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Evaluating relevance and 
redundancy to quantify how binary 
node metadata interplay with the 
network structure
Matteo Cinelli   1,2, Giovanna Ferraro   1 & Antonio Iovanella   1

Networks are real systems modelled through mathematical objects made up of nodes and links 
arranged into peculiar and deliberate (or partially deliberate) topologies. Studying these real-world 
topologies allows for several properties of interest to be revealed. In real networks, nodes are also 
identified by a certain number of non-structural features or metadata. Given the current possibility of 
collecting massive quantity of such metadata, it becomes crucial to identify automatically which are 
the most relevant for the observed structure. We propose a new method that, independently from the 
network size, is able to not only report the relevance of binary node metadata, but also rank them. Such 
a method can be applied to networks from any domain, and we apply it in two heterogeneous cases: 
a temporal network of technology transfer and a protein-protein interaction network. Together with 
the relevance of node metadata, we investigate the redundancy of these metadata displaying by the 
results on a Redundancy-Relevance diagram, which is able to highlight the differences among vectors 
of metadata from both a structural and a non-structural point of view. The obtained results provide 
insights of a practical nature into the importance of the observed node metadata for the actual network 
structure.

Networks are used to model interactions across a number of different fields, including social sciences, biology, 
information technology and engineering. Although the scientific literature predominantly focuses on the topol-
ogy of the network1,2, in several systems nodes themselves possess specific features, which have the potential to 
shed light on their role in the network3–7.

In real networked systems, nodes play at least two different roles: they not only contribute to the construction 
of the network structure8,9, they also carry particular information about themselves10,11. Hence, we can identify 
nodes not only by their connections but also by certain particular features; hereafter referred to as metadata6,7. 
Metadata represent non-structural information that has the potential to display a certain correlation with the 
observed network structure. Consistently with the increase in the capacity and efficiency of storing data, new 
networks dataset are also becoming richer in terms of the related amount of metadata. Examples of node meta-
data include social attributes such as gender10, income and group membership7,11,12, as well as technical attributes, 
including product categories for co-purchasing products of online retailers such as Amazon6,13. In other terms, 
once a large set of available node metadata associated to each node of the network has been considered, the 
following questions can be asked: Which economic indexes should an economist consider as the most relevant 
in determining new exchanges of goods in a trade network? Which protein functions should a chemical engi-
neer consider as relevant in creating the patterns of a protein-protein interaction network? Which human habits 
should a social scientist consider as most relevant for the creation of new friendships? Which product features are 
important for certain items in order for them to be co-purchased?

Building on this further, how can we identify the correlation between the network structure and the node 
metadata? How can we do this in a computationally efficient way?
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As such, detecting the relevance of node metadata becomes key in the investigation of networks, and some-
thing that should be tackled to ensure that the information provided is of practical nature and that misleading 
and time-consuming investigations are avoided. We therefore propose a new method that is able to efficiently 
compute the relevance of the node metadata by also ranking them. This method is efficient in the sense that, being 
able to report results independently from the network size, it is not limited by any computational constraints. In 
this paper, we consider the case in which the node metadata are binary variables, e.g. gender in a social network or 
protein functions in a protein-protein interaction network, or are variables that are treated in order to be binary, 
e.g. macroeconomic indexes in a trade network overcoming a given threshold.

The investigation of the relationship between certain binary node metadata and the network topology was 
performed initially by examining the correlation of the considered binary features across the network edges via 
the assortativity coefficient3. This coefficient, however, doesn’t take into account the microscopic nature of inter-
action and is preferred in the case of multiple discrete node characteristics or scalar characteristics (like the node 
degrees). Indeed, in such cases, and conversely from that of binary metadata, the enumeration of each edge type 
for any node metadata arrangement would be in most of the cases unfeasible. Therefore, in the case of binary node 
metadata a more detailed approach can be pursued, especially considering that the different link types (called 
dyads) can be represented in a two-dimensional space. Such approach has been already done, considering undi-
rected networks, in terms of the dyadic effect4. The dyadic effect is observed when the number of links between 
nodes that share a common property is larger than expected by chance4. Through the observation of the dyadic 
effect, two measures, called dyadicity D and heterophilicity H, separately denote homogeneous and heterogene-
ous assortment with respect to a certain binary metadata and measure the degree to which such node metadata 
correlate with the structure of the network.

