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Abstract 

Interpretation of genetic variants remains challenging, partly due to the lack of well-established ways of determining the potential pathogenicity 
of genetic variation, especially for understudied classes of variants. Addressing this, population genetics methods offer a practical solution by 
e v aluating v ariant effects through human population distributions. Negative selection influences the ratio of singleton variants and can serve 
as a proxy for deleteriousness, as exemplified by the Mut abilit y-Adjusted Proportion of Singletons (MAPS) metric. However, MAPS is sensitive 
to the calibration of the singletons-b y -mut abilit y linear model, which results in biased estimates for certain variant classes. Building up on the 
methodology used in MAPS, we introduce the Context-Adjusted Proportion of Singletons (CAPS) metric for assessing negative selection in the 
human genome. CAPS produces corrected estimates with more accurate confidence interv als b y eliminating the mut abilit y la y er in the model. 
R etaining the adv antageous features of MAPS, CAPS emerges as a robust and reliable tool. We belie v e that CAPS has the potential to enhance 
the identification of new disease-variant associations in clinical and researc h set tings, offering improved accuracy in assessing negative selection 
f or div erse SNV classes. 
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ost disease-variant association studies these days are hin-
ered by the lack of well-established ways of variant prioriti-
ation, which remains one of the key challenges in modern ge-
omic analyses. The problem of variant prioritization can be
educed to comparing variants based on their potential delete-
iousness. However, for many classes of genetic variation their
verall deleteriousness remains poorly quantified. 
With the ever-increasing size of open databases of human

enetic variation, population genetics methods have the po-
ential to provide the means of variant prioritization that are
ased on patterns of genetic variation that occur naturally
n human populations. One of the key considerations when
nalyzing variants through the population genetics approach
s the variability in mutation rates, which is known to af-
ect variant analysis ( 1 ). Indeed, as some variants have higher
utability—or susceptibility to change—than others, variants
ith high mutability are less likely to be rare and can reach

aturation in large genomic databases. This creates a need for
he use of the finite sites model and mutability correction ( 2 ).

Transversions, CpG transitions and non-CpG transitions
onstitute the three main types of single-nucleotide variants.
ransversions (for example, AAG to ATG) have much lower
utation rates than CpG transitions, because the mutations

hat they create are more complex biochemically. It has been
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shown that trinucleotide sequence context is sufficient to ac-
count for a large proportion of variability in mutation rates
and that the baseline mutability level can be obtained from
the mutation rates of trinucleotide sequences in noncoding re-
gions ( 2 ,3 ). Using this approach, each variant falls into one
of 104 possible groups, as there are 32 trinucleotide contexts
with each having three possible mutations of the middle nu-
cleotide, with the additional 8 groups coming from the 4 CpG
contexts’ medium and high levels of methylation. 

A particular example of a population genetics method that
utilizes this approach is the Mutability-Adjusted Proportion
of Singletons (MAPS) metric ( 4 ,5 ), which can be used as a
tool for estimating negative selection and deleteriousness. The
general assumption in MAPS is that if a particular variant is
damaging, it will be rare in the population, because purifying
selection will be trying to remove it. MAPS scores are calcu-
lated as the scaled excess or deficit of singletons (variants with
allele count of 1), where the expected number is derived based
on context sequence from a singletons-by-mutability linear
model calibrated on a relatively neutral class of variants, using
data from the genome aggregation database (gnomAD). 

Synonymous variants have some unique properties in gno-
mAD, making them a good choice for the calibration of
MAPS ( 4 ,5 ). In particular, these variants have good coverage
in both exomes and genomes and, despite having low overall
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selective pressure, exhibit a background selection component
( 6 ). Importantly, however, in synonymous variants only 100
out of the total of 104 context groups can be observed, due to
the specifics of how the genetic code works. In MAPS, these 4
missing contexts are ignored, as the singletons-by-mutability
model can only be fitted on the 100 contexts that are present
in synonymous variants. 

Here, we show that the mutability layer in MAPS makes its
estimates biased, with the severity of the bias varying depend-
ing on the variant type composition in the dataset of interest.
We present CAPS, the Context-Adjusted Proportion of Single-
tons metric, as a drop-in replacement for MAPS with better
performance. 

