulence of this parasite. DROP16 tachyzoites that failed to induce host
cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter
between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in
multiple and complex ways to direct the course of infection.
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Introduction

Pathogens living in an intracellular compartment benefit from

being able to parasitize their host cell for nutrients, but they are

faced with the challenge of surviving within a potentially hostile

environment. This is particularly the case for microorganisms that

infect cells of innate immunity such as macrophage/monocytes

and dendritic cells because these cells possess potent microbial

sensing and killing machinery. Many of the mechanisms that viral

and bacterial pathogens use to manipulate host cell signaling

pathways are well characterized, but less is known about how

intracellular eukaryotic pathogens mechanistically interact with

host cell signal transduction [1,2,3].

For one intracellular protozoan, Toxoplasma gondii, this is

changing. Toxoplasma is an extremely successful microorganism

as evidenced by the fact that it infects up to 50% of the human

population worldwide and is also a common parasite in domestic

and wild animals [4]. Within the host there is evidence that

Toxoplasma preferentially targets dendritic cells, monocyte/macro-

phage lineage cells and neutrophils [5,6,7]. Infection is normally

asymptomatic, and is characterized by widespread dissemination

of replicative tachyzoites followed by formation of quiescent cysts

in the central nervous system and skeletal muscle tissues that

persist for the lifetime of the host with no overt ill effects. Yet, T.

gondii is an important opportunistic pathogen insofar as infection in

immunocompromised patients may have life-threatening conse-

quences, and in utero infection can lead to major defects in the

fetus [8,9]. The parasite is normally controlled by a strong Type 1

cytokine response characterized by high-level production of

cytokines such as IL-12p70, TNF-a and IFN-c [10]. While the

latter cytokines are important in resistance to infection, this

proinflammatory response must be tightly controlled to avoid

immunopathology that can otherwise lead to host death.

It is well established that Toxoplasma actively interferes with host

cell signaling during intracellular infection of cells such as

macrophages (MØ) [11]. The parasite is capable of blocking
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pathways leading to apoptosis and interfering with proinflamma-

tory responses initiated by signaling through the IFN-c receptor

and Toll-like receptors (TLR). How these suppressive effects occur

is less well known, although induction of suppressor of cytokine

synthesis (SOCS)-1, activation of phosphatidylinositol (PI)-3 kinase

signaling, inhibition of NFkB activation, and blocking chromatin

remodeling have each been implicated in parasite-mediated

interference with host cell signaling [12,13,14,15,16].

Recently, the signal transducer and activator of transcription

(STAT) signaling pathway has emerged as a major target of

exploitation by T. gondii. Infection of mouse bone marrow-derived

MØ induces rapid and sustained activation of STAT3, a

transcription factor through which the anti-inflammatory cytokine

IL-10 exerts its function [17]. Additionally, STAT3-negative MØ

are much less sensitive to parasite-mediated inhibition of TLR

signaling.

Parasite strain type is a critical determinant of STAT3

activation. Of the three predominant strain types, high virulence

Type I and low virulence Type III parasites are potent activators

of STAT3, whereas low virulence Type II strains are incapable of

sustained activation. A major advance in our understanding of

how Toxoplasma interacts with the STAT signaling machinery

came from the results of genetic crosses between T. gondii strain

types. In these studies the rop16 locus, contained on chromosome

VIIb, emerged as a determinant of activation of both STAT3 and

STAT6 [18,19].

The rop16 locus encodes rhoptry protein ROP16. This

molecule, along with several other proteins, is contained within

rhoptries, which are apically associated organelles that discharge

their contents during invasion. While many rhoptry proteins

localize to the parasitophorous vacuole membrane, some are

injected into the host cell cytoplasm associated with empty

(e)-vacuoles [20]. The ROP16 molecule is discharged into the

cytosol during invasion, and it rapidly translocates to the host cell

nucleus via a nuclear translocation sequence [19]. Although

originally identified as a putative serine-threonine kinase, recent

biochemical studies have shown that ROP16 from Type I

parasites is capable of directly catalyzing tyrosine phosphorylation

of both STAT3 and STAT6 [21,22].

Here, we used reverse genetics to generate ROP16 negative

(DROP16) Type 1 parasites as well as ROP16 complementation

mutants (DROP16:1), and we studied the biological effects of

deleting and re-inserting this gene during in vitro and in vivo

infection. We report that ROP16 deletion converts Type I

tachyzoites from low to high inducers of IL-12p40, and

simultaneously abrogates the suppressive effect of Toxoplasma on

TLR signaling. We show that ROP16 deletion eliminates the

parasite’s ability to block nitric oxide production mediated by

signaling through the IFN-c receptor. Yet, paradoxically,

DROP16 tachyzoites displayed increased replication during in

vivo and in vitro infection. We traced this activity to ROP16-

dependent STAT6-mediated induction of arginase-1, an enzyme

that degrades host cell arginine, which is required for both the

production of nitric oxide by host cell inducible nitric oxide

synthase, as well as being an essential amino acid nutrient the

parasite requires for intracellular replication.

Results

An inhibitor of JAK2 blocks parasite-induced STAT3
phosphorylation

Signal transduction resulting in STAT3 tyrosine phosphoryla-

tion involves upstream Janus kinase (JAK) activation triggered by

cytokine receptor engagement. To determine whether Toxoplasma

infection stimulates JAK1 or JAK2 phosphorylation, MØ were

infected with RH strain tachyzoites, and cell lysates were subjected

to immunoprecipitation with anti-phosphotyrosine antibody

followed by Western blotting with antibodies specific for JAK1,

JAK2 and STAT3 molecules. As shown in Fig. S1A, infection

triggered tyrosine phosphorylation of both JAK1 and JAK2, in

addition to STAT3.

The embryonic lethality of deleting JAK1 and JAK2 precluded

us from examining the role of these molecules in parasite-triggered

STAT3 activation, although experiments with Jak32/2 and

Tyk22/2 MØ revealed that these kinases were not involved (Fig.

S1B). However, we found that JAK inhibitor I, a relatively

nonspecific reagent, partially blocked parasite-mediated STAT3

activation (Fig. S1C). Furthermore, Toxoplasma-induced STAT3

phosphorylation was almost completely blocked by a JAK2-

specific inhibitor (Fig. S1D). In contrast, STAT3 phosphorylation

stimulated by recombinant IL-6 was largely unaffected by the

JAK2 inhibitor. This result is consistent with data suggesting that

IL-6-mediated STAT3 activation involves JAK1 and JAK3

molecules [23]. While the most straightforward conclusion of

these results is that parasite-triggered JAK2 activation mediates

STAT3 phosphorylation, this interpretation must be treated with

caution in light of recent evidence that ROP16 directly acts on

STAT molecules in a manner sensitive to JAK chemical inhibition

[21].

Generation of ROP16 deletion parasite (DROP16) and
ROP16 complemented strain (DROP16:1)

To examine the biological role of ROP16 regarding STAT

activation and modification of host responses, we generated Type

1 parasites lacking expression of this molecule. The ROP16 coding

region was targeted and deleted in the Type I RH strain KU80

knockout background [24] (Fig. S2A). PCR assays performed on

MPA-resistant clones validated efficient isolation of ROP16

knockouts (DROP16) as assessed by deletion of the ROP16

coding region (Fig. S2B), as well as by the correct targeted

integration of the HXGPRT marker into the deleted ROP16 locus

Author Summary

Toxoplasma gondii is an extremely widespread intracellular
protozoan parasite that establishes long-lasting infection
in humans and animals. Because Toxoplasma infection is
most often asymptomatic, it is evident that this parasite
has developed sophisticated ways to manipulate host
immunity. Recently, the parasite ROP16 kinase was
identified as an important determinant of host cell
signaling. During cell invasion, ROP16 is injected into the
host cell cytoplasm and subsequently localizes to the
nucleus. Here, we report the generation of ROP16
knockout parasites (DROP16) as well as DROP16 comple-
mentation mutants (DROP16:1) and we describe the
biological effects of deleting and re-inserting this mole-
cule. We find that ROP16 controls the ability to activate
multiple host cell signaling pathways and simultaneously
suppress macrophage proinflammatory responses. Dele-
tion of ROP16 increases parasite ability to replicate and
disseminate during in vivo infection. This increased growth
response may arise from ROP16-dependent activation of
host arginase-1. Induction of arginase-1 limits availability
of arginine, an amino acid that is required for parasite
growth and host-inducible nitric oxide production. Our
results provide new insight into the complex interactions
between an intracellular eukaryotic pathogen and its host
cell.

Biology of Toxoplasma gondii Rhoptry Kinase ROP16
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in each MPA-resistant clone (Fig. S2C, D). The DROP16 strain

was then complemented with a single copy of a functional allele of

ROP16 from type I RH by replacement of HXGPRT at the

ROP16-deleted locus to generate strain DROP16:1 (Fig. S2E).

The DROP16:1 complemented strain exhibited the expected

genotype at the ROP16 locus (Fig. S2F, G, H).

ROP16 deletion attenuates STAT3 tyrosine
phosphorylation

We examined phosphorylation kinetics in MØ infected with

either wild-type or ROP16 knockout (DROP16) or complemented

(DROP16:1) parasites (Fig. 1A). As expected, wild-type RH strain

tachyzoites induced rapid and sustained STAT3 tyr705 (pY-)

phosphorylation. In contrast, MØ infected with DROP16

parasites displayed early STAT3 tyrosine phosphorylation, but

this response was not sustained and phosphorylation levels

dropped to background within 1.5 h of infection. Re-introduction

of the rop16 gene into DROP16 knockout parasites restored

sustained STAT3 activation in the DROP16:1 strain (Fig. 1A).

Because initial STAT3 phosphorylation is clearly independent of

ROP16, but prolonged STAT3 activation requires ROP16, we

conclude that activation is a biphasic process mediated initially by

a host or parasite kinase independently of ROP16. Yamamoto

et al. (22) did not previously report transient ROP16-independent

activation of STAT3, most likely because samples were not

analyzed prior to 3 hr post-infection. Phosphorylation at the

ser727 residue is required for full activation of STAT3 [25].

Although this response was more difficult to detect, we found that

parasite-mediated ser727 STAT3 phosphorylation did not require

ROP16 expression (Fig. S3).