In the case of large networks, the methodology proposed by4 presents some computational issues based on the 
notion that, also in the case of binary features, the number of possible configurations increases exponentially with 
the network size. Therefore, this methodology cannot be practically used for of large networks that possess several 
node metadata. The scientific literature has tackled this problem in different ways: by simply computing the 
indexes D and H normalized by random expectations14,15; by computing their statistical significance by means of 
their p-value (therefore computing a null distribution of node metadata)16,17; by using entropy-based meas-
ures18,19, which are numerically hard to compute and whose confidence intervals depends on the number of 
samples.

In such a framework, our methodology is based on the measures suggested by4 but differs from previous con-
tributions in that it focuses on combinatorial arguments deriving from the relationship between the number of 
featured nodes and the degree sequence of the considered undirected network20. Therefore, by exploring the space 
of configurations generated by binary node metadata, we can discriminate those that are not of interest by com-
paring the obtained values of D and H  with their respective lower bounds, upper bounds and expected values. 
Moreover, by exploiting the geometric properties of such a space, our method is able to guarantee a high efficiency 
and scalability, and thus produce results without any computational constraints. We test our methodology on two 
real networks of heterogeneous nature for which we identify the node metadata that better explain the observed 
network structure.

To complement the analysis related to the relevance of node metadata, we also consider redundancy in terms 
of how such metadata are assigned over the network nodes. The interrelation between these two dimensions of 
relevance and redundancy can be schematised through the introduction of the Redundancy-Relevance diagram 
(R-R diagram) which provides fruitful insights for the interpretation of networked systems by embedding exter-
nal sources of information.

Dyads types and the Dyadic Effect
Types of dyads.  A network can be represented as a graph with n nodes and m links connecting couples of 
nodes. We consider a given binary characteristic c, which can assume, for simplicity, the values 0 or 1 for each 
i in n. The n nodes can be divided into two subsets: n1, the set of nodes with ci = 1, and n0, the set of nodes with 
ci = 0. Thus, n = n1 + n0. Consequently three types of dyads, i.e. links and their two end nodes, can be identi-
fied in the network: (1 - 1), (1 - 0), and (0 - 0). The amount of each dyad type is labelled as m11, m10, m00, and 
m = m11 + m10 + m00, where m is the total number of links in the network. If the characteristics are randomly 
distributed among the n nodes, then any node has an equal chance of having the property 1 and the values of m11 
and m10 are:
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 is the network density (i.e. the average probability that two nodes are connected). Additionally, 

m11 and m10 are bounded within specific ranges established, as explained in20, by the relationship between the 
degree sequence DG of the network and the quantity n1. Being di the degree of node i, such bounds can be writ-
ten as:
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Given a degree sequence DG, by using the quantities n1 and n0, which identify the amount of nodes with fea-
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0 1 . In Equation 3, the first term is the number of links in the 
network, the second term is the number of links in a clique of size n1, while the third term is the number of links 
in the sub-graph with n1 nodes and maximum degree-sum (i.e. with degree sequence D n( )G

H
1 ). In Equation 4, the 

first term is the number of links in the network, the second term is the number of links in a bipartite graph with 
partitions of size n1 and n0, while the the third term is the minimum between the number of m10 deriving from the 
degree partition ∪D n D n( ) ( )G

H
G
T

1 0  and the number of m10 deriving from the degree partition ∪D n D n( ) ( )G
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0 1 . 
The second term of Equation 5 counts the minimum number of links among the n1 nodes in the graph deriving 
from the partition ∪D n D n( ) ( )G

H
G
T

0 1 , i.e. the amount of m11 which is realizable from the residual degree of the 
partition D n( )G

T
1 . Considering that any connected realization with n1 ≠ {0, n} has at least one m10, the second term 

of Equation 6 counts the minimum number of links between the n1 and n0 in the case the n1 are arranged into a 
clique. The bounds to m00 can be obtained using the same rationale as that of m11.