Materials and methods 

Score calculation procedure 

CAPS is a new metric of negative selection with the expected
level of rare variation derived on a per-context basis from syn-
onymous variants. 

Even though it has been shown that intergenic variants may
be used as an alternative class of variants for the estimation of
the baseline level of rare variation ( 7 ), we had insufficient ev-
idence that intergenic variants could be used interchangeably
with synonymous variants for the purpose of model calibra-
tion without any significant effect on the results. 

Given that in synonymous variants 4 out of 104 contexts
are never observed, we were initially unable to use synony-
mous variants to calculate CAPS scores for some classes of
genetic variation where those contexts were observable. We,
therefore, approximated the expected proportions of single-
tons for those missing contexts from intronic variants using
a probit regression model. This enabled us to apply CAPS to
all classes of variants, including those with all 104 contexts
present (for example, missense). Importantly, CAPS can be cal-
ibrated for both genomes and exomes, just like MAPS. 

One of the key advantages of using per-context estimates
of the expected proportion of singletons over the singletons-
by-mutability approach is that each context can be seen as
a binomial random variable, which allows the calculation of
per-context variance in a mathematically sound way. This, in
turn, results in wider and more realistic confidence intervals
compared with MAPS’ binomial confidence intervals for the
mean with the assumption of normality. 

CAPS scores can be calculated using either a simple method,
which is based on the total variance in the observed number of
singletons, or using the posterior predictive distribution (PPD)
of CAPS. The actual values of the scores are identical between
the two methods; however, the produced confidence intervals
differ: the intervals estimated using the PPD method are wider,
as they take into account the additional uncertainty around
the probabilities that are used to calculate the expected level
of singletons for each context (see Supplementary Table S1 ).
Details of how CAPS scores are calculated can be found in
Supplemental Note 1 . 

Data 

For model calibration and all analyses we used 125 748
exomes (WES) and 15 708 genomes (WGS) from gno-
mAD v2.1.1, filtered based on the QC criteria from
the original 2020 gnomAD flagship paper ( 4 ). The total
number of QC-compliant variants per class is shown in
Supplementary Tables S2 and S3 , with additional per-context 
statistics shown in Supplementary Tables S4 and S5 . 

Results 

We developed CAPS, a novel metric of negative selection 

where the expected level of rare variation is derived on a per- 
context basis instead of using a mutability-based model. 

Improved estimates of negative selection 

The estimates of MAPS carry a strong bias coming from the 
singletons-by-mutability model (Figure 1 A), which is an inte- 
gral part of MAPS’ design. Specifically, in MAPS, transversion 

variants are more likely to be assigned a missense-level nega- 
tive selection score merely due to their low mutation rates (Fig- 
ure 1 B). It is important to note, however, that this bias may not 
be noticeable when MAPS is calculated over large variant sets.
CAPS eliminates this mutability bias completely, as its design 

does not include the mutability correction layer (Figure 2 ). As 
a result, unlike MAPS, CAPS can be used safely to study a wide 
range of different classes of genetic variation, regardless of the 
variant type composition in the variant set of interest. To vali- 
date the improvement in the estimates after the elimination of 
the mutability bias, we compared a total of eight pairs of con- 
texts with highest differences in the residuals from the MAPS 
model. As a reference, we used averaged values from the state- 
of-the-art pathogenicity predictor AlphaMissense ( 8 ). The re- 
sults demonstrate that in CAPS the estimates are always either 
in agreement with AlphaMissense values or the difference is 
not statistically significant, which is not the case in MAPS (Fig- 
ure 1 C and Supplementary Figure S1 ). 

As shown in Figure 3 , CAPS’ scores of negative selection 

are highly consistent with those of MAPS, with the estimates 
of the two metrics agreeing for all categories of variants when 

either the exome or genome frequency data from the gnomAD 

database are used. Specifically, both MAPS and CAPS capture 
the same upward trend in the deleteriousness of synonymous,
missense and predicted loss-of-function (pLoF) variants. The 
major difference in the results observed is in the confidence 
intervals of the estimates, which are more accurate in CAPS 
( Supplementary Table S1 ). 

