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Abstract

Temporal environmental variations affect diversity in communities of competing popula-

tions. In particular, the covariance between competition and environment is known to facili-

tate invasions of rare species via the storage effect. Here we present a quantitative study of

the effects of temporal variations in two-species and in diverse communities. Four scenarios

are compared: environmental variations may be either periodic (seasonal) or stochastic,

and the dynamics may support the storage effect (global competition) or not (local competi-

tion). In two-species communities, coexistence is quantified via the mean time to absorption,

and we show that stochastic variations yield shorter persistence time because they allow for

rare sequences of bad years. In diverse communities, where the steady-state reflects a col-

onization-extinction equilibrium, the actual number of temporal niches is shown to play a cru-

cial role. When this number is large, the same trends hold: storage effect and periodic

variations increase both species richness and the evenness of the community. Surprisingly,

when the number of temporal niches is small global competition acts to decrease species

richness and evenness, as it focuses the competition to specific periods, thus increasing the

effective fitness differences.

Author summary

One of the major challenges of community ecology and population genetics is the under-

standing of the factors that protect biodiversity. Surprisingly, in many generic cases tem-

poral environmental variations (and the abundance fluctuations associated with it)

promote the coexistence of competing species and facilitate genetic polymorphism. Here

we present a detailed and quantitative comparison between the stabilizing (and the desta-

bilizing) effects of periodic (seasonal) and stochastic temporal variations. When the num-

ber of species is small, we show that persistence times under periodic variations are much

longer than the persistence times in a stochastic environment. However, environmental

variations facilitate coexistence only when the number of temporal niches is larger than

the number of species, whereas in the opposite case the same mechanism acts to increase

competition and to decrease species richness. Since it is reasonable to expect the number

of temporal niches under seasonal variations to be typically smaller than the
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corresponding number in stochastic environments, stochastic variations provide a more

plausible explanation for the apparent stability of high-diversity assemblages.

I Introduction

Ecological and evolutionary processes take place in varying environments. As a result, demo-

graphic rates of populations fluctuate and their abundances vary through time [1]. An increase

in demographic variability increases the chance of a population to reach the low-abundance

region where extinction is plausible, so environmental variations have the potential to reduce

species richness. One of the most surprising and counter-intuitive observations in community

ecology has to do with the opposite effect: the ability of temporal environmental variations to

stabilize a system of competing species and to increase the persistence time of diverse assem-

blages [2–6].

Diverse and even highly diverse communities of competing species are prevalent in nature

[7–9], in apparent contradiction with the competitive exclusion principle [10, 11] and/or with

the severe limitations exposed by May in his analysis of the complexity-diversity problem [12].

Therefore, the potential role of environmental variations in promoting taxonomic and genetic

diversity received a lot of interest. Recently a few theoretical works provided analytical and

numerical tools for a quantitative assessment of the stabilizing effect of environmental varia-

tions [5, 13, 14], and in parallel, some prominent studies were focused on its manifestation in

empirical communities [15–19]. The potential role of stochasticity-induced stabilization in

protecting genetic polymorphism was considered as well [20–23].

Although many natural environmental fluctuations are stochastic, most of them have at

least some temporal periodicity or seasonality [24, 25]. Quantities like yearly precipitation or

the mean yearly temperature indeed fluctuate stochastically, but the amplitude of these sto-

chastic variations is usually much smaller than the amplitude of the variations associated with

the seasonal cycle during the year. Seasonal effects on demographic rates and on abundance

and frequency variations are well-documented, both for populations [26] and for genotypes

[27].

Quite a few works have dealt with the effect of periodic variations on coexistence [24, 28–

30]. Here we contribute to this body of work by systematically comparing periodic and sto-

chastic temporal fluctuations with the same characteristics (same amplitude of environmental

fluctuations, same mean duration of environment’s dwell time, same level of demographic sto-

chasticity). To do that we would like to implement a set of simple models in which the inter-

pretation of each parameter is transparent. This clarifies the meaning of the results, as well as

their relevance to other dynamics.

We consider two types of models. First we deal with two-species communities, where per-

sistence is quantified by the mean time to extinction. This problem has been solved previously

for stochastic dynamics [31–33], and here we present solutions for periodic environmental

variations and discuss the differences between the cases. Then we analyze diverse communities

with extinction-speciation equilibrium, in which case we use species richness and evenness as

metrics for the strength of the mechanisms that promote coexistence. Stochastic models of

that type, with an unlimited number of niches, were analyzed in [34]; here the study is

expanded to include periodic variations and a limited number of temporal niches. All our ana-

lyzes are performed for finite communities and demographic stochasticity is explicitly taken

into account.
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Following former works [31–33], we consider individual-based versions of the lottery

model, which is the canonical example of Chesson’s storage effect [2–4]. To solve these models

we implement the diffusion approximation, assuming that the characteristic timescales associ-

ated with environmental variations are much smaller than the time required for a given popu-

lation to reach fixation (the “annealed” regime of Mustonen and Lassig [35]). In the opposite

(“quenched”) regime, the outcome of a competition is usually decided before an environmen-

tal shift occurs, so the role of the environmental variations in protecting coexistence is

negligible.

Our study yields two main insights. First, all other things being equal, a community is more

stable under periodic variations. Stochastic fluctuations, even when promoting coexistence,

may drive a population to extinction through rare sequences of bad years [36]. This scenario is

impossible if the variations are periodic. Second, stabilization through the storage effect

requires the number of temporal niches to be larger than the number of species. When the

number of temporal niches is smaller than the number of species, the same features of the

dynamic that yield the storage effect lead to an increase in the effective fitness differences and

hence to lower biodiversity.

Seasonal cycles typically involve only a limited number of different states. Therefore, if sto-

chastic variations offer a larger number of temporal niches they will play the main role in stabi-

lizing diverse communities. The emerging picture, and its relevance to practical implications,

are summarized in the discussion section.

