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Abstract

Accumulating evidence suggests that humans could be considered as holobionts in which the gut microbiota play essential 
functions. Initial metagenomic studies reported a pattern of shared genes in the gut microbiome of different individuals, leading 
to the definition of the minimal gut metagenome as the set of microbial genes necessary for homeostasis and present in all 
healthy individuals. This study analyses the minimal gut metagenome of the most comprehensive dataset available, including 
individuals from agriculturalist and industrialist societies, also embodying highly diverse ethnic and geographical backgrounds. 
The outcome, based on metagenomic predictions for community composition data, resulted in a minimal metagenome com-
prising 3412 genes, mapping to 1856 reactions and 128 metabolic pathways predicted to occur across all individuals. These 
results were substantiated by the analysis of two additional datasets describing the microbial community compositions of 
larger Western cohorts, as well as a substantial shotgun metagenomics dataset. Subsequent analyses showed the plausible 
metabolic complementarity provided by the minimal gut metagenome to the human genome.

DATA SUMMARY
The datasets analysed during the current study are available 
from their original sources; Global and Flemish datasets can 
be downloaded from MG-RAST and EBI under accession 
numbers qiime:850 and EGAS00001001689, respectively. 
Core Kyoto Encyclopedia of Genes and Genomes (KEGG) 
orthology identifiers, reactions and compounds are available 
within File S1 (available with the online version of this article). 
The scripts employed in this study have been deposited at 
GitHub (​github.​com/​marcosparrasmolto/​Picrust_​analysis).

INTRODUCTION
The study of the human gut microbiome has drawn from 
different disciplines (e.g. microbiology, ecology, genomics), 
and has substantiated the idea that humans could be consid-
ered as holobionts [1] in which the gut microbiota play essen-
tial functions [2, 3]. Knowledge of what constitutes a healthy 
gut microbiome is regarded as pivotal [4] for the development 
of predictive models for the diagnosis and management of 
gut microbiome-related maladies. However, the strong inter-
subject variability in community composition observed in 

cross-sectional studies [5] hindered an early definition of a 
set of bacterial species common to all healthy humans [6]. 
While recent efforts have been able to detect such a health-
related set in terms of shared taxonomic assignments [4, 7], 
and more precisely in terms of shared 16S rRNA sequence 
clusters of varying phylogenetic depth [8] whose existence 
has been related to a shared intra-cluster ecology [9], the idea 
that a healthy gut microbiome ‘core’ may exist only in terms 
of function [10] remains widespread.

In this regard, early high-throughput shotgun metagenomic 
studies already reported a strong pattern of shared genes in 
the gut microbiome of different individuals [11, 12]. These 
results led to the definition of a novel concept, the minimal 
gut metagenome [12], defined as the set of microbial genes 
necessary for the homeostasis of the whole gut ecosystem, and 
expected to be present in all healthy humans. The idea that 
the gut microbiome provides a specific set of functionalities 
shared by all individuals is intuitive. However, it is still unclear 
whether these functionalities could arise from a shared set 
of genes or from different combinations of genes. Moreover, 
if the host were to play a greatly diminished role as a selec-
tive force on its resident gut microbiome, when compared to 
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external factors such as diet, then there would be no set of 
microbial functionalities shared by all humans. Nevertheless, 
despite its potential as a conceptual framework with which 
to study the gut ecosystem, the minimal gut metagenome 
concept has received little attention in the literature following 
its initial definition and description in terms of various ubiq-
uitous metabolic pathways [10–12] and recent description of 
prevalent pathways in a larger cohort [13].

Hence, the aim of the present study was to recapitulate the 
minimal human gut metagenome conceptual framework and 
provide a proof-of-concept of its utility. More specifically, we 
set out to identify the ‘core genes’ (defined as the set of genes 
detected in all individuals), jointly comprising the minimal 
gut metagenome, as well as the ‘core reactions’ (defined as 
the set of metabolic reactions detected in all individuals). 
According to the minimal gut metagenome concept, the 
former should be related to gut homeostasis at large (i.e. not 
only metabolic homeostasis). However, knowledge on the 
latter should improve our understanding of the gut microbi-
ome’s ability to augment human metabolism.