CAPS as a drop-in replacement for MAPS 

To demonstrate the applicability of CAPS we sought to ap- 
ply it to those classes of variants which had been previously 
studied using MAPS. Supplementary Figures S2 and S3 show 

how CAPS can be used as a drop-in replacement for MAPS,
using reproduced scores from previously reported analyses in 

upstream open reading frames (uORFs) and near-splice re- 
gions, respectively ( 9–11 ). As evident from the figures, the 
CAPS’ negative selection scores show good concordance with 

those estimated using MAPS. These results confirm that uORF 

uAUG-creating and some uORF stop-removing variants are 
subject to strong negative selection and that this selection is 
dependent on the effects that these variants induce and con- 
textual information. Our results also confirm that variants af- 
fecting intron-exon junctions are particularly deleterious. 

CAPS captures background selection in constrained 

genes 

To check the validity of CAPS’ corrected estimates of selection,
we compared CAPS and MAPS scores in sets of variants with 
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Figure 1. MAPS’ singletons-b y -mut abilit y model ( A ), the resulting mut abilit y bias in MAPS ( B ) and examples of the bias affecting MAPS estimates ( C ). 
Error bars are 95% confidence intervals. (A) The singletons-by-mut abilit y model was calibrated on 100 unique contexts observed in QC-compliant WES 
synon ymous v ariants. T he model underestimates the real proportion of singletons f or transv ersions, while o v erestimating it f or CpGs, though this ma y 
not be critical when a v eraging o v er large numbers of v ariants. (B) T he mut abilit y bias w as assessed based on CAPS and MAPS estimates in ‘L o w est’ 
(0–25%), ‘L o w’ (25–50%), ‘High ’ (50–75%) and ‘Highest’ (75–1 0 0%) mut abilit y bands on all QC-compliant WES variants. (C) CAPS and MAPS estimates 
in pairs of contexts with highest difference in the residuals from the MAPS model, with CAPS estimates showing agreement with the corresponding 
a v erage AlphaMissense values, or the difference being not statistically significant. Labels are made up of the trinucleotide context, reference / alternate 
alleles, methylation level (for CpGs) and variant type. In each pair, only the trinucleotide context sequences are different. Only QC-compliant missense 
WES variants with the AlphaMissense class ‘pathogenic’ and an AlphaMissense score of at least 0.8 were included. Bonferroni-adjusted P -values are 
sho wn f or eac h comparison (Welc h modified t wo-sample t -test): ‘*’ ( < 0.05), ‘**’ ( < 0.01), ‘***’ ( < 0.0 01), ‘****’ ( < 0.0 0 01), ‘ns’ (not significant). 
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Figure 2. Differences between CAPS and MAPS in the derivation of the scores. In CAPS, the complexity of the model is reduced via complete 
elimination of the mut abilit y la y er. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

increasing levels of gene constraint using LOEUF, a metric of
intolerance to variation based on the deficit of pLoF variants
in a gene ( 4 ). To minimize the effect of targeted selection, we
limited our dataset to synonymous variants and stratified all
variants by gene intolerance level. 

In line with our previous findings ( 6 ), Supplementary 
Figure S4 shows that both metrics are sensitive enough to
capture the background selection that affects synonymous
variants in constrained genes and have striking similarity
in the scores. Wider confidence intervals can be seen for
CAPS. 

Discussion 

In this work, we introduced CAPS, a novel metric of selection-
based deleteriousness and a drop-in replacement for MAPS.
CAPS should be treated as a tool for quantifying the differen-
tial selective pressure between synonymous variants and other
groups of variants. CAPS eliminates the mutability bias that
was present in its predecessor and performs reliably even on
small variant sets. Besides, CAPS’ confidence intervals are cal-
culated in a more accurate way compared to the simplified
intervals used in MAPS. 