II Two-species competition

Two-species competition is the elementary building block of coexistence theory. Here we

implement a set of individual-based models, so our theoretical and numerical analyses take

into account both demographic stochasticity (stochastic effects that influence the reproductive

success of individuals in an uncorrelated manner) and environmental variability. All our mod-

els are simple continuous-time (Moran) generalizations of the classical lottery model (see [6]

for details).

Global competition allows environmental variations to facilitate coexistence through the

storage effect: when an invading given species is superior (produces more seeds, say) its rival,

the resident species, is inferior, and therefore the covariance between competition and envi-

ronment is negative. When competition is local only two individuals compete in each elemen-

tary dual, so this covariance disappears. Accordingly, in cases of local competition temporal

variations impede coexistence. Here we examine the differences between stochastic and peri-

odic variations in both cases, so overall we consider four scenarios: global-periodic, global-sto-

chastic, local-periodic and local-stochastic.

II.A Model definitions

We consider a zero-sum competition so the total number of individuals is fixed at N. The

dynamic takes place in elementary birth-death events, and a generation is defined as N such

elementary steps. Therefore, the duration of each elementary step is 1/N. The (time-depen-

dent) fitness of a given population (species) is es, so s is the log-fitness or the selection

parameter.

Due to environmental variations, s of each population is time-dependent. In our models,

the environment stays fixed for a certain time, which we define as its dwell time δ, and then it

switches. δ is measured in generations, so if δ = 1, say, the typical dwell time of the environ-

ment is N elementary events.
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• When the environmental variations are periodic or seasonal, the environment switches every

Nδ elementary steps.

• When the environmental variations are stochastic, the chance of the environment to flip

after each elementary step is 1/(Nδ), therefore, the dwell times are picked from an exponen-

tial distribution whose mean is δ generations.

Once the value of s for each individual is given, it determines its expected reproductive suc-

cess and its chance to win in a competition. We study two competition scenarios.

• Local competition is a characteristic of a community of animals who wander around in a cer-

tain spatial region, with an encounter between two individuals resulting in a struggle for a

piece of food, territory and so on. To model such a system we consider dynamics that take

place via a series of duels between two randomly-picked individuals, in which the loser dies

and the winner reproduces. If the fitness of the first individual is exp(s1) and the fitness of

the second is exp(s2), then the chance of the first to win the competition, P1, is determined

by the fitness ratio

P1 ¼
es1

es1 þ es2
: ð1Þ

Analogously, P2 = 1 − P1.

• When the competition is global, one individual is chosen at random to die. The chance Pa of

an individual a to produce an offspring that recruits the resulting open gap is given by

Pa ¼
esa
X

b

esb
;

ð2Þ

where the sum ranges over all the individuals. As a result, in the case when all the individuals

of the same species have the same fitness, the chance of species 1 (with n1 individuals) to cap-

ture the gap is

P1 ¼
n1es1

n1es1 þ n2es2
; ð3Þ

Since the fitness of each individual is either s1 or s2, Eqs (1) and (3) imply that the outcome

of the process depends only on the relative fitness Δs = s1 − s2.

Importantly, the storage effect that facilitates invasion of rare populations requires a nega-

tive covariance between environment and competition, i.e., when n1� N the denominator of

Eqs 3 or 1 (competition) tends to grow when the numerator (environment) diminishes and

vice versa. This never happens in our local competition model, since

Cov½est1 ; est1 þ est2 � ¼ Var½est1 � þ Cov½est1 ; est2 �. If this expression is indeed negative, then the Cau-

chy-Schwarz inequality implies that Cov½est2 ; est1 þ est2 � is positive. Therefore, when the competi-

tion is local, environmental variations cannot facilitate the invasion of both species. On the

other hand, when the competition is global and n1, say, is small, the covariance between com-

petition end environment is

Cov½est1 ; n1e
st
1 þ ðN � n1Þe

st
2 � � NCov½est1 ; est2 �:

The same argument holds for the rival species when n1� N and n2� N. Therefore, when

Cov½est1 ; est2 � < 0 the growth rate of each species, when rare, increases due to the storage effect.
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As a concrete example, let us consider the case where x = n1/N is the frequency of species 1

(that we consider, without loss of generality, as the focal species). The frequency of species 2

(rival species) is 1 − x. When species 1 wins, its frequency grows by 1/N.

In the local competition model, the chance of an interspecific duel is 2x(1 − x), so the mean

change in x after a single elementary event is

E½xtþ1=N � xt� ¼ 2xð1 � xÞ
1

N
es1

es1 þ es2
�

es2
es1 þ es2

� �

: ð4Þ

so when |Δs|� 1,

dx
dt
¼ xð1 � xÞ ðDsÞ � ðDsÞ3=12þ ðDsÞ5=120 � . . .

� �
ð5Þ

The full expansion of dx/dt in terms of Δs admits only odd powers of Δs multiplied by

x(1 − x). When considering the logit parameter, z� ln x/(1 − x), one notices that it satisfies

dz/dt = (dx/dt)/[x(1 − x)]. Therefore, the changes in z when Δs is positive are equal in magni-

tude and opposite in sign to the changes when Δs is negative. As a result, under local competi-

tion fitness fluctuations cannot contribute to stability [33, 37, 38], they only lead to an

unbiased random walk along the z = log[x/(1 − x)] axis.