The dyadic effect.  Within the space defined by the bounds, relevant deviations of m11 and m10 from the 
expected values m11 and m10 denote that attribute 1 is not randomly distributed. Such deviations can be computed, 
in a compact way, through the introduction of two measures called dyadicity D and heterophilicity H, defined as:
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If the distribution of node metadata is dyadic, D > 1, it indicates that nodes with the same attributes are more 
likely to link among themselves than expected in a random configuration. Alternatively, if D < 1, the distribution 
is anti-dyadic, meaning that similar nodes tend to connect less among themselves than expected in a random 
configuration. The distribution is defined as heterophilic, with a value H > 1, highlighting that nodes with the 
same attributes have more connections to nodes with different features than expected randomly. Otherwise, with 
a value H < 1, the distribution is considered as heterophobic, meaning that nodes with certain attributes have 
fewer links to nodes with diverse properties than expected randomly. Dyadicity and heterophilicity define a 
two-dimensional space called H–D space; a region whereby the way in which binary node metadata are distrib-
uted can be investigated. Then, if provided with a set of node metadata, such metadata can be analysed one at the 
time, computing for each one the deviation of its distribution from random and the correlation with the network 
structure using the values of D and H4. Moreover, correspondingly with the previous bounds, D ranges from 
D m m/min

l
11 11=  to D m m/max

u
11 11=  and H ranges from H m m/min

l
10 10=  to =H m m/max

u
10 10. D and H conse-

quently allow us to gain some important insights into the meaningfulness of a property shared by a certain num-
ber of nodes n1 ∈ n. The correlation between the distribution of a given property c and the underlying network 
topology can be visualized through the phase diagram; an instrument utilized to represent the admissible config-
urations in a graph. The graph depicted in Fig. 1 is an example of a network with n = 25, m = 32 and in which 
n1 = 5 in one case and n1 = 15 in the other. The black nodes represent two configurations which are random 
instances among the ( )n

n1
 possible ones.

The phase diagram depicts all the admissible combinations of m10 (x-coordinate) and m11 (y-coordinate) and 
each corresponding square collects the number of the assignment of n1 nodes over the set n for every fixed m10 
and m11. In such diagrams, we can observe how the value of n1, together with the network topology, is able to 
affect the shape of the phase diagram, which embeds a wide array of configurations with different degeneracy 
values. The degeneracy measures the amount of different configurations that provide the same of amount of m11 
and m10. Investigation into the areas with a high degeneracy is also important since highly degenerative points are 
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close to the expected values of m11 and m10, meaning that highly degenerative configurations can be considered 
as less significant than low degenerative ones. A direct correspondence exists among the m10 and m11 axes and, 
respectively, H and D. The most typical configurations, i.e. those close to the expected values for which H = D = 1, 
are supposed to lie within the core of the phase diagram; consequently, the phase boundaries, being far from the 
degenerative area, are supposed to indicate atypical configurations.

In order to shed light on the differences between the assortativity coefficient r3 and the metrics D and H we 
provide an example to discuss such quantities. We take into account a small network with n = 43, m = 45 and 
n1 = 4, where we have the four higher degree nodes having metadata value ci = 1, as displayed in Fig. 2. The net-
work displays a strong disassortative mixing with respect to binary metadata (r = −0.76), meaning that nodes 
with same metadata values tend to avoid each other. The analysis of the dyadic effect shows a different and more 
detailed perspective since the value of dyadicity is D = 20 while the value of heterophilicity is H = 4.8. By relying 
only on the value of assortativity, one should expect a higher heterophilicity and a lower dyadicity. In fact, the pos-
itive value of H confirms the insight from assortativity (i.e. different nodes are interconnected) while the positive 
value of D denotes the presence of tightly interconnected nodes holding ci = 1, thus adding information to the 
value of assortativity. In more detail, the disassortative mixing at global level hides the presence of an important 
local substructure (the so called rich-club21–23) in which similar nodes are tightly connected.

The approach of4 has been adopted thanks to its peculiarity in bringing together certain endogenous elements 
related to the topology of the network and some other exogenous elements related to node characterization; how-
ever, this only applies to very small networks, e.g. around 50 nodes, due to the difficulty that grows exponentially 
with the network size. Indeed, this method requires the computation of all the admissible combinations ( )n

n1
. The 

computational complexity of the phase diagram is therefore bounded by such amount of combinations that can 
be estimated, in the worst case (i.e. when n1 = n/2), to be O(2n) times the number of metadata. Such a value can be 
computed using the Stirling’s approximation, starting from the binomial coefficient formula (further details are 
reported in SI).

When real networks with a large number of nodes and several characteristics are considered, this methodol-
ogy cannot be used. Therefore, a different empirical approach should be taken into account.