For knowledge of the minimal gut metagenome to be 
most useful, it should pertain more to Homo sapiens as a 
species and, hence, should not be solely focused on Western 
cohorts. Unfortunately, most human gut shotgun metagen-
omic datasets are very restricted in terms of lifestyles and 
ethnicities, mostly arising from Western and (or) indus-
trialist cohorts [10–14]. This study analysed the minimal 
gut metagenome on the basis of 16S rRNA gene-based 
metagenomic predictions from the most comprehensive 
dataset available (dataset Global – 382 individuals from 
rural Malawi, metropolitan USA and Venezuelan Amer-
indians [15]; see Table 1), which despite its comparatively 
smaller cohort size is far more inclusive in terms of global 
distribution, lifestyle and ethnicity, specifically including 
agriculturalist and industrialist societies from three conti-
nents. We then compared the Global dataset with two larger 
16S rRNA datasets from Western cohorts (dataset Flemish – 
873 individuals from Belgium [4]; and dataset Twins – 2727 
individuals from the UK [16]), as well as to a substantial 
shotgun metagenomics dataset (dataset Shotgun – gene 
abundances from 123 individuals from the USA, Europe 
and China obtained from the 2017 paper by Bradley and 
Pollard [17]), and compared with the human genome to 

assess the degree to which the minimal metagenome may 
complement and expand its host’s metabolic potential.

METHODS
Datasets
All datasets comprised 16S rRNA gene sequences obtained 
using primer pair F515–R806 targeting the V4 hypervari-
able region, with the exception of dataset Shotgun, which 
included Kyoto Encyclopedia of Genes and Genomes 
(KEGG) orthology (KO) identifier [18] abundances 
obtained through shotgun sequencing of metagenomic 
DNA [17]. All sequence data was derived from stool samples 
from healthy subjects over 3 years old, with no history of 
recent antibiotic treatment prior to sampling (see Table 1).

Metagenomic predictions
qiime [19] scripts were employed during initial sequence 
processing (File S1). Briefly, datasets were independently 

Impact Statement

The gut microbiome is essential to our wellbeing and, 
thus, knowledge of what constitutes a healthy micro-
biome is regarded as pivotal for the management 
of microbiome-related maladies. In this regard, the 
minimal gut metagenome is defined as the set of micro-
bial genes necessary for the homeostasis of the whole 
ecosystem, and expected to be present in all healthy indi-
viduals. Despite its interest, it had received little attention 
following its initial definition and overview in Western 
cohorts. We analysed the minimal gut metagenome in 
an inclusive dataset in terms of global distribution, life-
style and ethnicity, significantly including agriculturalist 
and industrialist societies from three continents. The 
results, browsable and substantiated with complemen-
tary datasets, now pertain more to our species, rather 
than to industrialist societies of particular ethnic and 
geographical backgrounds, and indicate that the human 
gut minimal metagenome could extensively contribute to 
the human holobiont’s metabolic potential.

Table 1. Characteristics of the datasets

Name Geographical distribution No. of individuals Sequence depth* Read length (bp) Sequencing technology 
(Illumina)

Global Malawi, USA, Venezuela 382 >300,000 100 GAIIx

Twins UK 2727 >15,000 2×250 MiSeq

Flemish Belgium 873 >8,000 2×250 MiSeq

Shotgun USA, Europe, China 123 15,000,000 2×75, 2×100 GAIIx, HiSeq

*Values represent final sequence depth per sample before analysis (i.e. after chimaera removal and subsampling to common depth).
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processed as follows. Firstly, they were subsampled to 
the minimum common depth. Then, chimeric sequences 
were identified with usearch61 [20] and removed. Finally, 
sequences were clustered into operational taxonomic units 
(OTUs) using Greengenes [21] 0.97 representative sequence 
dataset (May 2013) as a reference using usearch61. Subse-
quently, PICRUSt scripts were employed to first normalize 
OTU abundances by 16S rRNA gene copy number, and then 
transform normalized OTU abundances into KO abun-
dances. Correlation between predictions and measurements 
was evaluated using the nearest sequenced taxon index 
(NSTI; describes the novelty of organisms within a commu-
nity with respect to previously sequenced genomes [22]) as 
a proxy for the Spearman coefficient, as they are strongly 
negatively and significantly correlated [22]. Tax4Fun [23], 
an alternative metagenome prediction pipeline, was also 
employed with the Global dataset following the suggested 
standard procedure.

Since more than one KO group may carry out a particular 
reaction, KO abundances were mapped to KEGG reactions. 
In cases where a KO identifier mapped to more than one reac-
tion, all reactions linked to the KO were scored. KOs and 
reactions appearing in all individuals in the datasets were 
defined as core. Finally, the MinPath algorithm [24] was used 
for biological pathway reconstruction from core KOs.