The situation changes when competition is global. Now an increase (decrease) in the fre-

quency x can happen if one of the rival (focal) species individuals dies [this happens with prob-

ability 1 − x (x)], and the slot is captured by the focal (rival) species. Therefore,

E½xtþ1=N � xt� ¼
xð1 � xÞ

N
es1

xes1 þ ð1 � xÞes2
�

es2
xes1 þ ð1 � xÞes2

� �

: ð6Þ

and,

dx
dt
¼ ðDsÞxð1 � xÞ þ

ðDsÞ2

2
xð1 � xÞð1 � 2xÞ þ . . . ð7Þ

Under global competition, one finds in the expansion even terms, like (Δs)2, that do not

change sign when the mean fitness s0 ¼ Ds changes sign. The coefficient of (Δs)2, the term

x(1 − x)(1 − 2x), is positive at x< 1/2 and negative when x> 1/2, so it supports invasion of

both species. Therefore, under global competition variations in Δs increase the growth rate of

both species when they are rare, and may facilitate a coexistence state.

To complete the picture, we have to quantify the effect of environmental variations, i.e., to

specify how the selection parameter varies through time. In our two-species models fitness var-

iations are dichotomous, so Δs is either s0 + γ or s0 − γ. s0 is the mean fitness difference between

the focal and the rival species (i.e., when s0 is positive the focal species is, on average, superior

and vice versa), whereas γ is the amplitude of fitness variations. We assume |s0|� γ. A glossary

for all parameters is provided in Table 1.

II.B Analytic solutions

The main metric for the persistence of a two-species community is T, the mean time until one

of the species is lost. We will refer to T as the time to extinction (of either species).

In our two-species community the state of the system at a given time is fully characterized

by the frequency of the focal species x and the state of the environment. Since we consider only

the annealed dynamics where x variations are much slower than environmental variations, we

characterize the initial state of the community by x alone, so T(x) is the mean time until extinc-

tion, averaged over all initial states of the environment and over all histories [38].
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Implementing the diffusion approximation one finds that T satisfies [38–40],

s2ðxÞ
2

T 00ðxÞ þ mðxÞT 0ðxÞ ¼ � 1; ð8Þ

where μ(x) is the mean velocity, σ2(x) is the associated variance (see Methods, Section V.A)

and prime represent a derivative with respect to x. Note that in Eq (8) time is measured in ele-

mentary steps, to translate that into generations T must be divided by N.

In the Methods section we calculate the values of μ(x) and σ2(x) for four combinations of

global (G) and local (L) competition with stochastic (S) and periodic (P) environmental

variations.

Local-periodic: As shown in the previous section, when the competition is local dx/dt is an

odd function of Δs. As explained in the Methods section, this implies that only s0 contributes

to the velocity. Moreover, if the dynamic is periodic γ and δ have no effect on σ2(x) and μ(x),

which are simply those obtained in the standard case of a fixed environment,

mL;PðxÞ ¼
s0xð1 � xÞ

N
s2

L;PðxÞ ¼
2xð1 � xÞ

N2
ð9Þ

Global-periodic: when the competition is global Eq (7) suggests a bias towards the coexis-

tence point. This bias is independent of the sign of Δs and its strength is proportional to (Δs)2,

which, when the diffusion approximation holds, may be approximated by γ2. In the Methods

section we found an additional term in the expression for μ(x). This new term is proportional

to γ2 and represents a bias towards x = 1/2.

mG;PðxÞ ¼
xð1 � xÞ

N
s0 þ

g2

2
ð1 � 2xÞ

� �

s2

G;PðxÞ ¼
2xð1 � xÞ

N2
: ð10Þ

Since the variations are periodic, they do not contribute to the diffusion term σ2(x).

Local-stochastic: stochastic abundance variability increases due to the chance of the focal

species, say, to pick a sequence of good or bad years. In the local stochastic case the resulting

expressions (Methods, V.A) are (g is defined in Table 1),

mL;SðxÞ ¼
xð1 � xÞ

N
s0 þ gð1 � 2xÞ½ � s2

L;SðxÞ ¼
2xð1 � xÞ

N2
1þ gNx 1 � xð Þ½ �: ð11Þ

Table 1. Glossary.

Term Description

N number of individuals in the community (all species).

n number of individuals belonging to the focal population.

x = n/N frequency of focal species (1 − x is the fraction of rival species).

s0 time-independent component of the fitness.

γ the amplitude of fitness fluctuations.

δ dwell time of the environment (measured in generations).

g � δγ2/2 the strength of environmental fluctuations.

z ¼ ln x
1� x

� �
logit parameter.

ν per-death chance of colonization by new type via speciation, mutation or migration.

Q total number of temporal niches.

q = 1. . .Q temporal niche index.

https://doi.org/10.1371/journal.pcbi.1009971.t001
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As before, the μ(x) has a term that appears to provide a bias towards x = 1/2. However, the

diffusivity σ2(x) is maximal at x = 1/2 and vanishes close to the extinction point x = 0 and

x = 1. The system tends to stick to the regions where its diffusion constant is small [6], and this

“diffusive trapping” acts against the stabilizing effect of the μ term. These two contradicting

tendencies are known to cancel each other exactly [6, 41]. As a result, the only net effect of sto-

chastic environmental variations is an increase in the amplitude of abundance variations,

which decreases extinction times [32, 38].

Global-stochastic: finally, when competition is global the (Δs)2 term facilitates coexistence.

As shown in Methods section, the relevant terms are,

mG;SðxÞ ¼
xð1 � xÞ

N
s0 þ g þ

g2

2

� �

ð1 � 2xÞ
� �

s2

G;SðxÞ ¼
2xð1 � xÞ

N2
1þ gNx 1 � xð Þ½ �: ð12Þ

While the diffusion term is the same as in Eq (11), the velocity has an extra piece that pro-

motes stability, γ2x(1 − x)(1 − 2x)/2. This breaks the tie in favor of stabilization and the storage

effect manifests itself [33, 38].

Eq (8), with the relevant μ(x) and σ2(x), is an inhomogeneous and linear first order differen-

tial equation for T0, so one may solve it via an integration factor and then find T by an addi-

tional integration. When this procedure is implemented numerically, as detailed in the

Methods section (V.B), the results fit perfectly the outcomes of our Monte-Carlo simulations,

as demonstrated in Fig 1.