Because ROP16 deletion did not completely abrogate STAT3

tyrosine phosphorylation, we examined whether the active

transcription factor translocated to the nucleus during infection

with ROP16 knockout parasites. Nuclear extracts were prepared

from infected MØ and probed for total or pY-STAT3. As

demonstrated in Fig. 1B, cells infected with wild-type parasites

displayed rapid nuclear accumulation of pY-STAT3. In the

absence of ROP16, we also detected rapid accumulation of

phosphorylated STAT3 that was greatly reduced by 1.5 hr post-

infection even though total STAT3 levels remain elevated. In the

complemented DROP16:1 strain, levels of phosphorylated STAT3

were maintained in a manner similar to infection with parental

parasites. These data are consistent with those of others showing

continuous STAT3 shuttling from cytoplasm to nucleus indepen-

dent of phosphorylation status [26].

ROP16 down-modulates IL-12p40 production in infected
cells

We, and others, have shown that Type II Toxoplasma strains,

including PTG and ME49, induce higher levels of the IL-12p40

compared to infection with Type I strains such as RH [27,28].

Genetic segregation analysis of crosses between parasite strains

identified the rop16 locus as a determinant of IL-12 induction [19].

Therefore, we tested whether deletion of ROP16 would convert

the parasite into a strong IL-12 inducer, as would be predicted

from the forward genetics studies. As shown in Fig. 2, at 24 hr

Figure 1. Defective STAT3 tyrosine phosphorylation and nuclear accumulation in the absence of ROP16. (A) Cells were infected with
either RH, DROP16 or DROP16:1 tachyzoites (3:1 ratio parasites to cells), then total lysates were collected at the indicated times (hr) post-infection and
subjected to Western blotting. Blots were probed with anti-phospho-Tyr (Y)705 STAT3 then stripped and re-probed with antibody to total STAT3. The
experiment was repeated 3 times with similar results. (B) Cells were infected as in (A), but at the indicated times nuclear preparations were prepared
and subjected to Western blot analysis for phospho-Tyr705 STAT3 and, following membrane stripping, total STAT3. Immunoblotting for PARP and
Rab5a, nuclear and cytoplasmic proteins, respectively was also carried out. Cy, control cytoplasmic preparation. This experiment was repeated twice
with the same result.
doi:10.1371/journal.ppat.1002236.g001

Biology of Toxoplasma gondii Rhoptry Kinase ROP16
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post-infection parental RH strain tachyzoites induced only low

levels of IL-12. In contrast, deletion of ROP16 converted the

parasite into a strong IL-12 inducer. Confirming a role for the

rop16 gene in this response, complemented DROP16:1 parasites

induced low levels of IL-12 similar to wild-type tachyzoites.

Because the common adaptor of Toll-like receptor (TLR)

signaling, MyD88, has been implicated in immunity to T. gondii

and in particular in IL-12 MØ responses during Type II infection

[29,30,31], we examined whether DROP16-mediated IL-12p40

production was dependent upon this molecule. As shown in Fig. 3,

the ability of DROP16 tachyzoites to induce high-level IL-12

production was strongly dependent on MyD88. Previous reports

have provided evidence that TLR2 and TLR4 are involved in

innate recognition of tachyzoites, suggesting that these receptors

might mediate MyD88-dependent IL-12 production that occurs in

the absence of ROP16 [32,33]. However, DROP16 parasites

induced equivalent levels of IL-12p40 in both wild-type and

TLR2/4 double-knockout MØ (Fig. 3). Similarly, TLR9 and

TLR11 have been implicated in innate immune recognition of

Toxoplasma [34,35], but lack of these molecules had no effect on

high-level IL-12 production induced by parasites lacking ROP16

(Fig. 3). Finally, both IL-1b and IL-18 signaling involves MyD88

and it was therefore possible that autocrine production of these

cytokines resulted in DROP16-mediated IL-12 release. However,

MØ lacking caspase-1 (which is required for production of

bioactive forms of these cytokines) also produced high amounts of

IL-12p40 after infection with DROP16 parasites (Fig. 3). In these

experiments, littermates served as WT controls and cells were

obtained from mice at different facilities, likely contributing to

differences on overall cytokine production from strain to strain.

Nevertheless, we can conclude that parasite-induced IL-12 occurs

independently of these TLR, or alternatively that in the absence of

any single TLR, others can functionally substitute.

The MyD88 dependent IL-12 production we observed in the

absence of ROP16 recalls previous observations of MyD88

dependent high-level IL-12 production in Type II parasite

strain-infected cells [27]. One possibility that would explain the

effects of ROP16 on down-regulating IL-12 production is that this

rhoptry kinase might control IL-10 production. However, IL-10

was not detected in MyD882/2 MØ culture supernatants infected

with DROP16 tachyzoites (data not shown). In addition, we

previously demonstrated that IL-10 does not play a role in the

inhibition of IL-12 production by WT RH parasites [17].

Deletion of ROP16 abrogates the ability of Toxoplasma to
actively inhibit proinflammatory responses

Previously, we found that infection with Type I RH tachyzoites

inhibited MØ responses to LPS and other TLR ligands, and we

linked this inhibition phenotype to STAT3 activation [17].

Therefore, we examined whether ROP16 null parasites were

defective in their ability to inhibit LPS-induced cytokines. In these

experiments, MØ were infected followed 2 hr later by addition of

LPS. Six hr after LPS stimulation (at a time prior to induction of

IL-12 by parasites themselves) supernatants were collected for

ELISA. MØ cultured in medium alone followed by LPS

stimulation produced robust amounts of IL-12p40 and TNF-a
(Fig. 4A and B, respectively). While cells infected with wild-type

RH tachyzoites displayed a defective ability to respond to TLR

signaling, ROP16-deleted parasites lost their ability to suppress

LPS-induced cytokine production. However, re-introduction of

the rop16 gene restored the parasites’ ability to strongly suppress

LPS-induced IL-12p40 and TNF-a production (Fig. 4A and B).

Similar inhibitory effects of the RH strain on TLR-dependent

stimulation occur during infection of DC [5,36]. In contrast,

ROP16 negative parasites failed to display this strong inhibitory

effect during infection of DC (data not shown).

In addition to inhibition of signaling mediated through TLR

pathways, Toxoplasma is capable of down-regulating IFN-c-

triggered signaling that leads to iNOS-dependent nitric oxide

(NO) production [37]. Stimulation with IFN-c alone failed to elicit

significant amounts of NO in bone marrow-derived MØ,

thioglycollate elicited MØ, or bone marrow-derived DC (data

not shown). In addition, none of the parasite strains by themselves

triggered iNOS or NO production. However, both microglial cells

and astrocytes from noninfected neonatal mice produced NO after

IFN-c stimulation. When microglial cells were infected with RH

tachyzoites and subjected to cytokine stimulation, NO production

was severely limited (Fig. 5A). In marked contrast, infection with

ROP16 null parasites failed to result in NO inhibition. IFN-c
stimulation of astrocytes resulted in lower amounts of NO, and this

Figure 2. ROP16 negatively regulates IL-12p40 production.
Bone marrow-derived MØ were infected at a 3:1 ratio of parasites to
cells, then supernatants were collected after 24 hr and analyzed by
ELISA. This experiment was repeated 3 times with similar results.
doi:10.1371/journal.ppat.1002236.g002

Figure 3. Induction of IL-12 by DROP16 tachyzoites requires MyD88, but occurs independently of TLR2, TLR4, TLR9, TLR11, and
caspase-1. Bone marrow-derived MØ from wild-type, Myd882/2, TLR2/42/2, TLR92/2, TLR112/2 and caspase-12/2 mice were infected with DROP16
tachyzoites (3: 1 ratio of parasites to cells), and supernatants were collected for ELISA 24 hr later. These experiments were repeated twice with similar
results.
doi:10.1371/journal.ppat.1002236.g003

Biology of Toxoplasma gondii Rhoptry Kinase ROP16
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response was blocked during RH infection (Fig. 5B). Interestingly,

when these cells were infected with DROP16 tachyzoites, IFN-c-

dependent NO production was even greater than that detected

after stimulation with IFN-c alone. Indeed, at priming concen-

trations of 4 nM and lower, IFN-c failed to elicit detectable NO

unless cells were infected with DROP16 parasites (Fig. 5B). Taken

together, we conclude that ROP16 is a major molecule mediating

inhibition of downstream targets of both TLR and IFN-c receptor

signaling pathways.

Because DROP16 parasites did not block and even potentiated

NO production by astrocytes, and because NO is important in

controlling the parasite in the brain, we examined tachyzoite

survival in astrocyte-enriched cell cultures. Cells were subjected to

priming with IFN-c for 3 hr and then infected with RH or

DROP16 parasites for 48 hr. Both parasite strains infected cells

equally well and replicated in the absence of IFN-c (data not

shown). However, as shown in Fig. 5C, while RH survived and

replicated within IFN-c primed astrocytes, DROP16 parasites

were significantly more susceptible to killing. DROP16 parasites

displayed weak labeling with Ab to tachyzoite-specific surface

antigen (SAG)-1 (p30) and the parasite form was compromised

(arrows in right panel of Fig. 5C). The percent infection (Fig. 5D)

and the number of tachyzoites per cell (Fig. 5E) were significantly

less in DROP16-infected astrocytes compared to RH-infected

cells.