Results
Quantifying relevance.  When we have several node metadata referring to the nodes of a single network, 
we should take into account two aspects:

Figure 1.  Two instances of the phase diagram with n1 = 5 and n1 = 15 embedded within the feasible region 
defined by the bounds (represented by dashed lines). The two phase diagrams are represented above the two 
networks from which they are computed. The networks have the same topology with different amounts of n1 
represented as black nodes.
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	 i)	 The comparison of a certain configuration with the related degeneracy area and boundary of the phase 
diagram may be unfeasible due to computational issues.

	 ii)	 For any different value of n1 the feasible region of the dyadic effect (as well as the shape of the phase dia-
gram) is subject to changes as displayed in Fig. 1.

Therefore, when we aim to evaluate the relevance of a certain set of metadata, we should take into account 
these two aspects together with the following consideration: the H–D space is asymmetrical with a unique pivotal 
point (common for each value of n1) represented by H = D = 1 and each of its four internal regions has a different 
size and meaning, as explained in the previous Section.

Taking into account these three observations, we should evaluate each point in the H–D space with respect 
to the boundaries of its own region, and normalize its value with the maximum it can assume in such a region. 
As shown in Fig. 3, we call region I the Heterophobic-Dyadic region in which the most significant configura-
tion is that with minimum heterophilicity and maximum dyadicity, i.e. the configuration with H = Hmin and 
D = Dmax. We call region II the Heterophilic-Dyadic region in which the most significant configuration is that 
with maximum dyadicity and maximum heterophilicity, i.e. the configuration with H = Hmax and D = Dmax. We 
call region III the Heterophilic-Antidyadic region in which the most significant configuration is that with maxi-
mum heterophilicity and minimum dyadicity, i.e. the configuration with H = Hmax and D = Dmin. We call region 

Figure 2.  Toy network displaying disassortative mixing but high dyadicity and heterophilicity.

Figure 3.  The H–D space bounded by the values Hmin, Dmin, Hmax, Dmax and the four different regions in which a 
certain configuration of node metadata can lie. The point from which each vector vi originates is H = D = 1, i.e. 
the point in which m m11 11=  and =m m10 10.
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IV the Heterophobic-Antidyadic region in which the most significant configuration is that with minimum het-
erophilicity and minimum dyadicity, i.e. the configuration with H = Hmin and D = Dmin. Once n1 has been set, the 
most significant configurations can be represented by vectors, called vI, vII, vIII, and vIV, starting from the pivotal 
point H = 1, D = 1 and ending in the four vertices of the H−D space as shown by the green vectors of Fig. 3. 
These vectors represent the diagonals of the four areas respectively, i.e. the vector of maximum length within the 
considered region.

Any given vector of node metadata can be represented, for a fixed value of n1, on such a space in the specific 
region to which it belongs, depending on the values H and D, and compared with the diagonal related to the 
considered region. The comparison of each vector with the diagonal of the related region can be performed by 
projecting the considered vector on such a diagonal and normalizing its value by dividing it by the length of such 
a diagonal, as shown in Fig. 4. For instance, suppose that we have two characteristics, c1 and c2, with an equal 
amount of n1 and the corresponding points (H1, D1) and (H2, D2). In this case it would be clearly difficult to 
unambiguously identify which one of the characteristics explains better (i.e. is more relevant with respect to) the 
network structure in absence of the phase diagram.

Therefore we can compute the vectors v1 and v2 together with their angles θ1 and θ2 with respect to D = 1 and 
project them onto the diagonal of the region in which they lie, obtaining the quantities p(v1) and p(v2). In such a 
way, we can make a consistent comparison of the vector length with the maximum it can reach in the considered 
region and compute the significance of the vectors v1 and v2 as the ratio =r p v

v1
( )1

I
 and r p v

v2
( )2

II= . Finally, we can 

compare r1 and r2. The pseudocode related to the proposed methodology is reported in SI (while code can be 
found at https://github.com/cinhelli). The computational complexity of our method equals the calculation of 
algebraic relations (that run in constant time) times the number of metadata, thus it can be considered an O(1).

In the following section, we apply the proposed methodology to two real-world networks. The first is a tempo-
ral network from the technological domain, with node metadata that are treated in order to be binary. The second 
case is a static network from the biological domain, which has been provided with binary node metadata.