Fig 1 reveals the hierarchy of stability properties. The local-stochastic case has the shortest

time to extinction, as the role of environmental variations is purely destabilizing. In the local-

Fig 1. Mean time to extinction, T, is plotted against the initial frequency of the focal species x. Black circles are the outcomes of a Monte-Carlo

simulation, and the colored lines are the theoretical predictions for the corresponding case (see legend) as obtained from numerical solutions of Eq (8)

with the μ(x) and σ2(x) from Eqs (9)–(12). Details of the solution are presented in the Methods section. The hierarchy TGP> TGS> TLP> TLS is

evident. In panel (a), both species have the same mean fitness (s0 = 0) and therefore all the lines are symmetric around x = 1/2. Other parameters in

panel (a) are N = 600, γ = 0.25 and δ = 0.55. In panel (b) the focal species is slightly advantageous, with s0 = 0.01 (all other parameters are the same), so

the maximum time to extinction appears at x< 1/2.

https://doi.org/10.1371/journal.pcbi.1009971.g001
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periodic case this destabilizing effect of environmental variations averages out over each cycle,

so its T is larger. Under global competition temporal variations facilitate coexistence, so their

T is larger than in the local cases. Finally, time to extinction in the global-stochastic scenario is

shorter than in its global-periodic counterpart: a sequence of bad years may cause extinction

in the former, but not in the latter case.

More quantitatively, the mean time to extinction in the local-stochastic and in the global-

stochastic cases, and in addition T in fixed environment (which, as explained, is equivalent to

the local-periodic case), were calculated by [38]. Let us quote some of their result, and contrast

them with the new results obtained in the global-periodic case.

When s0 = 0, or otherwise in the weak selection regime where the effect of s0 is negligible,

the maximum value of T (max over all values of initial state x) is,

• In the local-stochastic case, T* ln2 N.

• In a fixed environment the maximum value of T is linear in N. This is an old result, first

obtained in [42], and we expect this behavior also in the local-periodic case. Interestingly,

[43] obtained this neutral-like results, for both the chance of ultimate fixation and the persis-

tence time, using a model with global competition. They consider the parameter regime in

which γ2 is negligible, so the expressions in (10) reduce to those of (9). Deviations from the

neutral predictions are then observed only in the quenched regime of [35].

• In the global-stochastic case, T* N1/δ.

To understand these different dependencies on N, let us neglect the effect of demographic

stochasticity and replace it with an absorbing threshold at z values that correspond to a single

individual, z� ±ln N. In the local-stochastic case with s0 = 0 the abundance performs an unbi-

ased random walk along the logit (z) axis, therefore exit times scale with ln2 N [40]. When com-

petition is global and the environment is stochastic the μ(x) term supports an attractive fixed

point in x = 1/2, and extinction occurs through improbable sequences of bad years. During

such a sequence abundance decreases exponentially, so the number of bad years required to

cross the one individual threshold is proportional to ln N. Since the chance of such a sequence

decreases exponentially with its length, the mean time to extinction scales like a power-law in N.

Finally, in the global-periodic case (that was not discussed by [38]) there are no such rare

sequences of bad years. Therefore, extinction may take place only due to demographic stochas-

ticity (note that the σ2(x) term in Eq (10) is the same as in Eq (9), reflecting only demographic

variations). This requires a highly improbable sequence of death events that may take a popula-

tion with order N individuals to extinction, and such a sequence is exponentially rare in N.

Therefore, one expects T in the global-periodic scenario to grow exponentially with N. These

four behaviors: ln2 N, linear, power-law, and exponential, are shown in Fig 2.

When one cannot neglect s0 the situation is quantitatively different, but the qualitative hier-

archy is preserved [38]). In that case under local competition T* ln N (in both periodic and

stochastic cases). When competition is global, as long as |s0| is not too large and μ(x) still posses

an attractive fixed point at some 0< x< 1, extinction takes place via accumulation of bad

years (in the stochastic case) or random death events (in the periodic case). As a result T has

the same scaling with N, although the actual time to extinction for a given set of N, γ and δ
become shorter as |s0| grows.

III Temporal environmental variations in diverse communities

In the former section, we dealt with a two-species community. When the fluctuations are sto-

chastic a given population may pick a sequence of bad years that will take it to the brink of
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extinction. Therefore, all other things being equal, coexistence times under seasonal cycles

were found to be longer than T under stochastic fluctuations. This observation holds for both

local competition (no storage effect) and global competition under which environmental vari-

ations promote coexistence through storage. Overall, coexistence always benefits from the

competition being global and from the environment being periodic.

In this section, we examine the same question in diverse communities, where the steady-

state reflects the balance between the rate of extinction and the rate at which new species estab-

lish in the community. These new species may reflect immigration from a regional pool in the

case of a local community, or may appear due to mutations or speciation events in the course

of evolution.

As we shall see below, the number of temporal niches plays a crucial role in the dynamics of

diverse communities. In a two-species community, the very assumption of environmental var-

iability presumes the existence of at least two niches: one (say, hotter periods) in which the

focal species is doing better and the other (cold periods) when the rival species is advantageous.

In communities with fixed speciation or immigration rates, new species always try to invade,

therefore the number of species may increase beyond the number of temporal niches.

As the community becomes more and more diverse, every given species evolves under the

effect of all other competing species, so the effect of environmental variations is buffered [34].