Metabolic complementarity assessments
Host–microbiome cooperation was assessed with NetCo-
operate [25] using the metabolic complementarity index. 
This index provides a quantification of the extent to which 
two species may support one another through biosynthetic 
complementarity. There is no threshold for ‘complemen-
tarity’ and ‘no complementarity’ and, hence, the metrics 
have to be employed in a comparative manner [25]. Here, 
the index was used to study both moieties of the human 
holobiont: the human genome and the minimal gut metage-
nome. Hence, the reciprocal analysis evaluates the relative 
strength of each moiety complementing the other. To do 
so, core reactions were transformed into linked KEGG 
compounds, and then analysed with NetCooperate. To 

further assess such complementarity, both the core reac-
tions and the reactions encoded by the human genome were 
imported into the interactive metabolic pathway explorer 
iPATH3.0 [26].

RESULTS
The results show that 5865 KO groups were predicted as 
present in Global’s pan-metagenome, while the minimal 
gut metagenome represented 3412 KOs (i.e. the core genes), 
which can in turn be mapped to 1856 reactions (i.e. core 
reactions) and 128 complete metabolic pathways (File S1). 
As could be expected, lowering the prevalence threshold used 
to define core reactions (100 %) increased the number of core 
reactions, but mainly in a gentle-slope linear fashion (Fig. 
S1). The core metagenome was very similar among the three 
distinct sample sets comprising Global (Fig. 1a), with the USA 
set showing the smallest set of core reactions, and less overlap 
with Malawian and Venezuelan samples. However, Global’s 
core reaction set was comparatively similar to those obtained 
using Western-like datasets Twins and Flemish (Fig. 1b).

The presented core reactions were predicted from 16S rRNA 
profiles using an ancestral-state reconstruction algorithm 
(PICRUSt). However, the set of core reactions was substanti-
ated by the use of Tax4fun [23], a taxonomy assignments-based 
approach (Fig. 1c). PICRUSt’s predictions seem conservative 
(more appropriate for a minimum estimate, as intended) since 
they are a subset of Tax4fun predictions. More importantly, 
Global’s core reaction set presented a high overlap to that 
obtained from a substantial shotgun metagenomics dataset 
targeting the human gut microbiome [17], chosen among 
those publicly available based on the number of individuals 
and geographical and ethnic distribution (Fig. 1d). The 463 
reactions described as core in Shotgun but not in Global 
(Fig. 1d) likely arise from the smaller size of the Shotgun’s 
cohort, as well as its increased lifestyle, environmental and 
genetic homogeneity (Table 1). However, the great majority 
of core reactions in Global not described as core in Shotgun 
still presented a very high prevalence in the dataset (Fig. S2); 
1735 out of 1856 (93.5 %) core reactions in Global are also core 

Fig. 1. Venn diagrams depicting the overlap in core reactions between different datasets and software. (a) Different sample sets within 
Global. Values refer to the analysis with the same number of individuals per population (50). (b) Different 16S rRNA datasets. Values refer 
to the analysis with the same number of sequences per sample (8000). (c) Differences between metagenomic prediction software. (d) 
Differences between 16S rRNA (Global) and shotgun metagenomics (Shotgun) datasets.
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reactions (100 % prevalence) in Shotgun. Only 37 (2 %) core 
reactions in Global had a prevalence level <95 % in Shotgun, 
and 6 (0.32 %) reactions had a prevalence level below 75 %. 
No apparent shared functional or taxonomic origin affiliation 
was found for these six reactions. Within the Global dataset, 
there was a positive correlation between prevalence and mean 
abundance (Fig. S3). Nevertheless, while all core reactions 
featured relatively high mean abundance values, many simi-
larly abundant reactions presented lower prevalence values.

In addition to providing an improved description of the 
human minimal gut metagenome, the present study aimed 
to assess its complementarity to the human genome. In this 
regard, the metabolic complementarity judged by the meta-
bolic complementarity index [25] was >2 times larger when 
considering the human metabolism being complemented by 
Global’s minimal gut metagenome, when compared to the 
inverse (0.0807 and 0.0386, respectively).

Considering two metabolites as linked if they represent the 
substrate and product of a core reaction, within the overall 
metabolic map (Figs 2 and S4) 199 microbial metabolites link 
with 89 H. sapiens metabolites through 256 core reactions, 
representing the predicted extended metabolic capability of 
the human holobiont provided by its gut ecosystem. Addition-
ally, the map pinpoints 55 core reactions and 84 metabolites 
with no apparent connection to H. sapiens metabolism, as 
well as 36 core reactions able to link H. sapiens metabolites by 

reactions different to those carried out by enzymes encoded 
within the human genome.