Inter-organizational innovation network.  Inter-organizational networks have been identified as one of the crit-
ical factors in the successful implementation of innovations that allow for the development and achievement 
of new ideas24. Members of inter-organizational networks are linked by joint ventures, licensing arrangements, 
management contracts, sub-contracting, production sharing and R&D collaboration. We apply the proposed 
methodology to the case study of an initiative financed by the European Commission called Enterprise Europe 
Network (EEN), in which nodes are member countries of the network and links represent partnership agree-
ments of technology transfer that exist among them25. The members of the network are more than 600 organiza-
tions from 54 countries, including universities, research institutes, chambers of commerce, technology centres 
and development agencies. The parties involved sign a partnership agreement (i.e. a long-term collaboration of 
technology transfer; hereafter referred to as PA) when the cross-border partner search has been finalized. We 
analyse the dataset in conjunction with the executing agency of the network (EASME), which covers the span 
from 2011 to 2014 among the EEN countries. Thus, two nodes, say i and j, are adjacent through a link if there is 
at least one connection (a PA formalized by network clients, supported by the EEN members) between them. We 
analyse the EEN by means of an unweighted graph where the connections between nodes are either present or 
not. In particular EEN in 2011 has n = 48 nodes and m = 285 links, EEN in 2012 has n = 49 nodes and m = 357 
links, EEN in 2013 n = 51 nodes and m = 317 links and, finally, EEN in 2014 has n = 52 nodes and m = 309 links.

Figure 4.  Vectors v1 and v2 related to two different binary node metadata with the same amount of n1. In 
order to evaluate the relevance of v1 and v2 and make a consistent comparison between the two, each of them 
is projected (p(v1) and p(v2)) onto the diagonal (vI and vII) of the respective space in order to be normalized. 
The two vectors are supposed to have the same amount of n1 in order to share the same bounds and thus be 
compared in the same space.
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For the analysis of the node characteristics, we refer to the specific node metadata of several indexes from 
those constituting the Global Innovation Index (GII). The indicators that we take into account are: GDP per 
capita (GDPpc), Institutions (INST), Human capital and research (HCR), Infrastructure (INFR), Market sophis-
tication (MS), Business sophistication (BS), Knowledge, technology and scientific outputs (KTSO), and Creative 
outputs (CO). Note that we processed the metadata in order to divide the characteristics into two bins (i.e. we 
consider dichotomized variables). Considering for each index the average as threshold value, the first bin of size 
n1 contains the over-performing EEN countries, i.e. those with an index value greater than the average. The other 
bin of size n0 contains the under-performing EEN countries, i.e. those with an index value less than the average. 
Such a procedure seems appropriate in the case of the EEN, since the considered indicators display a relatively 
homogenous distribution across the years (see SI). In general, the binarization of metadata is a procedure that is 
not appropriate for every distribution of scalar quantities. In the case the distribution of metadata is heteroge-
neous, e.g. it presents a fat-tail, we suggest to adopt other methods for partitioning the distribution such as the 
characteristic scores and scale (CSS) method described in26.

The results, by means of the relevance index, are reported in Fig. 5.
The analysis shows that the performance of EEN countries, in terms of innovation and technology transfer, 

was influenced in the beginning of the observed period by the determinants related to Infrastructure and GDP 
per capita, meaning that such drivers play a relevant role in the enhancement of the innovation process. Indeed, 
the innovation capacity at country level depends on the presence of an innovation infrastructure that is strong 
enough to support research and higher education. In fact, in the late period, the growing importance of invest-
ment into human capital and research emerges. This result shows how a knowledge-based strategy is required to 
encourage innovation through a supportive ecosystem.

From Fig. 5, we observe a levelling process in terms of how relevant are the metadata throughout the four 
years. This process does not occur for two metadata, namely GDP and INFR, because their influence was predom-
inant since the moment the observation period began. Such evidence suggests that during the process of network 
formation, GDP and INFR are initially enabling factors while, as time goes by, other indexes start to show their 
influence. These results confirm that GDP and INFR are facilitating factors for R&D capacities at country level 
while, over time, a more balanced situation occurs. The levelling process can be attributed to the scope of the 
EEN initiative, which intends to promote innovation and cooperation within the European Union regardless of 
any cross-country differences. Further details about EEN and tables of the results are reported in Supplementary 
Information.

From a more technical point of view, the results of our method display a relatively high accuracy in quantify-
ing the relevance of node metadata. Indeed, we statistically validate the obtained relevance values by computing 
the probability of finding a higher relevance over a set of 1000 reshuffled vectors of metadata (i.e. vectors with 
permuted binary entries). Considering the case of EEN in 2011 (Table 1) we note that the higher the relevance 
score r the lower the probability pr of finding relevant metadata assignments in the set of reshuffled vectors. While 
computing the probability pr we also compute two other probabilities pD and pH that can give us an idea of the 
significance of the obtained values. Since the observed configurations are all dyadic and heterophobic pD is the 
probability of finding a higher value of D while pH is the probability of finding a lower values of H. In the consid-
ered case the values of pD and pH are in accordance with the relevance score.