Therefore, when the number of different species grows, the dynamics become more and more

neutral-like. As a result, when the number of temporal niches and the speciation rate are both

large, one expects that the community structure will be close to the structure of a

Fig 2. The relationships between the mean time to extinction T and the size of the community, N, in different scenarios. Filled red circles were

obtained from Monte-Carlo simulations, Blue circles are theoretical predictions based on numerical integration of Eq (8) with the μ(x) and σ2(x) from

Eqs (9)–(12), and the dashed black line is a linear fit to these blue circles, presented to guide the eye. As expected, in the global-periodic case the mean

time to extinction grows exponentially with N, in the global-periodic the grows satisfies a power-law, the local-periodic case behaves like the neutral

model (T is linear in N), whereas the local-stochastic dynamics yields log2 N growth. In all cases s0 = 0 (so the T shown here is the mean time to

extinction starting from x = 1/2), δ = 0.2 and γ = 0.4.

https://doi.org/10.1371/journal.pcbi.1009971.g002
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corresponding neutral (Hubbell’s mainland model [44, 45], governed by speciation and demo-

graphic stochasticity alone) community.

In what follows we would like to emphasize these two effects: the dramatic influence of the

number of temporal niches and the neutralization of the dynamics as the diversity of a commu-

nity grows. To do that, we have simulated all the four dynamics considered above—global and

local, periodic and stochastic—in a community exposed to a fixed rate of colonization attempts.

III.A Models

In our simulations, we implement the same set of competition models defined in Section II.A

for the two species case. We add to these models two new parameters. The first, ν, reflects the

(per-generation) rate in which new types (species, phenotypes) are added to the system via

mutation, speciation, or migration from a regional pool. The second parameter, Q, is the num-

ber of temporal niches.

Every species i is endowed with Q selection parameters, s1i . . . sQi , that dictate its fitness in

each of the Q environments. When a new species arrives (immigration, speciation) a new si
vector is picked at random. To pick a vector si we draw Q numbers, ~s1

i . . . ~sQi , from a uniform

distribution between −γ/2 and γ/2, and then defined the q-th element of si through

sqi ¼ ~sqi �
1

Q

Xq¼Q

q¼1

~sqi : ð13Þ

Therefore, all species have the same mean selection parameter, this case is equivalent to the

s0 = 0 case for two-species competition.

Let us describe the elementary timesteps of competition dynamics in a given environment,

q 2 [1..Q].

If competition is local, two individuals are picked at random for a duel. If one of them

belongs to species i and the other to species j, the chance of the i to win the duel is

expðsqi Þ=½expðs
q
i Þ þ expðsqj Þ�, for conspecific rivals the chance is 1/2. The winner produces a

conspecific offspring that replaces the loser with probability 1 − ν. With probability ν the loser

is replaced by a new type (immigrant, say) that picks a new and random set of sq values.

If the competition is global, one individual is picked at random to die. With probability ν
the open gap is recruited by a new type as described above, and with probability 1 − ν it is

recruited by one of the existing species. The chance of each species i to recruit the open gap is

given, in parallel with Eq (2) above, by,

Pq
i ¼

nie
sqi

X

j

nje
sqj
;

ð14Þ

where nj is the abundance of the j-th species.

Environmental variations take place as follows. If the system is periodic, then after δN ele-

mentary timesteps the environment changes from q to q + 1, and if q = Q the next environ-

ment will be q = 1. If the environment is stochastic, after δN elementary timesteps we pick an

environment q at random.

During the simulations, we have monitored the species richness SR and the Shannon

entropy SE after each generation. The Shannon entropy,

SE ¼ �
Xj¼SR

j¼1

nj
N
ln

nj
N

� �
; ð15Þ
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is a measure of the evenness of the species abundance distribution. It takes the value of zero

when there is only one type, and values that are close to zero reflect a community dominated

by only one species. For a community with SR species, each with abundance N/SR, SE = ln SR,

therefore, the exponential of SE may be considered as the effective number of species [46].

All simulations started with all individuals belonging to a single species, and we allow the

system to equilibrate (to reach the state where both species richness and entropy fluctuate

around their typical value). After equilibration we start monitoring the mean and the variance

of species richness and entropy, see Fig 3.

III.B Results

Fig 4 shows the species richness and the Shannon entropy, as functions of the number of colo-

nization attempts per generation νN, for different numbers of temporal niches, Q = 3, Q = 10

and Q = 30.

When the speciation rate ν is small, colonization attempts are very rare and the equilibrium

species richness is small. In that case, the main factor that dictates community structure is the

one considered in the last section, namely the persistence time of a two-species community.

When this persistence time is relatively short, an invader species typically goes extinct (or

drives the resident species to extinction) before the next colonization attempt, whereas if T is

large new invaders appear before extinction, and the total species richness increases. There-

fore, for all Q-s the species richness and the evenness of a community satisfy the relationships

of persistence times T, as described in the last section: global periodic > global

stochastic > local periodic > local stochastic.

As ν increases the number of species tends to grow, therefore the number of available tem-

poral niches becomes crucial.

When Q = 30, the number of temporal niches is large enough for the community at hand,

so it poses no severe constraint on the diversity and evenness of the system. Therefore, what

one observes is just the neutralization process: the differential response of many rival species

to the environment wipes out the effect of environmental variations. In every given

Fig 3. The outcome of a typical simulation. Shown are the species richness (panel A) and Shannon’s entropy (panel B) of a specific run of our

simulation. The parameters of this run are δ = 0.2, N = 10000, γ = 0.4 and ν = 1/N. Competition is global, variations are periodic and the number of

niches is Q = 3. At the initial state all individuals belong to a single species, hence SR = 1 and the entropy is zero. The system equilibrates after less than

1000 generations, and from this point species richness fluctuates around 8.8 and the entropy fluctuates around 1.2.

https://doi.org/10.1371/journal.pcbi.1009971.g003
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environment each species feels competition from all other individuals and the temporal fluctu-

ations in this quantity (e.g., the mean fitness of a rival individual in local dynamics, or the total

number of seeds or larvae in the global dynamics) get smaller in large SR [47].