ROP16 mediates STAT6-dependent arginase-1 induction
In addition to STAT3 activation, genetic linkage studies

implicated the rop16 locus in activation of STAT6. A major

downstream target of STAT6 signaling is arginase-1. This

Figure 4. ROP16 controls the ability of Toxoplasma to inhibit
LPS-induced cytokine production. Bone marrow-derived MØ were
infected with RH, DROP16 and DROP16:1 at a 3:1 ratio of tachyzoites to
cells. After 2 hr, cells were stimulated with LPS (100 ng/ml). Superna-
tants were collected 6 hr after LPS treatment and analyzed by ELISA for
IL-12p40 (A) or TNF-a (B). In these experiments, cytokine levels in
supernatants of cells cultured in medium alone or with parasites alone
was below the level of detection (50 pg/ml). These experiments were
repeated 3 times with similar result.
doi:10.1371/journal.ppat.1002236.g004

Figure 5. DROP16 tachyzoites do not inhibit IFN-c primed NO production in microglial cells and DROP16 parasites potentiate
production in astrocytes. Neonatal microglial cells (A) or astrocytes (B) were preincubated with the indicated amounts of IFN-c for 3 hr and either
left uninfected (grey bars) or infected with RH (black bars) or DROP16 (white bars) parasites (3:1 ratio of tachyzoites to cells). After 48 hr, supernatants
were analyzed for nitrite/nitrate as production as a measure of NO. (C) RH tachyzoites survive and replicate in IFN-c activated astrocytes, but DROP16
parasites are killed. Cultures were primed for 3 hr with IFN-c, infected with parasites (at a ratio of 1:1) and cultured an additional 48 hr before
immunofluorescence assay. Arrowheads point to degraded DROP16 parasites that stain irregularly with Ab specific for tachyzoite surface antigen
(SAG)-1. Green, parasites; red, phalloidin-stained actin; blue, nucleus. Both percentage of infected cells (D) and number of parasites per infected cell
(E) are significantly higher in RH- versus DROP16-infected cultures. Micrographs were scored for percent infection and intracellular parasite count. At
least 10 fields and 100 cells were counted for each infection. These collective experiments were repeated twice with the same result.
doi:10.1371/journal.ppat.1002236.g005
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signaling cascade was of interest because arginase-1 competes with

iNOS for the amino acid substrate arginine [38,39,40]. Therefore,

we examined whether ROP16 could stimulate STAT6-dependent

arginase-1 production. As shown in Fig. 6A, RH induced strong

and sustained tyr641 phosphorylation of STAT6. In marked

contrast, this response was completely absent in DROP16 mutant

tachyzoites. However, in the rop16 complemented strain, STAT6

activation was restored (Fig. 6A). The absolute dependence of

STAT6 phosphorylation on ROP16 differed from STAT3

activation, where only early ROP16-independent phosphorylation

occurred (Fig. 1A and Fig. S4, which shows nuclear lysates from a

single experiment blotted and probed for STAT3, then re-probed

for STAT6). Interestingly, we detected nuclear accumulation of

total STAT6, despite lack of detectable STAT6 tyrosine

phosphorylation during DROP16 infection (Fig. S4). This may

indicate phosphorylation-independent STAT nuclear accumula-

tion as reported by others [41].

Paralleling the STAT6 phosphorylation results, wild-type and

complemented parasites, but not DROP16 tachyzoites, induced

arginase-1 synthesis, a response detectable by immunoblotting for

arginase-1 protein within 6 hr of infection (Fig. 6A). Similarly, we

detected induction of arginase-1 by immunofluorescence assay

during RH but not DROP16 infection (Fig. 6B and C,

respectively). Because the arginase-1 gene is controlled by STAT6

signaling, we examined whether parasite-induced induction of

arginase-1 also depended upon STAT6. As shown in Fig. 6D,

infection of STAT62/2 MØ with all three strains failed to induce

arginase-1 protein, in contrast to infection of MØ from

STAT6+/+ littermates in which we detected ROP16-dependent

arginase-1 induction. We did not detect production of IL-4/IL-13

in these cultures making it very unlikely that arginase-1 induction

was due to ROP16-dependent production of these cytokines

(data not shown).

ROP16 modulates the availability of the essential amino
acid arginine

Toxoplasma is known to be an arginine auxotroph, strictly

relying on either host or exogenously supplied arginine for its

replication and survival [42]. ROP16-dependent induction of

arginase-1 suggested that parasites lacking this rhoptry molecule

might be more resistant to conditions of arginine limitation.

Therefore, we compared the ability of wild type and DROP16

parasites to invade and multiply within fibroblasts cultured in

arginine-replete and arginine-deficient media. In normal arginine-

replete medium, RH (Fig. 7A) and DROP16 (Fig. 7B) parasites

displayed vigorous multiplication rates (quantitated in Fig. 7E).

However, under arginine limiting conditions, RH replication was

severely curtailed and only one cycle of replication occurred

during the 38 hr growth assay (Fig. 7C and E). In striking contrast,

replication of DROP16 parasites was markedly less affected by

arginine starvation, with evidence of 4 or more cycles of division

(Fig. 7D and E).

Although Toxoplasma is known as a microorganism that can

infect virtually any kind of nucleated cell, the parasite is often

found preferentially in macrophage/DC lineage cells during in

vivo infection [7]. Therefore, we also examined the growth

behavior of RH, DROP16 and DROP16:1 parasites under

arginine high and low conditions in bone marrow-derived MØ.

As shown in Fig. 7F, while all three strains replicated equivalently

under arginine replete conditions, deletion of ROP16 resulted in a

growth advantage to the parasites when arginine was present in

limiting concentration.

Along similar lines, we collected mouse resident peritoneal cells,

which are composed largely of CD11b+ resting MØ and carried

out ex vivo infection with RH, DROP16 and DROP16:1 parasites

under arginine high and low conditions. As in mouse bone

marrow-derived MØ and human fibroblasts, in arginine limiting

Figure 6. ROP16 controls STAT6-dependent arginase-1 synthesis. (A) Bone marrow-derived MØ were infected with RH, DROP16 and
DROP16:1 tachyzoites (3: 1 ratio of parasites to cells), then at the indicated times (hr) post-infection total cell lysates were subjected to Western
blotting with phospho-STAT6 antibody. Blots were successively stripped and re-probed with antibodies to total STAT6, arginase-1 (Arg-1) and
GAPDH. (B and C) Bone marrow-derived MØ were infected with RH (B) or DROP16 (C), then 24 hr later cells were fixed and subjected to
immunofluorescence staining for arginase-1 expression. Red, arginase-1; green, Toxoplasma; blue, nucleus. (D) Stat62/2 and Stat6+/+ bone marrow-
derived MØ were infected with the indicated parasite strains, then lysed and subjected to Western blot analysis with anti-Arg-1 antibody. Blots were
subsequently stripped and re-probed with a GAPDH-specific antibody. These experiments were performed 3 times with the same result.
doi:10.1371/journal.ppat.1002236.g006
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conditions deletion of ROP16 conferred a significant growth

advantage on parasites as measured by overall average numbers of

tachyzoites per cell (Fig. 8A). While the distribution of parasite

number per cell was similar for all strains under arginine high

conditions (Fig. 8B), the presence of ROP16 in RH or the

complemented DROP16:1 strain reduced the number of parasites

per cell under arginine limiting conditions (Fig. 8C). In contrast,

the ROP16-deleted strain exhibited significantly higher numbers

of parasites per cell (Fig. 8C). Representative image of cells

infected with each mutant under arginine high and low conditions

are shown in Fig. 8D.

The above results argued that ROP16/STAT6-dependent

arginase-1 induction played a role on slowing parasite growth. To

test this, we compared growth of DROP16 and DROP16:1

parasites in peritoneal macrophages from Stat6+/+ and Stat62/2

mice. Parasites expressing Type I ROP16 clearly displayed a

growth disadvantage in WT cells that was eliminated in Stat6

gene-deleted macrophages (Fig. 8E-G). As expected DROP16

parasites, which do not trigger STAT6 activation, replicated

equivalently in wild-type and knockout cells (Fig. 8E–G). Next,

we performed the same experiment employing macrophages from

Arg12/2 and Arg1+/+ littermate control mice. As shown in

Fig. 8H-J, while DROP16:1 replicated less well than DROP16

parasites in wild-type MØ, the strains replicated equivalently in

Arg12/2 cells. We conclude that ROP16 mediates STAT6-

dependent arginase-1 induction, thereby modulating arginine

availability and resulting in parasite sensitivity to arginine

starvation conditions.

Influence of ROP16 on IL-12 production, parasite
replication, and dissemination during in vivo infection

To investigate the effect of ROP16 deletion during in vivo

infection, mice were i. p. inoculated with wild-type, or DROP16

parasites. Peritoneal exudate cells (PEC) were collected 2, 3 and 4

days post-infection and analyzed by Western blot for STAT3 and

STAT6 phosphorylation. In agreement with our in vitro results,

both of these signaling intermediates were phosphorylated in a

ROP16-dependent manner (Fig. 9A). In Fig. S5, we i. p. infected

mice with RH, DROP16 and DROP16:1 and collected PEC 5

days later. The results confirm that deletion and re-introduction of

ROP16 controls STAT3 and STAT6 activation in vivo. PEC

collected 24 hr post-infection were analyzed for ex vivo IL-12

production. As shown in Fig. 9B, cells from DROP16-infected

mice produced significantly higher levels of IL-12p40 relative to

cells from mice infected with wild-type parasites. Both wild-type

and DROP16-infected mice succumbed with the same kinetics

after i. p. infection, despite evidence for increased IL-12

production during DROP16 infection (Fig. S6).

We examined the course of acute infection in the peritoneal

cavity following parasite inoculation with 106 tachyzoites. At 6 hr

post infection (Fig. S7), similar levels of CD11b+ cells were

observed in the RH and DROP16 infections, and the percent

infection was equivalent. Flow cytometric analysis revealed the

CD11b+ cells to be inflammatory monocytes and approximately

10% neutrophils (data not shown). By 24 hr post-infection, the

percentage of infected cells was approximately 2-fold higher in

mice infected with DROP16 parasites. After 72 hr of infection,

Figure 7. DROP16 parasites are resistant to arginine deficient conditions. (A-D) Fibroblasts were cultured in complete (A, B) or arginine-
deficient (C, D) medium 24 hr prior to and during infection with RH (A, C) or DROP16 (B, D) tachyzoites. Cells were fixed and stained for intracellular
parasites (green) 48 hr after infection. Nuclear staining (DAPI) is shown in blue. (E) Number of tachyzoites per vacuole in infected fibroblasts under
normal and arginine-deficient conditions. (F) The experiments were repeated in bone marrow-derived MØ using RH, DROP16 and DROP16:1
tachyzoites at a 1:1 ratio of parasites to cells. * p,0.05. These experiments were repeated three times with similar result.
doi:10.1371/journal.ppat.1002236.g007
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Figure 8. ROP16 mediates resistance to arginine limitation during ex vivo infection of peritoneal exudate cells. Resident peritoneal
cells were collected, cultured under Arghigh or Arglow conditions and infected with the three parasite strains for 48 hr. In (A), the average number of
tachyzoites per cell was calculated for approximately 100 infected cells. In B and C, the number of cells harboring the indicated number of parasites is
shown, depicting the downshift in replication cycles for RH and the ROP16-complemented strains when arginine is limited (C). (D) Representative
images of infected peritoneal exudate cells for experiments in A-C. In panel E, the average number of tachyzoites per cell (n = 100 infected cells) is
shown 48 hr after infection of resident macrophages from Stat6+/+ and Stat62/2 mice. Number of cells containing the indicated number of parasites
is shown for Stat6+/+ (F) and Stat62/2 (G) resident peritoneal MØ. Panel H, number of tachyzoites per cell (n = 100) at 48 hr post-infection in Arg12/2

and Arg1+/+ MØ. Panels I and J show number of parasites per cell in Arg1+/+ and Arg12/2 MØ, respectively. *, p,0.05.
doi:10.1371/journal.ppat.1002236.g008
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80% of PECs were infected with ROP16 knockout parasites

compared to 54% with the wild-type parasite strain. We also

infected mice with a 10-fold lower dose of parasites and collected

PEC 72 hr later for parasite quantitation by qPCR. The results

(Fig. S7B) show increased numbers of parasites per host cell during

infection with DROP16 relative to WT parasites.