Protein-protein interaction network.  Another real case study is represented by the identification of essential 
functions of proteins in a protein-protein interaction (PPI) network. A PPI is a mathematical representation of 

Figure 5.  Two different ways of visualizing the relevance of the considered node metadata. The levelling process 
observed during the four years suggested by the ball plot (left) is then confirmed by the radar plot (right) in 
which each line corresponds to a year of observation.
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the physical interactions between proteins in a cell. Such a system provides several insights into protein function 
and allows one to uncover the organizational principles of functional cellular networks. Given that the cells of 
every organism require the presence of some essential proteins in order to perform their function, the destruction 
of such proteins entails the death of the organism. Therefore, the recognition of relevant proteins becomes impor-
tant when the aim is to remove pathogenic organisms for which purpose-specific drugs need to be designed27. We 
take into account the PPI of Saccharomyces cerevisiae, which was compiled by28 from the data observed by29 by 
identifying 80000 interactions among 5400 proteins and assigning each interaction a confidence level. The con-
sidered network dataset corresponds to the largest connected component of this network made up of m = 11855 
interactions between n = 2675 proteins. As node metadata, we consider the protein function as classified by the 
original Munich Information Center for Protein Sequences (MIPS). The result carried out by our method, i.e. 
the high relevance of the protein function associated to the category P (protein synthesis) as shown in Fig. 6, is 
somewhat in accordance with that of4 in which such a category displays a high dyadicity (D = 16.9, H = 1.03). 
The importance of category P is also confirmed by the correlation between the actual distribution of binary node 
metadata and the degree of the nodes of such a class (ρ = 0.36). In other words, the relevance of the class P is fur-
ther confirmed by the (merely structural) importance of the associated nodes. Further details about each protein 
function and tables of the results are reported in Supplementary Information.

Considering the values of pr reported in Table 2 we note that the higher the relevance score r the lower the 
probability pr of finding relevant metadata assignments in the set of reshuffled vectors. The values of pD and pH 
may display, in this case, a certain unbalance (e.g. function P) that explains which of the dimensions among D and 
H contributes more to the observed relevance.

n1 D H r pD pH pr

INFR 26.00 1.72 0.82 0.37 0.000 0.000 0.001

GDPpc 26.00 1.60 0.84 0.31 0.010 0.003 0.009

HCR 26.00 1.40 0.87 0.22 0.047 0.008 0.077

BS 27.00 1.36 0.88 0.20 0.047 0.010 0.088

MS 23.00 1.42 0.92 0.19 0.058 0.029 0.164

CO 24.00 1.33 0.91 0.16 0.083 0.017 0.210

KTSO 23.00 1.25 0.93 0.12 0.142 0.039 0.386

INST 26.00 1.11 0.96 0.06 0.289 0.182 0.645

Table 1.  Values associated to the analysis of the dyadic effect for the EEN in 2011.

Figure 6.  Two different ways of visualizing the relevance of the considered node metadata. In both diagrams 
it is possible to see how the functional protein category P (protein synthesis) is clearly the more relevant for the 
observed network structure.
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Relevance and redundancy of node metadata.  The process of identifying of relevant binary node 
metadata has a conceptual interrelation with the procedure of feature selection, used in machine learning to 
reduce high-dimensional datasets, but it embeds certain structural aspects that derive from the network with 
which we are provided. The aim of feature selection is to trim data that are either irrelevant or redundant without 
information losses (we may observe relevant data that are redundant among each other). While the relevance of 
the considered metadata is computed with the proposed procedure (thus we can discern among relevant vs irrel-
evant node metadata), the redundancy of such metadata has not been taken into account.

In the case of node metadata, the redundancy can be interpreted as the overlap between the assignments of 
different metadata values over the nodes of the same network. The concept of redundancy differs from that of 
degeneracy since the latter is the result of each assignment in terms of edge counts. Indeed, we can’t compute 
the degeneracy of a certain node metadata assignment, while we can state that a certain m10 - m11 couple (i.e. the 
outcome of the assignment) displays a certain amount of degeneracy.