On the other hand, when Q = 3 both SR and SE are much smaller when the competition is

global. This is a surprising observation: the same phenomenon, global competition, that facili-

tates coexistence and increases diversity when the number of species is smaller than the num-

ber of temporal niches, diminishes the same quantities when the number of temporal niches is

smaller than the number of species.

Two arguments may clarify this behavior.

• When the q-th niche is still unoccupied, a q-specialist (one that has higher fitness in the q-

environment) benefits from the storage effect when it invades if the competition is global.

When the environment favors this invader the competition (total number of seeds or larvae,

here
X

j

nje
sqj ) is smaller because the performances of all resident species are worse during

that period. Therefore, global competition leads to negative covariance between environ-

ment and competition and thus creates the storage effect that promotes invasion. This

Fig 4. Species richness (SR, upper panels) and Shannon’s entropy (SE, lower panels) vs. the rate in which new species are trying to invade the

community, νN. In all cases, when νN is small the diversity of a community and its evenness obey the same relationships as T in the previous section:

global competition is better (for coexistence) than local due to the storage effect, and stochastic variations are worse than periodic variations. When the

number of temporal niches is large, as in the Q = 30 case in panels (c) and (f), an increase of νN leads to an increase in the number of species, their

different response buffers the effect of environmental variations and the results converge to the predictions of the neutral model (cyan dashed line).

However, as the number of temporal niches decreases global competition puts a hurdle against invasion, as every invader must compete with niche-

specialists. Therefore SR, and in particular SE, are much smaller for global competition if νN is large. A comparison between the case of Q = 10 [panels

(b) and (e)] and Q = 3 [panels (a) and (d)] suggest that the crossover from the storage-dominated regime, where global competition is better, to the

regime in which global competition acts to decrease biodiversity, occurs when the number of species is equal to the number of temporal niches. For all

panels, parameters are: N = 10, 000, δ = 0.2 and γ = 0.4. SR and SE were monitored every generation and the results presented here reflect an average

over the period between 6, 000 and 100, 000 generations. For the neutral model γ = 0 and δ is an irrelevant parameter.

https://doi.org/10.1371/journal.pcbi.1009971.g004
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feature is lost when the competition is local (gains during good years are balanced by losses

during bad years). It also weakens significantly when the q-invader meets a q-resident spe-

cies that increase its yield, and hence the total competition, during the q-periods. As a result,

the covariance between competition and environment, and hence the storage effect, weaken

significantly when all temporal niches are “occupied”, i.e., when for each temporal niche

there is a resident species that specializes in that niche.

• Moreover, under global competition the dynamic of a given species depends more strongly

on its fitness when the environment supports it. Therefore, temporal specialists outcompete

temporal generalists.

To understand that, let us consider a simple example. Suppose we have a two-environments-

two-species community. Species 1 is a summer specialist, its selection parameter is s1 = 1 in

the summer and s1 = 0 in the winter. Species 2 is a winter specialist, with s2 = 1 in the winter

and s2 = 0 during the summer. Assume also that each of these species has N/2 individuals

when N� 1 is the size of the community. Now let us consider the fate of a single individual

of species 3. This invading species is a generalist, whose selection parameter is s3 = 1/2 all

year long. The mean (over a full year) of the selection parameter is thus equal for all three

species.

Under local competition the chance of this invader to grow by one after its next interspecific

duel is

1

2

e1=2

e1=2 þ 1
þ

e1=2

e1=2 þ e

� �

;

and its chance do decline is

1

2

1

e1=2 þ 1
þ

e
e1=2 þ e

� �

:

These two expressions are equal, so the invader undergoes a neutral dynamics and its inva-

sion growth rate is neither positive nor negative.

Under global competition, on the other hand, the fraction of seeds of the invader (in both

environments) is

f ¼
2e1=2

Nð1þ eÞ
:

The invader loses one individual with probability (1 − f)/N� 1/N, and gains an individual

with probability (1 − 1/N)f� f. Therefore, the chance of the invader to decrease in abun-

dance is higher than its chance to increase and its growth rate is negative.

Note that in this example both competition and environment are fixed for species 3, so there

is no storage effect in any case. Yet, although the mean selection parameter of species 3 is

equal to that of species 1 and 2, it becomes inferior under global competition just because, as

a generalist, it always loses to the relevant specialist species.

The differences between global and local competition regimes are further illustrated in Fig

5, where typical histories are plotted through time when the number of temporal niches Q is

small. As expected, when competition is global the Q specialist species dominate the commu-

nity and avoid colonization by invaders (unless the invader is a better specialist, in which case

it replaces the dominant resident that implements the same niche). When the competition is

local, temporal niches induce abundance variations but do not select for specialists. Therefore

the number of species is higher, and since there is no separation of abundance scales one

expects a more even community (higher SE).
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These results provide us with an interesting, and perhaps general, perspective. When com-

petition is global, the gains of a given species during good years and the losses during bad

years are larger than in cases of local competition. This acts in favor of specialists, and in par-

ticular generates negative covariance between environment and competition when a given spe-

cialist species, whose temporal niche is yet unoccupied, invades a community. On the other

hand, once the temporal niche is occupied, the very same feature makes the invasion of other

species much harder.

How many distinct temporal niches are allowed in a realistic system? The answer may

reflect an essential difference between stochastic fluctuations and seasonal cycles. Environ-

mental stochasticity reflects erratic variations of a wide variety of factors that affect demo-

graphic rates—climate, predation pressure, resource availability, diseases, and so on—and the

different combinations of these factors suggest, potentially, many temporal niches.

Seasonality, in contrast, is associated in many cases with a limited number of temporal

niches. Of course, one may imagine a case in which the maximal fitness of each species appears

at the temperature that characterizes a given day of the year, so overall there are 365 temporal

niches. However, this possibility requires fine-tuning of the environmental response of differ-

ent species. In addition, when temporal niches narrow down they become susceptible to sto-

chastic variations. Therefore, periodic temporal niches are usually associated with a coarser

partitioning of the environmental states, like the distinction between summer and winter and

so on.