We performed similar experiments employing DROP16:1

tachyzoites in parallel with RH and DROP16 parasites. As shown

in Fig. 9C, while deletion of rop16 promoted parasite infection in

the peritoneal cavity, re-introduction of the gene into the deletion

mutant decreased tachyzoite-positive cells to levels similar to RH

infection. Increased parasite level resulting from ROP16 deletion

was also found in various tissues (liver, lung, spleen) harvested from

3-day infected mice. Levels of the parasite B1 gene were

significantly higher after infection with DROP16 parasites relative

to the parental RH strain in all tissues except for the brain

(Fig. 9D). In Fig. 10, we assessed downstream IFN-c production

and parasite numbers in spleen following infection. In the spleen

IFN-c levels displayed a ROP16-dependent increase (Fig. 10A).

There was a concomitant increase in parasites per host cell in the

spleen that depended upon the presence of Type I ROP16

(Fig. 10B).

Evidence that ROP16-dependent arginase-1 induction in
infected MØ limits in vivo parasite replication and
dissemination

We next examined whether ROP16 was involved in arginase-1

induction during in vivo infection. To test this, we infected mice by

Figure 9. Effects of ROP16 on cytokine production and parasite replication during in vivo infection. (A) C57BL/6 mice were infected by i.
p. injection with 106 tachyzoites of either RH or DROP16 strains. Peritoneal exudate cells were collected at 2, 3 and 4 days post-infection, lysed and
subjected to Western blot analysis using antibodies to total and phosphorylated STAT3 and STAT6. (B) Peritoneal exudate cells collected 24 hr post-
infection were cultured 24 hr without further stimulation and supernatants were assayed for IL-12p40 cytokine. Bars represent individual mice. (C)
Mice (n = 4 per group) were infected with 105 RH, DROP16, DROP16:1 tachyzoites, then cells were collected 48 hr later and stained for surface CD11b
expression and intracellular tachyzoites using anti-SAG-1 antibody followed by flow cytometric analysis. The data show percent infected cells in
CD11b+ and CD11b2 populations. D, Mice were i.p. infected with 106 tachyzoites and organs were harvest 72 hr post infection. Tissues were
subjected to quantitative real time PCR amplification of the Toxoplasma B1 gene. Each symbol represents a single mouse. *p,0.01. This experiment
was performed twice with similar results.
doi:10.1371/journal.ppat.1002236.g009

Figure 10. DROP16 infection induces high-level IFN-c production in spleen. (A) Splenocytes were isolated from Day 7 mice infected with
each of the three strains (105 tachyzoites) and cultured without further stimulation for 72h. Supernatants were assayed for IFN-c. (B) Splenocytes were
also subjected to qPCR amplification of the Toxoplasma B1 gene and parasites were related to cell number by determining genome equivalents of
host argininosuccinate lyase. *, p,0.02.
doi:10.1371/journal.ppat.1002236.g010
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i. p. injection with 106 parasites of either strain and measured Arg-

1 expression levels by qPCR. Within 4 days of infection, we

detected strong Arg-1 up regulation during RH infection. Notably,

RH induced approximately two-fold more Arg-1 than DROP16

(Fig. 11A). Likewise, when mesenteric lymph node lysates were

subjected to Western blotting for arginase-1 (Fig. 11B), we found

that the protein was expressed at higher level during RH infection.

We tested the hypothesis that ROP16-mediated arginase-1

expression in infected cells limited the replication and dissemina-

tion of the parasite during in vivo infection. Straightforward

infection of arginase-1 knockout or MØ-specific arginase-1

knockout mice was problematic because of issues of lethality for

arginase-1 knockout mice. In addition, cytokines such as IL-4

produced during infection could mediate arginase-1 induction in

infected and noninfected cells, and this could also complicate the

results. Therefore, we adopted the approach outlined in Fig. 11C.

Wild-type and Arg12/2 CD45.1+ MØ were infected with RH or

with DROP16 parasites. After removing extracellular tachyzoites,

infected MØ were transferred into the peritoneal cavities of wild-

type CD45.2+ congenic mice. Two days after transfer, PEC were

collected and host cell infection levels were analyzed by flow

cytometry. We reasoned that if ROP16-mediated arginase-1

induction limited in vivo growth, emergence of DROP16 parasites

and subsequent infection of CD45.2 host cells would occur more

rapidly than during RH infection. The results are plotted as the

ratio of percent host infection in recipients of infected Arg12/2

MØ relative to recipients of Arg1+/+ MØ. Indeed, there was large

increase in infection rate when wild-type parasites entered the host

in Arg12/2 MØ compared to Arg1+/+ cells (Fig. 11D). In contrast,

the MØ genotype made no difference in dissemination to the host

during DROP16 infection.

Discussion

Toxoplasma displays an unusual population structure in that 3

clonal lineages predominate in Europe and North America [43].

Type I strains are highly virulent in mice, whereas strain types II

and III are less virulent and can establish latent infection.

Importantly, there is evidence that Type I strains also cause more

serious disease in humans [44]. Studies in mice suggest that the

immune response is an important determinant of virulence,

although its exact role is unclear. For example, infection with Type

I strains is associated with overproduction of proinflammatory

cytokines, whereas the response during Type II infection is more

restrained [45,46]. Paradoxically, Type II tachyzoites stimulate

higher levels of MØ IL-12 production compared to Type I

parasites during in vitro infection [27,28].

Toxoplasma strain type is an important determinant of activation

of STAT signaling pathways during intracellular infection.

Forward genetic analysis identified ROP16 as a polymorphic

parasite kinase controlling strain-specific activation of STAT3 and

STAT6, as well as modulating production of IL-12p40 [19]. Here,

we employed a reverse genetic approach to generate ROP16

deletion mutants as well as control complementation mutants to

gain insight into the biological role of this rhoptry molecule during

infection.

Previously, it was found that Type I strain parasites induces

rapid and sustained STAT3 activation associated with low-level

IL-12 production in mouse MØ [17,27,28]. In contrast, Type II

Toxoplasma fails to sustain STAT3 activation, and this was

genetically linked to high level IL-12 synthesis [19]. We found

Type I parasites lacking ROP16 were severely defective in STAT3

tyrosine phosphorylation. Nevertheless, DROP16 parasites main-

Figure 11. ROP16-dependent arginase-1 induction limits in vivo infection. (A) C57BL/6 mice (3 per group) were infected with the indicated
parasite strains and qPCR for the Arg-1 gene was performed on brain RNA at 4 days post-infection. Expression levels are shown relative to levels in
noninfected mice. (B) Mice were infected with RH or DROP16 tachyzoites then 4 days later mesenteric lymph node lysates were subjected to
immunoblot analysis using antibodies to arginase-1 and GAPDH. Each band represents the result from an individual animal. (C) Schematic for transfer
of infected Arg-1+/+ or Arg-12/2 CD45.2+ MØ into congenic CD45.1+ host peritoneal cavities. (D) Relative infection level in host cells following transfer
of RH or DROP16-infected Arg-1+/+ and Arg12/2 MØ. Infection in host CD45.2+ cells was measured 48 hr following transfer of infected MØ. The data
are plotted as host infection in recipients of infected Arg12/2 relative to Arg1+/+ MØ, and the numbers indicate percent infection 6 SD in each case.
These experiments were repeated 2–3 times with similar results.
doi:10.1371/journal.ppat.1002236.g011
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tained an ability to trigger early STAT3 activation. This result is

essentially identical to previous data from genetic crosses

indicating that Type I ROP16 is required for sustained STAT3

activation rather than the initial response [19]. Nevertheless,

recent in vitro kinase studies have shown that both STAT3 and

STAT6 serve as direct substrates for ROP16 tyrosine kinase

activity [21,22]. Therefore, we propose that there are two STAT3

activation phases. The first occurs rapidly and independently of

ROP16, and possibly involves activation of JAK molecules. The

second wave is necessary for sustained STAT3 activation in

Toxoplasma-infected cells and is likely dependent upon direct

tyrosine kinase activity of Type I ROP16. Interestingly, STAT6

tyrosine phosphorylation differed from STAT3 tyrosine phos-

phorylation insofar as deletion of ROP16 completely eliminated

the parasite’s ability to activate this signal transducing molecule.

Therefore, STAT6 activation during infection is entirely depen-

dent upon the parasite kinase.

Deletion of ROP16 converts Type I parasites from low to high

inducers of IL-12. Here, we show that this response, like that

induced by the Type II Toxoplasma ME49 strain, is highly

dependent upon the common adaptor MyD88. This molecule is

involved in signal transduction through most TLR, as well as

signaling through receptors for IL-1b and IL-18 [47]. We assessed

whether TLR2, 4, 9 and 11, MyD88-dependent TLR implicated

in the response to Toxoplasma [48], were responsible for high level

IL-12 production induced by the DROP16 strain. However, using

TLR knockout MØ, we found no evidence for involvement of

these TLR, and we formally ruled out autocrine IL-1b and IL-18

activity using MØ from caspase-1 knockout mice. The ROP16-

dependent and MyD88-dependent IL-12 production that we

observe may result from redundant functions of multiple TLR, or

it is possible that Toxoplasma itself may be capable of bypassing

TLR and use a novel mechanism to directly trigger MyD88-

dependent signaling.