In our context, and in line with the geometry-based reasoning behind the relevance measure, the redundancy 
of different node metadata assignments can be defined in terms of cosine similarity among binary vectors of node 
metadata. Therefore, when two binary vectors of metadata are identical (maximum redundancy), the cosine of 
the angle related to the dot product of the two vectors will be 1, while when they are completely different (min-
imum redundancy), the cosine will be 0. Obviously, for a fixed network topology, two completely redundant 
vectors of binary node metadata will display the same relevance and will result in the same configuration (which, 
consequently, will display the same degeneracy). However, we may observe different assignments, more or less 
redundant, generating different m10 − m11 couples with different degeneracy and relevance scores.

As our aim is to understand how the metadata relate to the network structure, the redundancy among differ-
ent metadata carries important information. Indeed, while a couple of metadata with homogeneous nature (for 
instance, two economic indexes that normally display positive correlation) and high redundancy may not be of 
interest, a couple of metadata of heterogeneous nature and high redundancy may be of great interest since unre-
lated features are retained by the same nodes.

Therefore, the relationship between relevance and redundancy can be schematised in some exemplificative 
configurations occurring over a Redundancy-Relevance diagram (R-R diagram), as displayed in Fig. 7.

In case A) the couple of node metadata has a high relevance and a high redundancy. The two metadata are 
both important and they are distributed similarly over the network nodes. Case A) becomes of interest if the two 
metadata are of heterogeneous nature.

In case B) the two metadata are distributed similarly over the network nodes and one is relevant while the 
other is not. This may occur because some structurally important nodes, retain the considered metadata and 
determine the relevance of the related configuration. However, the structural importance of such nodes is 
intended in a very general sense, since they may have an impact on the measure of relevance for different reasons, 
such as having high degree or belonging to the same community. Therefore, in case B) it would be of interest to 
further investigate in which aspects (entries) the two vectors of metadata differ.

Cases C) and D) are not of interest since both the vectors of metadata, either redundant or not, are irrelevant.
In case E) both the metadata are relevant but they are assigned differently over the network nodes. This is an 

interesting case since nodes with different features (low redundancy) show relevant assignments (high relevance). 
The considered nodes are different because of the metadata vector and, since the two assignments are relevant, it 
would be also of interest, in this case, to investigate the structural heterogeneity of such nodes.

In case F) the two vectors of node metadata differ from one another in that one is relevant while the other is 
not. This last case does not have peculiar implications.

As an example, we compute the R-R Diagram in the case of EEN for the year 2011. The R-R Diagram wouldn’t 
inherently provide interesting results for the PPI network since, in such a case, there is no overlap among the dif-
ferent binary node metadata (i.e. there are no nodes that belong to multiple categories). The R-R diagram of Fig. 8 
(left) provides interesting insights into the distribution of metadata over the network nodes. Indeed, we observe 

n1 D H r pD pH pr

P 248 16.90 1.03 0.361 0.000 0.363 0.000

T 240 6.30 1.00 0.115 0.000 0.498 0.218

G 96 9.73 0.60 0.052 0.000 0.001 0.427

F 171 4.66 0.54 0.048 0.000 0.000 0.410

E 95 7.51 0.61 0.039 0.000 0.001 0.429

M 278 2.35 0.58 0.037 0.000 0.001 0.399

O 171 3.30 0.49 0.030 0.000 0.000 0.405

B 98 4.82 0.39 0.023 0.000 0.000 0.444

D 238 1.69 0.43 0.015 0.007 0.000 0.445

C 122 2.68 0.58 0.013 0.001 0.000 0.483

A 51 3.02 0.46 0.008 0.009 0.000 0.560

U 483 1.10 0.63 0.008 0.202 0.000 0.682

R 45 1.46 0.44 0.002 0.156 0.001 0.835

Table 2.  Values associated to the analysis of the dyadic effect for the PPI network.
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how all the considered indexes present a high redundancy in their distribution (high value of cosine similarity) 
but they can display very different values of relevance. An interesting instance deriving from the R-R Diagram is 
represented by the relationship between two indexes: INFR and INST. These two indexes are those with the high-
est and lowest relevance respectively, and they display a high redundancy (0.808) while also displaying the same 
value of n1 = 26 and differing in only four entries. Given such high redundancy, the difference in the relevance 
scores of the two assignments is determined by the properties of only few nodes, which are consequently deemed 
important from the structural point of view. Such nodes that retain the binary metadata in the case of INFR (the 
metadata with highest relevance) are Spain, Israel, Italy and Lithuania (ES, IL, IT and LT). This therefore means 
that we can briefly investigate the structural importance of such nodes over a diagram that embeds two popular 
centrality measures; namely, degree and betweenness, as shown in Fig. 8 (right). On such a diagram these nodes 
are clearly recognizable, however, their contribution to relevance, in accordance with their structural importance, 

Figure 7.  Redundancy-Relevance diagram with six exemplificative configurations. The relevance is computed 
as explained in the Results Section, while the redundancy is computed via the cosine similarity among different 
couples of node metadata.