Not surprisingly, several core reactions are implicated in the 
production of short-chain fatty acids, such as butyrate and 
acetate, which are known to have an active role in normal 
human physiology (e.g. fuel for several cell types, regulation 
of gene expression, differentiation and inflammation) [27, 28]. 
Another hallmark of the predicted minimal gut metagenome 
relates to the presence of core reactions implicated in the 
production of several vitamins (B1, B2, B5, B6, B9, H, K1, 
K2, L1, coenzyme B12), several of which had previously been 
shown to be produced by common gut commensals [29].

DISCUSSION
Over the last decade, a large number of studies have gener-
ated shotgun metagenomic sequencing data from human 
faecal samples (for a significant list see the work by Nayfach 
et al. [30]). However, most samples analysed originated from 
diseased individuals, and to a lesser extent infants; thus, they 
are not fit for the purpose of studying the healthy human gut 
metagenome. Available suitable shotgun datasets comprising 
comparatively large cohorts present a narrow geographical 
distribution and originate from individuals living in indus-
trialist societies, such as those from the Human Microbiome 
Project [11] (242 individuals, USA) and MetaHit consortia 
[14] (249 individuals, Europe). A noteworthy exception is that 

Fig. 2. The minimal gut metagenome extends human metabolic potential. Nodes in the map correspond to chemical compounds and 
edges represent enzymatic reactions. The figure provides an iPath3.0 representation of KEGG metabolic pathways, where reactions 
catalysed by enzymes encoded in the human genome appear in blue, while core reactions of the human gut pan-microbiome not 
encoded also by the human genome appear in red (see File S1 for the reaction list allowing web-based visualization and exploration).
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reported by Brito et al. featuring 81 samples from individuals 
from an industrialist society (USA) and 172 individuals from 
a rural society (Fiji) [31]. Unfortunately, this second cohort 
was recruited regardless of health status and, thus, deemed as 
not suitable for the abovementioned purpose.

Indeed, the results presented herein are influenced by the 
fact that the metagenomic prediction approach employed 
is, to a certain extent, biased, as explained below (see 
Limitations section). As such, the core genes and reac-
tions reported should be taken cautiously. Thus, validation 
of each particular core reaction in the ecosystem, as well 
as the possibility of each core metabolite traversing the 
membrane, along with its potential significance to the host, 
is beyond the scope of this study. Nevertheless, returning to 
the three possible scenarios of shared functionality in the 
human gut pan-microbiome postulated above, (i) no shared 
functionality, (ii) shared functionality related to different 
combinations of genes, and (iii) shared functionality related 
to a shared combination of genes, the results are strongly 
supportive of the latter. Thus, we believe that the minimal 
gut metagenome idea indeed represents a potentially useful 
conceptual framework with which to improve our knowl-
edge of the role played by the human gut microbiome on 
maintaining host homeostasis.

According to our results, the human gut minimal metage-
nome could extensively contribute to the human metabolic 
potential. The browsable core reactions reported here (File 
S1) represent a highly restrictive set, since reactions need to 
be present in all subjects to achieve the core status. Using a 
different approach, Abu-Ali et al. recently described a core 
human gut metagenome in samples from 308 healthy indi-
viduals (65–81 year old men, USA) as 407 pathways with 
detectable DNA in at least two samples [32]. Most impor-
tantly, our core reactions were predicted as present in all 
subjects from a cohort including individuals from agricul-
turalist and industrialist societies, also embodying highly 
diverse genetic, ethnic and geographical backgrounds. 
Furthermore, the results were validated using additional 
large-cohort datasets, as well as a substantial shotgun 
metagenomics dataset. Hence, the described minimal gut 
metagenome now pertains more to H. sapiens as a species, 
rather than to industrialist societies of particular ethnic 
and geographical backgrounds. Finally, our results seem to 
indicate that the minimal metagenome has a greater role 
in complementing the human metabolism than the other 
way around.

The fact that the Venezuela samples presented the largest 
core reactions set could be attributed to its presumed more 
cohesive lifestyle. Interestingly, the results indicate that the 
USA population restricted the number of detected core 
reactions, since Venezuela and Malawian samples presented 
an additional 156 reactions with 100 % prevalence in their 
joint dataset, compared to <20 exclusively shared with 100 % 
prevalence between USA samples and any of the other 
groups. Moreover, these values may be conservative, since 
the reference genomes may be biased towards bacterial strains 

more frequent in industrialist countries. This reduction in 
functional overlap provides circumstantial support to the 
emerging concern that industrialist populations may have 
lost the microbial diversity needed to adequately sustain a 
healthy host [33].