Toxoplasma is known to inhibit signaling through TLR ligands

such as LPS, and we previously found that this activity was

dependent upon STAT3 [17]. Here, we show that ROP16

controls the ability to suppress TLR4-triggered IL-12p40 and

TNF-a production. We reported recently that T. gondii interferes

with LPS-induced chromatin remodeling at the TNF promoter by

blocking phosphorylation and acetylation of histone H3, suggest-

ing one mechanism for the suppressive effects of the parasite [49].

However, ROP16 does not appear to be involved in this activity,

because DROP16 parasites maintain the ability to inhibit TLR4-

mediated histone H3 modification (data not shown). The

biological significance of the down-regulatory effects of Toxoplasma

on TLR signaling is not yet clear. Since Toxoplasma infection is

naturally acquired via oral ingestion of parasites, one possibility is

that inhibition is a way to evade the activating effects of bacterial

TLR ligands that the host is exposed to during T. gondii infection in

the intestine [50,51]. Alternatively, it is possible that down-

regulating TLR signaling is a way for the parasite to avoid the

activating effects of its own TLR ligands.

Toxoplasma also interferes with signaling mediated by IFN-c
[37,52,53]. In order to assess this response, we first examined bone

marrow-derived and thioglycollate-elicited MØ NO production.

In our hands these cells produced undetectable amounts of NO in

response to IFN-c (data not shown). However, both astrocytes and

microglial cells are known to produce NO [54,55], and indeed we

found that IFN-c stimulation of these cells resulted in NO release.

While wild-type parasites were able to suppress the response, the

DROP16 strain was defective in inhibitory activity. Insight into

the functional significance of this response may come from the

observation that ability to express inducible NO, in particular by

microglial cells, is involved in controlling chronic infection in the

mouse brain, whereas animals survive acute infection without the

iNOS enzyme [56,57,58]. Therefore, expression of ROP16 may

be a parasite mechanism to increase transmission potential by

escaping the microbicidal effects of NO in the central nervous

system.

Despite the finding that absence of ROP16 results in enhanced

IL-12 production and defective ability to inhibit production

of proinflammatory mediators, replication and dissemination of

tachyzoites was enhanced by deletion of ROP16. We obtained

evidence that the reduced replication and dissemination of

parental RH parasites compared to DROP16 parasites was due

to arginine starvation resulting from ROP16-dependent

STAT6-mediated induction of arginase-1. The dependence of

Toxoplasma-induced arginase-1 expression on STAT6 activation we

observed is in contrast to previously published results by El Kasmi

et al. [40]. In that study, the authors observed STAT6 activation

by Type II ROP16, a result not seen by us or others [19,21].

Likewise, the authors reported STAT6-independent arginase-1

induction during infection with Type II ROP16-expressing

parasites, a result that also stands in contrast to our findings. At

present we do not understand the reason for these discrepant

results, but because El Kasmi et al. used ME49 without

manipulation of ROP16 a certain degree of caution regarding

STAT6-dependent arginase-1 induction may be warranted.

Regardless, our data are consistent with a view that ROP16-

mediated induction of arginase-1 functions to limit parasite

replication, and that this is a strategy to facilitate host survival

and establishment of latent infection to increase transmission

potential. An alternative view comes from the consideration that

arginase-1 and iNOS compete for the same substrate - namely,

arginine. Thus, ROP16-mediated arginase-1 induction, and

consequent arginine depletion in infected cells, may represent a

mechanism used by Type I strain parasites to evade the potentially

lethal effects of high-level NO production. Consistent with this

concept, we previously reported that Type II ME49 infection, in

contrast to Type I RH infection, resulted in NO production during

in vivo infection in the spleen even though overall cytokine

synthesis was greater during Type I infection [45,46].

More evidence for an in vivo role of arginase-1 during infection

comes from recent findings with Leishmania major and Schistosoma

mansoni [59,60]. In those studies, arginase-1 induction in myeloid

cells promoted infection by localized depletion of arginine, in turn

leading to suppressed T cell responses. This could possibly have

relevance to in vivo responses during Toxoplasma infection, insofar

as several older studies suggested that acute infection is associated

with nonspecific T cell suppression [61,62,63]. We are currently

re-examining this issue.

Our study demonstrates ROP16 manipulates host cell signaling

pathways that determine availability of arginine for parasite

replication and dissemination, and host production of NO. By

manipulating arginase-1 levels and consequently arginine avail-

ability to both host and parasite, ROP16 may act as a central

regulator of parasite replication and transmission potential. In

addition to ROP16-mediated control of host arginase-1, it seems

possible, and even likely, that ROP16 has additional functions

during intracellular infection. The ROP16 molecule is involved in

activation of STAT3 and STAT6, transcription factors that each

possess their own unique targets. Microarray analysis of host cell

responses also suggests that ROP16 has multiple downstream

targets [21]. Thus, ROP16 is emerging as a molecule at the

nexus of the host-parasite interaction, and as such may function as

one of the key determinants of strain-specific virulence and

transmissibility.
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While this manuscript was under review similar findings were

reported by an independent group (Jensen et al. Cell Host and

Microbe 2011. 9:472).

Materials and Methods

Ethics statement
The experiments in this study were performed in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of

Health. The protocols were approved by the Institutional Animal

Care and Use Committee at Cornell University (permit number

1995-0057). All efforts were made to minimize animal suffering

during the course of these studies.

Mice
Female C57BL/6 mice, 6–8 wks of age, were purchased from

Taconic Farms (Germantown, NY). STAT62/2 mice (provided by

M. Bynoe), TLR22/2/TLR42/2 mice (provided by D. Russell) and

MyD882/2 animals, originally supplied by S. Akira (Osaka

University), were bred in-house at Cornell University. Caspase-12/2

and JAK32/2 mice were obtained from The Jackson Laboratory

(Bar Harbor, ME). TLR92/2 mice were bred in house at

UT-Southwestern Medical School and Arg-12/2 mice were bred at

the University of Cincinnati College of Medicine. Animals were

housed under specific pathogen-free conditions in the Cornell

University College of Veterinary Medicine animal facility,

which is accredited by the Association for the Assessment and

Accreditation of Laboratory Animal Care International.

Parasites
Tachyzoites were maintained by twice weekly passage on

human foreskin fibroblast monolayers in DMEM (Life Technol-

ogies, Gaithersburg, MD) supplemented with 1% heat-inactivated

bovine growth serum (HyClone, Logan, UT), 100 U/ml penicillin

(Life Technologies), and 0.1 mg/ml streptomycin (Life Technol-

ogies). Parasite cultures were tested every 4–6 weeks for Mycoplasma

contamination using a commercial PCR-ELISA based kit (Roche

Applied Systems, Mannheim, Germany).

Antibody sources
Cell Signaling Technology (Danvers, MA) was the source of

antibodies to total and phospho-STAT3, JAK1, JAK2, ERK1/2

PARP and GAPDH. Anti-CD11b and anti-phospho-STAT6 were

purchased from BD Biosciences (San Jose, CA). FITC-conjugated

anti-p30 was purchased from Argene, Inc. Dr. Sidney Morris

(University of Pittsburgh) generously provided the arginase-1

antibody.

Gene knockout targeting plasmid constructs
The Type I ROP16 gene locus is defined by TGGT1_063760

in the current T. gondii genome database www.Toxodb.org (version

6.0). Gene knockout targeting plasmid pDROP16 was constructed

by fusing through yeast recombinational cloning [64] a ,1.2 kb 59

ROP16 target flank amplified from RH genomic DNA, the

HXGPRT minigene cassette [24] and a ,1.2 kb 39 ROP16 target

flank amplified from RH genomic DNA in correct order into the

yeast-shuttle plasmid pRS416. The deletion was engineered to

remove a small portion of the 59 UTR and essentially all of the

coding region with the exception of a few codons near the

predicted translation stop of ROP16, to create a ,2.2 kb deletion

in the DROP16 knockout strain. Complementation plasmid

pDROP16:1 was generated by fusing a c-terminal HA-tagged

functional allele of Type I RH ROP16 with 59 and 39 ROP16

target flanks. The oligonucleotide primers used in gene knockout

and complementation plasmid construction are shown in Table

S1. Targeting plasmids were validated by restriction digest, and by

DNA sequencing to verify 100% homology in gene targeting

flanks.

Gene replacement at the rop16 locus
Approximately 10 mg of PmeI linearized pDROP16 targeting

plasmid was individually transfected into T. gondii strain

RHDku80Dhxgprt that exhibits highly enhanced homologous

recombination and knockouts were then selected in mycophenolic

acid (MPA) using previously described methods [24]. Individual

MPA resistant clones were isolated and the genotype of the clones

was evaluated by PCR as previously described [24]. Genotype

validation primers are shown in Table S1. PCR 1 (rop16 deletion)

used primers DF and DR. PCR 2 used primers EXF & CXR. PCR

3 (59 integration) used primers CXF and pminiHXR. PCR 4

(39 integration) used primers CXR and pminiHXF [24]. The

DROP16:1 complemented strain was generated by retargeting

the ROP16-deleted locus with plasmid pDROP16:1 to delete

HXGPRT and reinsert a c-terminal HA-tagged functional allele of

Type I RH ROP16. Following transfection of the DROP16

knockout strain with 10 mg of PmeI linearized pDROP16:1

targeting plasmid, parasites were selected in 6-thioxanthine

(6TX) for removal of the HXGPRT selectable marker [24]. The

complemented DROP16:1 strain was validated in PCR by

showing correct 59 and 39 integration of the Type I ROP16 allele

at the ROP16 locus. PCR 5 (59 integration) used primers CXF and

cvR. PCR 6 (39 integration) used primers cvF and CXR.

Virulence assay
Adult 8-week-old female CF1 mice were obtained from Charles

River Laboratories and maintained in Techniplast Seal Safe

mouse cages on vent racks at the Dartmouth-Hitchcock Medical

Center (Lebanon, NH) mouse facility. All mice were cared for and

handled according to the Animal Care and Use Program of

Dartmouth College using National Institutes of Health-approved

institutional animal care and use committee guidelines. Groups of

four mice were injected intraperitoneally with 0.2 ml (100

tachyzoites) and monitored daily for degree of illness and survival.