Figure 8.  The left panel displays the Redundancy-Relevance diagram for the Enterprise Europe Network 
during year 2011. The various node metadata are represented with a different color and each couple of indexes 
is compared in terms of the redundancy of their assignments. A dashed line connects different couples of 
metadata in order to distinguish the relationship occurring among such couples. The right panel displays 
the countries of the Enterprise Europe Network during year 2011 over a Degree-Betweenness diagram with 
logarithmic axes. Such a diagram is able to quantify the importance of different nodes in terms of the size of 
their neighbourhood (degree) and of information flow (betweenness).
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is not homogeneous. Indeed, Spain and Italy are those contributing the most to the relevance index, being highly 
central in terms of both degree and betweenness centrality.

Discussion
In the study of networks, it is important to determine whether certain exogenous features of node, or metadata, 
impact on the formation of links. This aspect has been studied through the correlation of the network structure 
with the node metadata, i.e. analysing the presence of assortative mixing. As an alternative to assortative mix-
ing, the correlation of the node metadata with the network structure can be studied at a microscopic level by 
considering a set of node metadata, their distribution over the network nodes and the resulting amount of dyad 
types. The departure from random amounts of each dyad type is computed in order to quantify how the network 
structure and distribution of node metadata are correlated. Thus, such correlation is computed via the measures 
involved in the study of the dyadic effect, namely heterophilicity (H) and dyadicity (D). The values of H and D 
can be contextualized over a phase diagram, which entails a high computational complexity, or evaluated through 
other empirical assessments of the H–D space. The main drawback of such approaches is that they suffer from 
a certain level of inaccuracy since they fail to consider the extension of the region where the dyadic effect takes 
place, which changes according to n1.

Considering the several difficulties in the study of the relationship of the node metadata with the network 
structure, this paper proposes a new method that is able to provide a ranking of binary node metadata. By apply-
ing such an approach, we have been able to detect the metadata that are relevant with respect to the observed net-
work structure. This method is characterized by high efficiency and scalability, which are achieved by exploiting 
the geometry of the H–D space in which such metadata are embedded. The efficiency of the method becomes of 
particular interest when dealing with large networks which are provided with several node metadata or with net-
works that evolve over time, as we have shown for two real-world networks. The proposed index suffers of certain 
limitations. The usability of the method is restricted to the case of binary node metadata. However, this constraint 
can be bypassed through the dichotomization of such metadata with a loss of information that depends on the 
threshold for dichotomization taken into account.

Additionally, such an index is at global level and lacks of local information. In other words – similarly to 
other indicators, such as the global clustering coefficient or the assortativity coefficient – it compresses all the 
information we have about the interaction between the structure and the metadata in a unique index losing other 
information. Thus, the relevance score should be used to prioritize the analysis of certain metadata against others 
and should be considered coupled with the respective values of H and D as well as other measures.

Future work will analyse more in depth the relationship between the network and the node metadata. In par-
ticular, a long term challenge could be to consider the interrelations of the structure and metadata in terms of the 
admissible value of assortativity and, in so doing, prioritise metadata with more accuracy.

Another important contribution presented in this paper is represented by the Redundancy-Relevance dia-
gram. This idea of embedding the redundancy in terms of assignments of node metadata let us evaluate, at the 
same time, the assignment of node metadata together with their relevance. This result is a new perspective in the 
evaluation and embedding of external sources of information in complex networks. Thus, while the method that 
we introduced has a conceptual interrelation with the feature selection process for what concerns the computa-
tion of the relevance of data, it differs from feature selection in a fundamental aspect in terms of evaluating redun-
dant data. Such data are normally trimmed in machine learning contexts, where a model needs to be trained, 
while they are preserved and evaluated, by using the R-R diagram, in our context. The evaluation of the two 
dimensions of redundancy and relevance without data reduction can be helpful in getting a better understanding 
and interpretation of the considered system.
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