IV Discussion

Temporal niches are ubiquitous in nature, and their dynamics dictate the variations in the fit-

ness of competing species. Some of the main questions in community ecology (and also in

population genetics) have to do with the effect of these variations on biodiversity. Through

this paper we have analyzed this question in detail, using a variety of models that allow us to

isolate the characteristics associated with different features of the dynamics.

An examination of persistence properties in varying environments is not a trivial task. Most

studies in that field are based on local analysis: either an analysis of the stability and the robust-

ness of the coexistence states, as implemented, for periodic variations, in [48–51] or an analysis

of invasion rates, the standard approach of modern coexistence theory [5, 52]. Here we applied

an alternative approach, global analysis, and calculated observable metrics like extinction

times, species richness, and evenness of communities, taking into account both demographic

and environmental stochasticity. This technique imposed a few restrictions: we had to stick to

Fig 5. The dynamic of a Q = 3 community. The abundance of all species is plotted against time (generations) for global-periodic (left panel) and local-

periodic (right panel) competition. Global competition gives an advantage to specialists, therefore the community is dominated by three specialist

species, and all other invaders either stay small or (if the invader is a better specialist) take over a given temporal niche and replace the existing specialist.

Under local competition, many species coexist, with no gap between the abundances of the dominant species and the abundance of all other species. For

both panels, parameters are: Q = 3, N = 10, 000, ν = 0.005, γ = 0.4, and δ = 0.2.

https://doi.org/10.1371/journal.pcbi.1009971.g005
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specific models and use the diffusion approximation and/or numerical simulations. Still, we

believe that the outcomes of our study are quite robust and provide a few generic insights.

We discovered that systems with only a few species differ substantially from diverse com-

munities. This distinction has to do with two factors: the number of available temporal niches

and the buffering of environmental variations when the number of species is large.

For a system with two species, periodicity and global competition both facilitate coexis-

tence. Therefore, the most prevalent community, with persistence times that grow exponen-

tially with its size N, is obtained when competition is global (storage effect) and the dynamic is

seasonal. Global competition with stochastic environmental variability is not as prevalent:

although it supports storage, rare sequences of bad years may drive a given species to extinc-

tion, therefore the mean time to extinction grows like Nα where α> 1 is a constant. Local com-

petition does not allow for covariance between environment and competition and thus has no

storage. Again, stochastic variations lead to shorter persistence times than the corresponding

periodic variations, with persistence times that scale linearly with N in the periodic case and

with ln2 N in the stochastic case.

When the number of species increases the situation changes. Most importantly, the number

of temporal niches, Q, becomes an important limiting factor. The same factors that facilitate

storage and support biodiversity when Q is larger than the number of species, impede coexis-

tence and lower biodiversity when Q is smaller than the number of species. In particular, global

competition increases the effect of temporal niches on abundance variations, facilitates the

storage effect due to negative covariance between environment and competition, and thus sup-

ports the invasion of a specialist into an unoccupied niche. The same feature, global competi-

tion, prevents more generalists species to invade an already occupied niche.

Even when the number of temporal niches is large, the differential response of many species

buffers the environmental variations and makes the dynamics closer and closer to that of a

neutral model, so demographic stochasticity becomes the main driver of abundance variations

and temporal environmental fluctuations lose their importance.

Therefore, when environmental variations are invoked as an explanation for the persistence

of diverse communities, one must notice that their effect on the community as a whole is not

the sum of their effects on each pair of species. A study of many two-species systems, as in the

work of [18], for example, may become irrelevant in the diverse community level, either

because it misses the neutralization effect or because it does not take properly into account the

limited number of temporal niches.

As always, typical natural scenarios are likely to be more complicated. For example, most

systems are affected by both stochastic and periodic variations, although the amplitude of peri-

odic variations (in temperature or precipitation between summer and winter, say) is usually

much larger than the year-to-year stochastic fluctuations. For example, [24], whose study of

plankton community dynamics is based on empirically calibrated parameters, assumed tem-

perature-dependent fitness and modeled temperature variations as a mixture of white noise

(with short dwell times) and sinusoidal variations (with long dwell times). This approach is

more realistic, but here we have chosen the opposite strategy and compared purely periodic

and purely stochastic situations while keeping all other parameters (dwell time, the amplitude

of variations, speciation rates, etc.) fixed.

Another scenario that interpolates between stochastic and periodic variations was men-

tioned by [36]. These authors considered a different stabilizing mechanism, relative nonlinear-

ity, where one species has better fitness but its competitor is more resilient against

environmental variations. They have noticed that long periods of stable environment may

drive the second species to the brink of extinction, and therefore suggested that the
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introduction of a low-frequency cutoff of the power spectrum would lead to better coexistence

properties. This hypothesis has not been examined in [36], but our study appears to support it.

We thus believe that the results presented in this work provide the essential insights

required in assessing the relative importance of temporal niches, their dynamics, and their

potential contribution to the richness of life forms in our world.

V Methods

V.A Derivation of μ(x) and σ(x) in various cases—The diffusion

approximation

As explained in the main text, the deterministic change in x per unit time during a single step

(of duration 1/N, i is the step index so t = i/N) is,

fi;localðxÞ � _xlocal �
2xð1 � xÞ

N
ðDsÞi; ð16Þ

if the competition is local. This equation is equivalent to (5) when |Δs| is small so one may

neglect |Δs|3 and higher orders.