The minimal gut metagenome was defined as the set of 
microbial genes necessary for the homeostasis of the whole 
gut ecosystem and present in all individuals [12]. Its essence 
overlaps with the hologenome concept: the combined 
genomes of host and associated microbiota [1]. Our results 
sustain the hologenome concept and, thus, the view of 
humans as holobionts, insofar as they are supportive of the 
existence of a set of microbial metabolic genes present in all 
individuals studied. However, our results cannot be used to 
discern whether the human host and its resident gut micro-
biota can be considered a single unit of evolution [34], the 
strictest holobiont/hologenome definition, or if these terms 
may only refer to a useful eco-evolutionary framework [35].

Limitations
In this study, 16S rRNA gene-based metagenomic predic-
tions were employed in the assessment of the minimal 
human gut metagenome to be able to profit from the more 
comprehensive 16S rRNA datasets. These datasets greatly 
outclass available human gut shotgun metagenomic data-
sets in terms of cohort size, geographical distribution, 
ethnic and lifestyle diversity, and to a certain extent depth 
of sequencing. In a sense, one read in a shotgun metagen-
omics dataset represents one gene count, while one read 
in a 16S rRNA amplicon survey represents, via metagen-
omic prediction, one genome count. However, the use of 
metagenomic predictions presents various limitations and 
possible biases, which have been explored previously [22], 
the most noteworthy being that it only infers the bacterial 
and archaeal component of the metagenome, is significantly 
affected by both the quality of available genome annota-
tions and the fact that available genomes are not evenly 
distributed across the phylogeny, the lack of perfect one-
to-one mapping between genomes and even full-length 16S 
rRNA sequences, and primer bias. Nevertheless, the ability 
to count almost three orders of magnitude more genes in 
a metagenomic sample per sequence (with the number of 
bacterial genes per genome normally in the very few thou-
sands), even as a prediction, is still useful.

Here, functional predictions based on 16S rRNA phyloge-
netic marker gene sequences were obtained using PICRUSt, 
a computational approach that has shown large and 
significant correlation in predicting metagenomic abun-
dances from 16S rRNA measurements (Spearman r=0.82, 
P <0.001) and synthetic communities (Spearman r=0.9, P 
<0.001) [22]. To date, PICRUSt has been used in a myriad 
of scientific works and different research scenarios, such 
as the analysis of environmental samples [36], medically 
relevant communities [37] or in vitro assemblies [38]. The 
authors of the PICRUSt paper state that there is a signifi-
cant negative correlation (Spearman r = −0.4, P <0.001) 
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between NSTI values and Spearman correlation between 
empirical shotgun metagenome abundances and PICRUSt 
predictions based on 16S rRNA sequences [22]. Here, NSTI 
values for the different sample sets of Global (0.135±0.021, 
0.098±0.018 and 0.131±0.023 for Malawian, USA and 
Venezuelan samples, respectively; see Fig. S5) were lower 
(generally correlated with higher correlation between 
metagenomic measurements and 16S rRNA predictions) 
than those previously reported for soil samples (0.17±0.02), 
which showed a significant (P <0.001) correlation between 
predictions and matched shotgun metagenomics assign-
ments [22]. Also, the more extreme NSTI values reported 
for the Human Microbiome Project dataset, with NSTI 
values ranging 0.10–0.15, still presented high correlation 
coefficients between metagenomic measurements and 16S 
rRNA predictions [22].

The NSTI values that we obtained for human gut micro-
biome samples fall within the range of NSTI values for 
samples in the PICRUSt validation that had high correla-
tion between metagenomic abundance measurements and 
16S rRNA predictions [22]. In this regard, an enhanced 
and updated report on the utility, correlation between 
predicted and experimental measurements, and accu-
racy of PICRUSt’s predictions would be welcomed by the 
community, more so since this area of development seems 
to remain active [39, 40]. The values obtained were not 
homogenous among the three distinct sample sets in the 
Global dataset, with values for both the Venezuelan and 
Malawian samples being roughly 35 % higher than that of 
the USA samples. In this regard, the detected functional 
overlap could be somewhat inflated, since the reference 
genome set employed is likely biased towards strains 
obtained from industrialist countries.
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