Bone marrow-derived MØ and DC preparation
MØ were derived from bone marrow by 5-day culture in

L929-containing supernatants as previously described [65]. DC

were prepared as described previously [66].

Generation of astrocytes and microglia
Astrocytes and microglia were generated from the brains of 3-4

day old mice as previously described [67] with minor modifica-

tions. Briefly, brains were homogenized through 40-micron cell

strainers and single cell suspensions were subjected to discontin-

uous Percoll gradient centrifugation (70:30:0). Astrocytes were

collected from the 30:0 interface and microglial cells from the

70:30 interface. Both cell types were cultured in DMEM/F12

medium supplemented with 10% bovine growth serum up to three

weeks. Microglial cells were additionally supplemented with

130 ng/ml recombinant GM-CSF (PeproTech, Inc. Rocky Hill

NJ). Medium was replaced every 3 days.

Cell culture
Infection was accomplished by addition of tachyzoites to cell

cultures (3:1 ratio of parasites to MØ). Plates were briefly

centrifuged (3 min, 200 x g) to synchronize contact between
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tachyzoites and cells. For endotoxin triggering studies, LPS

(100 ng/ml; S. minnesota, ultrapure, List Biological Laboratories,

Campbell, CA) was added 60 min after infection, and at varying

times cells were collected for biochemical assays. For measurement

of cytokine release, cells were infected with various parasite ratios

with and without subsequent LPS stimulation. Supernatants were

collected at times indicated in text. Total cell lysates and nuclear

extracts were prepared for Western blot analysis with the Nuclear

Extract Kit (Active Motif, Carlsbad, CA). In some experiments,

JAK inhibitor I (EMD Biosciences, La Jolla, CA) and JAK2

inhibitor III (EMD Biosciences) were added to cells 60 min prior

to infection. Arginine-free medium (Sigma-Aldrich) was supple-

mented with dialyzed bovine growth serum, leucine, lysine and

glucose. In addition, arginine-high medium was supplemented to

84 mg/L L-arginine. Arginine-low medium was not supplemented

with the amino acid.

Immunoblot analysis
Cells (106/sample) were lysed in reducing SDS sample buffer,

and DNA was sheared by forcing samples three times through a

27-gauge needle. After boiling for 3 min, cellular lysates were

separated by 10% SDS-PAGE, and proteins subsequently

electrotransferred onto nitrocellulose membranes (Schleicher

& Schuell, Keene, NH). Membranes were blocked in 5% nonfat

dry milk containing 0.1% Tween 20 (Sigma-Aldrich) in Tris-

buffered saline, pH 7.6 (TBST), for 1 hr at room temperature,

followed by incubation with primary antibodies according to the

manufacturer’s protocol (Cell Signaling Technology). After

washing blots in TBST, antibody binding was detected with an

HRP-conjugated secondary antibody (Jackson ImmunoResearch

Laboratories, West Grove, PA) in TBST containing 5% nonfat dry

milk for 1 hr at room temperature. Tyrosine phosphorylated

STAT6 was detected using a mouse antibody from BD Biosciences

followed by anti-mouse biotin-conjugated antibody (Thermo

Scientific, Rockford IL) and an anti-biotin horseradish peroxi-

dase-conjugated antibody (Cell Signaling Technology). After

washing blots in TBST, bands were visualized using an ECL

system (Lumi-GLO; Cell Signaling Technology).

Pull-down assay
Tachyzoites were added to bone marrow-derived MØ

(56107) at a ratio of 8: 1, cells were pelleted (2000 rpm,

3 min), and incubated for 20 min at 37uC. In some experiments,

recombinant IL-6 (eBioscience; San Diego, CA; 100 ng/ml) was

added. Cells were washed in PBS and resuspended in Cell Lysis

Buffer containing a cocktail of protease and phosphates

inhibitors (Cell Signaling Technology), and the suspension was

subjected to brief sonication. After centrifugation (14, 000 rpm,

10 min, 4uC), the resulting pellet was resuspended in 100 ml

anti-phosphotyrosine-agarose (Cell Signaling Technology) and

the slurry was rotated overnight at 4uC. The agarose beads were

subsequently washed in Cell Lysis Buffer, resuspended in SDS

sample reducing buffer and incubated at 100uC for 3 min. After

pelleting the beads, samples were subject to SDS-PAGE and

immunoblot analysis.

Immunofluorescence microscopy
Coverslips bearing infected MØ or fibroblast monolayers were

fixed with 4% formaldehyde in PBS, rinsed with PBS and

incubated (1 h, room temperature) with indicated primary

antibodies and/or FITC-conjugated anti-P30 antibody diluted in

PBS containing 1% BSA and 10% donkey serum. Coverslips were

washed 3 times with PBS and then incubated (1 h, room

temperature) with secondary antibody in the same diluent. After

washing 3 times with PBS, coverslips were mounted with Pro-

Long Gold antifade (Invitrogen, Carlsbad, CA). Actin staining was

accomplished with Alexa-fluor 594-conjugated phalloidin accord-

ing to manufacturer’s instructions (Invitrogen).

PCR detection of Toxoplasma gondii
DNA extraction from tissue samples was carried using DNeasy

Blood and Tissue Kit (Qiagen Inc. Valencia, CA) following the

manufacturer’s instructions. Real-time PCR was performed

targeting the highly conserved 35-fold-repetitive B1 gene in

T. gondii [68]. A 25 ml-reaction mixture was prepared using 2X

Power SYBR Green PCR Master Mix (Applied Biosystems,

Carlsbad, CA) with 0.3 mM forward primer 59-GGA-GGA-CTG-

GCA-ACC-TGG-TGT-CG-39 and reverse primer 59-TTG-

TTT-CAC-CCG-GAC-CGT-TTA-GCA-G-39 [69]. Reactions

were carried out in an Applied Biosystems 7500 Fast Real Time

PCR System with the following thermal cycling conditions: 50uC
for 2 min, 95uC for 10 min, followed by 40 cycles at 95uC for

15 sec and 60uC for 1 min. All PCR amplifications were

subjected to dissociation analysis to confirm the specificity of

the reaction. Quantification of parasites was accomplished by

using a standard curve constructed with a series of known

quantity of the T. gondii RH strain over a range of 6 logs

corresponding to 105 to 1 parasite per reaction. Uninfected

tissues were used as negative controls and distilled sterile water

used as zero template controls.

Parasites per cell were determined by qPCR for detection of the

parasite B1 gene and host argininosuccinate lyase (NM_133768), a

gene that is absent from the Toxoplasma genome. Aliquots of 106

cells were centrifuged to pellet cells and extracellular

parasites. DNA was extracted with the E.Z.N.A tissue DNA kit

(Omega Bio-Tek). Using the Syber Green PerfeCTa low ROX kit

(Quanta Biosciences) B1 primers (listed above) were used to

determine parasite number and argininosuccinate lyase forward

(59TCT-TCG-TTA-GCT-GGC-AAC-TCA-CCT-39) and reverse

(59ATG-ACC-CAG-CAG-CTA-AGC-AGA-TCA-39) primers were

used to determine mouse cell number in replicate samples.

Standard curves were constructed as described above for both

species.

Quantitative reverse transcriptase PCR of Arg-1 gene
Total RNA was prepared from brain tissue by Trizol

purification and 1 mg was converted to cDNA using a commer-

cially available method (Quanta Biosciences, Gaithersburg, MD).

Quantitative PCR was performed on the Arg1 gene and

normalized to the expression of the housekeeping gene GAPDH

utilizing the SYBR green method (Quanta biosciences, Gaithers-

burg, MD) and ABI 7500 fast machine (Life Technologies

Corporation, Carlsbad, CA). Expression relative to noninfected

control samples was calculated utilizing the DDCt method. The

primer sequences employed were: 59-AAG-AAT-GGA-AGA-

GTC-AGT-GTG-G-39 (Arg1 forward); 59-GGG-AGT-GTT-

GAT-GTC-AGT-GTG-39 (Arg1 reverse); 59-AAT-GGT-GAA-

GGT-CGG-TGT-G-39 (GAPDH forward); 59-GTG-GAG-TCA-

TAC-TGG-AAC-ATG-TAG-39 (GAPDH reverse).

Cytokine ELISA and NO assay
IL-12(p40) was measured by ELISA as described [15], and

TNF-a and IFN-c was measured using a commercial kit according

to the manufacturer’s instructions (eBiosciences). Production of

nitric oxide was detected by measurement of NO2/NO3 by the

Griess reaction as described [70].
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Statistical analysis
Student’s t-test was used to analyze statistical differences

between groups. Values for P,0.05 were considered significant.

All experiments were repeated a minimum of two times.

Supporting Information

Figure S1 Analysis of JAK involvement in parasite-
induced STAT3 activation. (A) Bone marrow-derived MØ

were infected with RH strain parasites and 20 min later lysates

were prepared and subjected to immunoprecipitation with

anti-phosphotyrosine antibody followed by Western blotting

employing antibodies specific for STAT3, JAK1 or JAK2. (B)

Bone marrow-derived MØ from wild-type, JAK3+/+ or Tyk2+/+

mice were infected with RH strain tachyzoites (3:1 ratio of

parasites to cells), then at the indicated time points (min) cell

lysates were prepared and subject to immunoblot analysis. (C)

Bone marrow-derived MØ were infected as in (B) in the

presence of JAK inhibitor I (80, 20, and 1 nM) or the

equivalent dilution of DMSO carrier. Cell lysates were

prepared for immunoblot analysis 30 min post infection. (D)

MØ were treated with JAK2 inhibitor III and infected with

parasites or treated with rIL-6 (100 ng/ml). Cell lysates were

prepared 30 min later and subjected to Western blotting with

antibodies specific for phosphorylated Tyr (Y) STAT3 or

Erk1/2. These experiments were performed 3 times with

similar results.