Equivalently, for global competition Eq (7) implies,

fi;globalðxÞ � _xglobal �
ðDsÞixð1 � xÞ

N
þ
ðDsÞ2i
2N

xð1 � xÞð1 � 2xÞ: ð17Þ

These two expression define the instantaneous velocity. In addition, every single birth-

death event is associated with a variance (demographic fluctuation) of 2x(1 − x).

In both cases, after k steps the mean change in x (for a given history of the selection parame-

ter s(t)) will be,

x0 ! x0 þ
Xk

i¼1

fiðxiÞ; ð18Þ

where fi is the velocity in a given i environmental situation (global or local). Expanding this

sum to first order around x0, one gets,

Xk

i¼1

fiðxiÞ �
Xk

i¼1

fiðx0Þ þ
Xk

i¼1

f 0i ðx0Þðxi � x0Þ

�
Xk

i¼1

fiðx0Þ þ
Xk

i¼1

f 0i ðx0Þ
Xi

j¼1

fjðx0Þ:

ð19Þ

When the environmental fluctuations are periodic, every positive period is followed by a

negative one of the same amplitude and duration and the internal summation is reduced to

order s0. Once multiplied by the external summation, this term is negligible. Therefore, the

mean displacement over several periods is,

mðx0Þ ¼
x � x0

k
¼ f ðx0Þ: ð20Þ

Plugging in (16) and (17) yields,

mglobal;periodicðxÞ ¼
xð1 � xÞ

N
s0 þ

g2

2
ð1 � 2xÞ

� �

mlocal;periodicðxÞ ¼
s0xð1 � xÞ

N
: ð21Þ
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The square of the displacement is,

�
Xk

i¼1

fiðx0Þ

�2

¼
Xk

i¼1

fiðx0Þ �
Xk

j¼1

fjðx0Þ; ð22Þ

and this quantity vanishes, as before, over an integer number of periods. Therefore, the only

contribution to σ2(x) comes from demographic stochasticity:

s2
global;periodicðxÞ ¼ s

2
local;periodicðxÞ ¼

2xð1 � xÞ
N2

ð23Þ

For the stochastic cases we can use the assumption that the environmental states are uncor-

related over periods that are longer than the dwell time, and simplify (19) by grouping together

elementary steps into periods in which the environment is fixed,

Xk

i¼1

fiðxiÞ �
X

p

Xtp

q¼1

fpðx0Þ þ
X

p

Xtp

q¼1

f 0pðx0Þ
Xq

j¼1

fpðx0Þ ð24Þ

In this expression, the k elementary steps are divided into periods of stable environments.

These periods are indexed by p, and the duration of each period is τp elementary timesteps.

Since the fp of different p are uncorrelated, the internal summation of Eq (19) is reduced to the

sum over steps of the same state. Therefore,

Xk

i¼1

fiðxiÞ �
X

p

tpfpðx0Þ þ
X

p

f 0pðx0Þfpðx0Þ
t2
p

2
ð25Þ

When the values of τp are drawn from an exponential distribution whose mean is τ,

t2
p¼ t

2
pþ s

2
t
¼ 2t2, where s2

t
is the variance of τp. Using,

f 0ðxÞf ðxÞ¼
1

2

d
dx

f 2ðxÞ¼
1

2

d
dx

f 2ðxÞ�
1

2

d
dx
s2

f ðxÞ ¼ s
0

f ðxÞsf ðxÞ: ð26Þ

since in the local case, and approximately (neglecting terms like s0γ2 or γ4) in the global case,

s2
f ðxÞ �

g2x2ð1 � xÞ2

N2
; ð27Þ

one can write

mlocal;stochasticðxÞ ¼
xð1 � xÞ

N
s0 þ

g2t

2N
ð1 � 2xÞ

� �

; ð28Þ

and

mglobal;stochasticðxÞ ¼
xð1 � xÞ

N
s0 þ

g2

2
ð1 � 2xÞ þ

g2t

2N
ð1 � 2xÞ

� �

: ð29Þ

Finally, the variance in the stochastic cases is:

s2
global;stochasticðxÞ ¼ s

2
local;stochasticðxÞ ¼

2xð1 � xÞ
N2

1þ
g2t

2
xð1 � xÞ

� �

: ð30Þ

At this point we define δ, which is the environmental correlation time measured in genera-

tion. If a generation is defined as N elementary birth-death events, and on average every τ
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elementary birth-death steps the environment changes, then δ = τ/N. Correspondingly we

define g = γ2δ/2 as the strength of the environmental variations.

V.B Solutions for T using integration factor

Eq (8) of the main text reads,

s2ðxÞ
2

T 00ðxÞ þ mðxÞT 0ðxÞ ¼ � 1: ð31Þ

We solve it by using an integrating factor, such that

T 0ðxÞe
R x 2mðtÞ

s2ðtÞ
dt

� �0

¼ �
2

s2ðxÞ
e
R x 2mðtÞ

s2ðtÞ
dt

ð32Þ

Integrating on both sides yields

T 0ðxÞe
R x 2mðtÞ

s2ðtÞdt ¼ �

Z x 2

s2ðtÞ
e
R t 2mðqÞ

s2ðqÞ
dqdt þ C1

T 0ðxÞ ¼ �

R x 2

s2ðtÞ
e
R t 2mðqÞ

s2ðqÞ
dqdt þ C1

e
R x 2mðtÞ

s2ðtÞdt

:

ð33Þ

Finally,

TðxÞ ¼ �
Z x

R k 2

s2ðtÞ
e
R t 2mðqÞ

s2ðqÞ
dqdt þ C1

e
R k 2mðtÞ

s2ðtÞdt

dkþ C2

ð34Þ

All that is left is to find the constants using the boundary conditions T(0) = T(1) = 0.
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35. Mustonen V, Lässig M. Molecular evolution under fitness fluctuations. Physical Review Letters. 2008;

100(10):108101. https://doi.org/10.1103/PhysRevLett.100.108101 PMID: 18352233
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