Even though it is possible to reduce the bias of MAPS to-
wards transversion variants by modifying the fit of the model,
we argue that this approach can be seen as ad hoc and not
future-proof, considering that every new release of gnomAD
would require refitting the model. Given the complexity of
mutability estimation, there is no straightforward way of
modelling mutation rates; however, attempts have been made
to incorporate additional mutability-related annotations in
the singletons-by-mutability model and use intergenic variants
instead of synonymous ones for calibration ( 7 ). Overall, we
believe that our proposed context-based approach is superior
compared with using mutability as a proxy for the estimation
of the expected level of rare variation, as mutation rates mod- 
elling proves a difficult task. 

However, a number of factors should be taken into ac- 
count when using CAPS (and MAPS, for that matter). First,
with CAPS being calibrated on gnomAD v2 data, the scores 
derived are comparable only when subsets of variants from 

gnomAD v2 are contrasted. Besides, with CAPS, only a frac- 
tion of possible pathogenic variation can be analyzed. This 
is because in common complex diseases (such as Alzheimer’s 
disease or Type 2 diabetes) the associated variants are likely 
to exhibit attenuated patterns of purifying selection due to 

the complex evolutionary impact of these variants, render- 
ing such variation hard to capture with selection-based met- 
rics. Finally, and perhaps most importantly, CAPS—being an 

instance of the population-level family of metrics, which in- 
cludes MAPS, LOEUF and pLI ( 4 )—can only serve as an im- 
perfect proxy for selection ( 12–14 ). Indeed, all such metrics 
are only able to estimate the mutation’s heterozygous dele- 
teriousness effect (referred to as hs ), but cannot disentangle 
the dominance coefficient h and the homozygous selection 

coefficient s from it. Hence, being a crude metric based ex- 
clusively on the concept of singleton proportions, CAPS has 
limitations in the analysis of haploinsufficiency, being unable 
to distinguish between a dominant gene with low selection 

levels and a recessive gene with higher selection levels, al- 
though, again, this also holds true for other population-level 
metrics. 

Nevertheless, we believe that CAPS holds promise to 

reveal new insights into understudied classes of variation 

with unknown or poorly quantified deleteriousness, espe- 
cially for smaller classes of variants. Compared with complex 

pathogenicity predictors, the design of CAPS is simpler and 

more interpretable. We believe that this transparency will help 

researchers to better understand the potential impact of ge- 
netic variants on human health. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae111#supplementary-data
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Figure 3. Original (MAPS) and corrected (CAPS) estimates of negative 
selection in SNVs by variant class for exomes ( A ) and genomes ( B ). Error 
bars are 95% confidence intervals. All QC-compliant variants. 
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eb resources 

• Variants 
- gs: // gcp-public-data–gnomad / release / 2.1.1 / ht / 

exomes / gnomad.exomes.r2.1.1.sites.ht 
- gs: // gcp-public-data–gnomad / release / 2.1.1 / ht / 

genomes / gnomad.genomes.r2.1.1.sites.ht 
• Coverage 

- gs: // gcp-public-data–gnomad / release / 2.1 / coverage / 
exomes / gnomad.exomes.r2.1.coverage.ht 

- gs: // gcp-public-data–gnomad / release / 2.1 / coverage / 
genomes / gnomad.genomes.r2.1.coverage.ht 

• Mutability 
- gs: // gcp-public-data–gnomad / papers / 2019-flagship- 
lof / v1.0 / model / mutation_rate_methylation_bins.ht 

• Methylation and trinucleotide context data 
- gs: // gcp-public-data–gnomad / papers / 2019-flagship- 

lof / v1.0 / context / Homo_sapiens_assembly19.fasta.
snps_only.vep_20181129.ht 

• LoF metrics (including LOEUF) by gene 
- https:// storage.googleapis.com/ gcp- public- data- 

-gnomad/ release/ 2.1.1/ constraint/ gnomad.v2.1.1. 
lof _ metrics.by _ gene.txt.bgz 

• Whiffin et al., Characterising the loss-of-function impact
of 5 

′ untranslated region variants in 15 708 individuals
(2020) 
- https:// github.com/ ImperialCardioGenetics/ uORFs/ 

tree/ master/ data _ files 
• AlphaMissense scores 

- https:// zenodo.org/ records/ 8208688 

Data availability 

The code generated during this study is available at https://
doi.org/ 10.5281/ zenodo.13282923 . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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