(TIF)

Figure S2 Targeted gene replacement at the ROP16
locus. (A) Strategy for disruption of the ROP16 gene by a

double-crossover homologous recombination event in the strain

RHDku80Dhxgprt by using a ,1.2 kb 59 target flank and a

,1.2 kb 39 target flank on plasmid pDROP16. The PCR

strategy for genotype verification is depicted using primer pairs

to assay for products from the PCR (not to scale). (B, C, D) A

panel of six MPA resistant clones (numbered 1 to 6) was

evaluated in PCR assays to validated patterns consistent with

ROP16 knockout. Lane M is the DNA size ladder and lane C is

the parental control strain with the ROP16 locus intact. (B) The

parental strain control was positive for PCR 1 (396 bp), to assess

deletion of ROP16 coding region, and the PCR 2 (586 bp)

product. (C, D) The parental strain control was negative for

PCR 3 (1240 bp) and PCR 4 (1218 bp) product. Targeted

DROP16 knockouts are positive for the PCR 2, PCR 3

(59 integration) and PCR 4 (39 integration) products, and

negative for the PCR 1 (deletion) product. All six MPA-resistant

clones show a pattern consistent with a targeted deletion of a

,2.2 kb region of the ROP16 gene. (E) Strategy for comple-

mentation of the DROP16 knockout strain (RHDku80-

Drop16::HXGPRT) with a c-terminal HA-tagged copy the type

I RH rop16 coding region by double-crossover homologous

recombination. The PCR strategy for genotype verification is

depicted using primer pairs to assay for products from the PCR

(not to scale). (F, G, H) A panel of six 6TX resistant clones

(numbered 1 to 6) was evaluated in PCR assay to validate

patterns consistent with ROP16 complementation. Lane M is

the DNA size ladder, lane C is the RHDku80Dhxgprt control

strain (ROP16 intact) and C* is the parental DROP16 knockout

control strain lacking ROP16. (F) The RHDku80Dhxgprt control

strain and all 6TX resistant clones were positive for PCR 1

(396 bp). (G)

(59 integration) The RHDku80Dhxgprt control strain and all 6TX

resistant clones were positive for PCR 5 (1719 bp).

The DROP16 knockout strain (lane C*) was negative. (H)

(39 integration) The RHDku80Dhxgprt control strain and all 6TX

resistant clones were positive for PCR 6 (1078 bp). The

DROP16 knockout strain (lane C*) was negative. All six 6TX-

resistant clones show a pattern consistent with insertion of a

single copy of the type I ROP16 coding region at the ROP16

locus.

(TIF)

Figure S3 Deletion of ROP16 does not alter serine
phosphorylation of STAT3. Bone marrow-derived MØ were

infected with RH or DROP16 tachyzoites (3: 1 ratio of parasites to

cells), then total lysates were prepared at the indicated times (hr).

Immunoblot analysis was carried out using antibody to

phospho-Tyr705 and phospho-Ser727 STAT3. The experiment

was repeated three times with similar results.

(TIF)

Figure S4 STAT6 activation is wholly dependent on
ROP16 but STAT3 activation is partially dependent on
ROP16. Bone marrow-derived MØ were infected with RH and

DROP16 tachyzoites (3: 1 ratio of parasites to cells), then nuclear

lysates were prepared at the indicated times (hr). Immunoblotting

was carried out using anti-phospho-STAT6, then the blot was

successively stripped and re-probed with antibody specific for total

STAT6, phospho-STAT3, total STAT and PARP.

(TIF)

Figure S5 In vivo activation of STAT3 and STAT6 during
intraperitoneal infection. Mice (C57BL/6 strain) were

inoculated with 106 RH, DROP16 and DROP16:1 tachyzoites

and peritoneal exudate cells were collected 5 days later. Total cell

lysates were immunoblotted with antibody to phospho-STAT3,

then blots were successively stripped and re-probed for total

STAT3, phospho-STAT-6 and total STAT6. Each lane represents

a single mouse.

(TIF)

Figure S6 Mice infected with RH and DROP16 tachy-
zoites display equivalent mortality. Mice (CF1 strain) were

infected with 100 tachyzoites of each strain by i. p. inoculation.

(TIF)

Figure S7 Increased infection in the peritoneal cavity by
DROP16 tachyzoites. A, Mice were infected with 106 RH or

DROP16 parasites, then peritoneal exudate cells were

collected at the indicated times post-inoculation. Cells were

stained with anti-CD11b and anti-Toxoplasma SAG-1 and

subsequently analyzed by flow cytometry. This experiment is

representative of three performed. B, Mice (n = 5 per group)

were infected with 105 RH and DROP16 tachyzoites and cells

in the peritoneal cavity were collected 72 hr for qPCR analysis

of the Toxoplasma B1 gene relative to host arginosuccinate

lyase. The data are expressed as parasites per peritoneal

exudate cell. Each symbol represents an individual mouse. *,

p,0.01. The experiment was repeated twice with similar

results.

(TIF)

Table S1 Primers used in ROP16 knockout and com-
plementation construction and validation. Bold segments

correspond to T. gondii sequences in primers used for fusing gene

segments.

(DOC)

Acknowledgments

We thank M. Hossain for expert technical assistance and K. Peterson for

advice on preparation of astrocytes and microglial cells.

Biology of Toxoplasma gondii Rhoptry Kinase ROP16

PLoS Pathogens | www.plospathogens.org 14 September 2011 | Volume 7 | Issue 9 | e1002236



Author Contributions

Conceived and designed the experiments: BAB BAF DJB EYD. Performed

the experiments: BAB BAF LMR SGK KJM DJB EYD. Analyzed the

data: BAB BAF DJB EYD. Contributed reagents/materials/analysis tools:

FY DRH. Wrote the paper: BAB BAF DJB EYD.

References

1. Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways

by bacterial pathogens. Nature 449: 827–834.

2. Roy CR, Mocarski ES (2007) Pathogen subversion of cell-intrinsic innate
immunity. Nat Immunol 8: 1179–1187.

3. Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa.

Nature Immunol 3: 1041–1047.

4. Dubey JP (2007) The history and life-cycle of Toxoplasma gondii. In: Weiss LM,
Kim K, eds. Toxoplasma gondii The model apicomplexan: Perspective and

methods. San Diego: Academic Press. pp 1–17.

5. Bierly AL, Shufesky WJ, Sukhumavasi W, Morelli A, Denkers EY (2008)
Dendritic cells expressing plasmacytoid marker PDCA-1 are Trojan horses

during Toxoplasma gondii infection. J Immunol 181: 8445–8491.

6. Chtanova T, Schaeffer M, Han SJ, van Dooren GG, Nollmann M, et al. (2008)
Dynamics of Neutrophil Migration in Lymph Nodes during Infection. Immunity

29: 487–496.

7. Courret N, Darche S, Sonigo P, Milon G, Buzoni-Gatel D, et al. (2006) CD11c

and CD11b expressing mouse leukocytes transport single Toxoplasma gondii

tachyzoites to the brain. Blood 107: 309–316.

8. Peterson E, Liesenfeld O (2007) Clinical disease and diagnostics. In: Weiss LM,

Kim K, eds. Toxoplasma gondii The model apicomplexan: Perspectives and
methods. Amsterdam: Academic Press. pp 81–100.

9. Pfaff AW, Liesenfeld O, Candolfi E (2007) Congenital toxoplasmosis. In:

Ajioka JW, Soldati D, eds. Toxoplasma molecular and cellular biology. Norfolk:
Horizon Bioscience. pp 93–110.

10. Denkers EY, Gazzinelli RT (1998) Regulation and function of T cell-mediated

immunity during Toxoplasma gondii infection. Clin Microbiol Rev 11: 569–588.

11. Leng J, Butcher BA, Denkers EY (2009) Dysregulation of macrophage signal
transduction by Toxoplasma gondii: Past progress and recent advances. Parasite

Immunol 31: 717–728.

12. Kim L, Denkers EY (2006) Toxoplasma gondii triggers Gi-dependent phosphati-
dylinositol 3-kinase signaling required for inhibition of host cell apoptosis. J Cell

Sci 119: 2119–2126.

13. Leng J, Butcher BA, Egan CE, Abdallah DS, Denkers EY (2009) Toxoplasma

gondii prevents chromatin remodeling initiated by TLR-triggered macrophage
activation. J Immunol 182: 489–497.

14. Zimmermann S, Murray PJ, Heeg K, Dalpke AH (2006) Induction of

Suppressor of Cytokine Signaling-1 by Toxoplasma gondii Contributes to
Immune Evasion in Macrophages by Blocking IFN-{gamma} Signaling.

J Immunol 176: 1840–1847.

15. Butcher BA, Kim L, Johnson PF, Denkers EY (2001) Toxoplasma gondii

tachyzoites inhibit proinflammatory cytokine induction in infected macrophages

by preventing nuclear translocation of the transcription factor NFkB. J Immunol
167: 2193–2201.

16. Shapira S, Harb O, Margarit J, Matrajt M, Han J, et al. (2005) Initiation and

termination of NFkB signaling by the intracellular protozoan parasite Toxoplasma

gondii. J Cell Sci 118: 3501–3508.

17. Butcher BA, Kim L, Panopoulos A, Watowich SS, Murray PJ, et al. (2005)
Cutting Edge: IL-10-independent STAT3 activation by Toxoplasma gondii

mediates suppression of IL-12 and TNF-a in host macrophages. J Immunol
174: 3148–3152.

18. Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, et al. (2006) Polymorphic

secreted kinases are key virulence factors in toxoplasmosis. Science 314:
1780–1783.

19. Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, et al. (2007) Toxoplasma

co-opts host gene expression by injection of a polymorphic kinase homologue.
Nature 445: 324–327.

20. Hakansson S, Charron AJ, Sibley LD (2001) Toxoplasma evacuoles: a two-step

process of secretion and fusion forms the parasitophorous vacuole. EMBO J 20:

3132–3144.
21. Ong YC, Reese ML, Boothroyd JC (2010) Toxoplasma rhoptry protein 16

(ROP16) subverts host function by direct tyrosine phosphorylation of STAT6.

J Biol Chem 285: 28731–28740.

22. Yamamoto M, Standley DM, Takashima S, Saiga H, Okuyama M, et al. (2009)
A single polymorphic amino acid on Toxoplasma gondii kinase ROP16

determines the direct and strain-specific activation of Stat3. J Exp Med 206:
2747–2760.

23. Murray PJ (2007) The JAK-STAT signaling pathway: input and output

integration. J Immunol 178: 2623–2629.

24. Fox BA, Ristuccia JG, Gigley JP, Bzik DJ (2009) Efficient gene replacements in
Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot

Cell 8: 520–529.

25. Shen Y, Schlessinger K, Zhu X, Meffre E, Quimby F, et al. (2004) Essential role
of STAT3 in postnatal survival and growth revealed by mice lacking STAT3

serine 727 phosphorylation. Mol Cell Biol 24: 407–419.

26. Reich NC, Liu L (2006) Tracking STAT nuclear traffic. Nat Rev Immunol 6:

602–612.

27. Kim L, Butcher BA, Lee CW, Uematsu S, Akira S, et al. (2006) Toxoplasma gondii

genotype determines MyD88-dependent signaling in infected macrophages.

J Immunol 177: 2584–2591.

28. Robben PM, Mordue DG, Truscott SM, Takeda K, Akira S, et al. (2004)

Production of IL-12 by macrophages infected with Toxoplasma gondii depends

on the parasite genotype. J Immunol 172: 3686–3694.

29. Hitziger N, Dellacasa I, Albiger B, Barragan A (2005) Dissemination of

Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin-1

receptor signalling for host resistance assessed by in vivo bioluminescence

imaging. Cell Micro 6: 837–848.

30. Scanga CA, Aliberti J, Jankovic D, Tilloy F, Bennouna S, et al. (2002) Cutting

edge: MyD88 is required for resistance to Toxoplasma gondii infection and

regulates parasite-induced IL-12 production by dendritic cells. J Immunol 168:

5997–6001.

31. Sukhumavasi W, Egan CE, Warren AL, Taylor GA, Fox BA, et al. (2008) TLR

adaptor MyD88 is essential for pathogen control during oral toxoplasma gondii

infection but not adaptive immunity induced by a vaccine strain of the parasite.

J Immunol 181: 3464–3473.

32. Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, et al.

(2007) Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived

from Toxoplasma gondii. J Immunol 179: 1129–1137.

33. Del Rio L, Butcher BA, Bennouna S, Hieny S, Sher A, et al. (2004) Toxoplasma

gondii triggers MyD88-dependent and CCL2(MCP-1) responses using distinct

parasite molecules and host receptors. J Immunol 172: 6954–6960.

34. Foureau DM, Mielcarz DW, Menard LC, Schulthess J, Werts C, et al. (2010)

TLR9-dependent induction of intestinal alpha-defensins by Toxoplasma gondii.

J Immunol 184: 7022–7029.

35. Yarovinsky F, Zhang D, Anderson JF, Bannenberg GL, Serhan CN, et al. (2005)

TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science

308: 1626–1629.

36. McKee AS, Dzierszinski F, Boes M, Roos DS, Pearce EJ (2004) Functional

inactivation of immature dendritic cells by the intracellular parasite Toxoplasma

gondii. J immunol 173: 2632–2640.

37. Luder CGK, Algner M, Lang C, Bleicher N, Gross U (2003) Reduced

expression of the inducible nitric oxide synthase after infection with Toxoplasma

gondii facilitates parasite replication in activated murine macrophages.

Internat J Parasitol 33: 833–844.

38. Modolell M, Corraliza IM, Link F, Soler G, Eichmann K (1995) Reciprocal

regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-

derived macrophages by TH1 and TH2 cytokines. Eur J Immunol 25:

1101–1104.

39. Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, et al. (2001) Stat6-

dependent substrate depletion regulates nitric oxide production. J Immunol 166:

2173–2177.

40. El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, et al. (2008)

Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity

against intracellular pathogens. Nat Immunol 9: 1399–1406.

41. Sehgal PB (2008) Paradigm shifts in the cell biology of STAT signaling. Semin

Cell Dev Biol 19: 329–340.

42. Fox BA, Gigley JP, Bzik DJ (2004) Toxoplasma gondii lacks the enzymes

required for de novo arginine biosynthesis and arginine starvation triggers cyst

formation. Int J Parasitol 34: 323–331.

43. Sibley LD, Ajioka JW (2008) Population structure of Toxoplasma gondii: clonal

expansion driven by infrequent recombination and selective sweeps. Annu Rev

Microbiol 62: 329–351.

44. Boothroyd JC, Grigg ME (2002) Population biology of Toxoplasma gondii and its

relevance to human infection: do different strains cause different disease? Curr

Opin Micro 5: 438–442.

45. Gavrilescu LC, Denkers EY (2001) IFN-g overproduction and high level

apoptosis are associated with high but not low virulence Toxoplasma gondii

infection. J Immunol 167: 902–909.

46. Mordue DG, Monroy F, La Regina M, Dinarello CA, Sibley LD (2001) Acute

toxoplasmosis leads to lethal overproduction of Th1 cytokines. J Immunol 167:

4574–4584.

47. Kawai T, Akira S (2006) TLR signaling. Cell Death Differentiat 13: 816–825.

48. Denkers EY (2010) Toll-like receptor initiated host defense against Toxoplasma

gondii. J Biomed Biotechnol 2010: 737125. pp 737125.

49. Leng J, Butcher BA, Egan CE, Abi Abdallah DS, Denkers EY (2009)

Toxoplasma gondii prevents chromatin remodeling initiated by Toll-like

receptor-triggered macrophages activation. J Immunol 182: 489–497.

50. Heimesaat MM, Bereswill S, Fischer A, Fuchs D, Struck D, et al. (2006) Gram-

Negative Bacteria Aggravate Murine Small Intestinal Th1-Type Immunopa-

thology following Oral Infection with Toxoplasma gondii. J Immunol 177:

8785–8795.

Biology of Toxoplasma gondii Rhoptry Kinase ROP16

PLoS Pathogens | www.plospathogens.org 15 September 2011 | Volume 7 | Issue 9 | e1002236



51. Heimesaat MM, Fischer A, Jahn HK, Niebergall J, Freudenberg M, et al. (2007)

Exacerbation of Murine Ileitis By Toll-Like Receptor 4 Meditated Sensing of

Lipopolysaccharide From Commensal Escherichia coli. Gut 56: 941–948.

52. Kim SK, Fouts AE, Boothroyd JC (2007) Toxoplasma gondii dysregulates IFN-

gamma-inducible gene expression in human fibroblasts: insights from a genome-

wide transcriptional profiling. J Immunol 178: 5154–5165.

53. Lang C, Algner M, Beinert N, Gross U, Luder CG (2006) Diverse mechanisms

employed by Toxoplasma gondii to inhibit IFN-gamma-induced major

histocompatibility complex class II gene expression. Microbes Infect 8:

1994–2005.

54. Borysiewicz E, Fil D, Konat GW (2009) Rho proteins are negative regulators of

TLR2, TLR3, and TLR4 signaling in astrocytes. J Neurosci Res 87: 1565–1572.

55. Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, et al. (2010)

Dimethylfumarate inhibits microglial and astrocytic inflammation by suppress-

ing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro

model of brain inflammation. J Neuroinflammation 7: 30.

56. Deckert-Schluter M, Bluethmann H, Kaefer N, Rang A, Schluter D (1999)

Interferon-gamma receptor-mediated but not tumor necrosis factor receptor

type 1- or type 2-mediated signaling is crucial for the activation of cerebral blood

vessel endothelial cells and microglia in murine Toxoplasma encephalitis.

Am J Pathol 154: 1549–1561.

57. Scharton-Kersten T, Yap G, Magram J, Sher A (1997) Inducible nitric oxide is

essential for host control of persistent but not acute infection with the

intracellular pathogen Toxoplasma gondii. J Exp Med 185: 1–13.

58. Schluter D, Deckert-Schluter M, Lorenz E, Meyer T, Rollinghoff M, et al.

(1999) Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral

toxoplasmosis in Toxoplasma gondii-susceptible C57BL/6 mice but does not

reactivate the latent disease in T. gondii-resistant BALB/c mice. J Immunol 162:

3512–3518.

59. Modolell M, Choi BS, Ryan RO, Hancock M, Titus RG, et al. (2009) Local

suppression of T cell responses by arginase-induced L-arginine depletion in

nonhealing leishmaniasis. PLoS Negl Trop Dis 3: e480.

60. Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC,

et al. (2009) Arginase-1-expressing macrophages suppress Th2 cytokine-driven
inflammation and fibrosis. PLoS Pathog 5: e1000371.

61. Candolfi E, Hunter CA, Remington JS (1994) Mitogen- and antigen-specific

proliferation of T cells in murine toxoplasmosis is inhibited by reactive nitrogen
intermediates. Infect Immun 62: 1995–2001.

62. Haque S, Khan I, Haque A, Kasper L (1994) Impairment of the cellular
immune response in acute murine toxoplasmosis: Regulation of IL-2 production

and macrophage-mediated inhibitory effects. Infect Immun 62: 2908–2916.

63. Khan IA, Matsuura T, Kasper LH (1996) Activation-mediated CD4+ T cell
unresponsiveness during acute Toxoplasma gondii infection in mice. International

Immunol 8: 887–896.
64. Oldenburg KR, Vo KT, Michaelis S, Paddon C (1997) Recombination-

mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res
25: 451–452.

65. Kim L, Butcher BA, Denkers EY (2004) Toxoplasma gondii interferes with

lipopolysaccharide-induced mitogen-activated protein kinase activation by
mechanisms distinct from endotoxin tolerance. J Immunol 172: 3003–3010.

66. Bennouna S, Bliss SK, Curiel TJ, Denkers EY (2003) Cross-talk in the innate
immune system: neutrophils instruct early recruitment and activation of

dendritic cells during microbial infection. J Immunol 171: 6052–6058.

67. Butchi NB, Du M, Peterson KE (2010) Interactions between TLR7 and TLR9
agonists and receptors regulate innate immune responses by astrocytes and

microglia. Glia 58: 650–664.
68. Burg JL, Grover CM, Pouletty P, Boothroyd JC (1989) Direct and sensitive

detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain
reaction. J Clin Microbiol 27: 1787–1792.

69. Cassaing S, Bessieres MH, Berry A, Berrebi A, Fabre R, et al. (2006)

Comparison between two amplification sets for molecular diagnosis of
toxoplasmosis by real-time PCR. J Clin Microbiol 44: 720–724.

70. Hibbs JB, Taintor R, Vavrin Z, Rachlin E (1988) Nitric oxide: a cytotoxic
activated macrophage effector molecule. Biochem Biophys Res Com 157:

87–92.

Biology of Toxoplasma gondii Rhoptry Kinase ROP16

PLoS Pathogens | www.plospathogens.org 16 September 2011 | Volume 7 | Issue 9 | e1002236


