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)e term “artificial intelligence” (AI) includes computational algorithms that can perform tasks considered typical of human in-
telligence, with partial to complete autonomy, to produce new beneficial outputs from specific inputs. )e development of AI is largely
based on the introduction of artificial neural networks (ANN) that allowed the introduction of the concepts of “computational learning
models,” machine learning (ML) and deep learning (DL). AI applications appear promising for radiology scenarios potentially im-
proving lesion detection, segmentation, and interpretation with a recent application also for interventional radiology (IR) practice,
including the ability of AI to offer prognostic information to both patients and physicians about interventional oncology procedures.
)is article integrates evidence-reported literature and experience-based perceptions to assist not only residents and fellows who are
training in interventional radiology but also practicing colleagues who are approaching to locoregional mini-invasive treatments.

1. Introduction

)e term “artificial intelligence” (AI) includes computational
algorithms that can perform tasks considered typical of hu-
man intelligence, with partial to complete autonomy, to
produce new beneficial outputs from specific inputs [1].
Although premises to the development of AI were achieved in
the early era of computers, it has only been with the in-
troduction of new powerful computational hardware, in as-
sociation with the capability of collecting and storing huge
amounts of data, that it has become feasible to explore its
potential in tasks most relevant to the field of radiology such
as pattern recognition, pattern identification, planning, lan-
guage comprehension, object and sound recognition, prob-
lem solving, prognosticating diseases, and deciding when and

whether therapy is not needed or of limited use or in offering
patients and physicians prognostic data on treatment out-
comes. Indeed, although healthcare represents a challenging
field for AI application, medical imaging is currently one of
the most promising areas to apply this technology [2].

From the beginning, it has been quite clear that com-
puters could be potentially useful in assisting the radiologist
in the routine tasks of detection and diagnosis. )e idea
fostering the use of the so-called computer-aided detection/
diagnosis (CAD) systems, precursors of modern AI, was to
provide radiologists with the assistance in the detection and
interpretations of potential lesions (especially in mam-
mography and chest or musculoskeletal radiography) in
order to discriminate between benign andmalignant lesions,
reduce false negatives, and boost radiologists’ productivity,
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especially in terms of discovery and identification of sig-
nificant findings requiring a prompt human validation [3].
Main limitations of CAD systems were their task-specific
orientation which is suited to only one particular given task
in a corresponding specific imagingmodality and, moreover,
their reliability and the risk of false positive results implied
mandatory validation by a trained radiologist [3]. Since then,
ever-increasing attempts have been made to improve upon
the diagnostic performance of AI and facilitate the help it
could provide in daily clinical practice.

)e development of AI is largely based on the in-
troduction of artificial neural networks (ANN) in the early
1950s [4] and their subsequent further evolution (from
single to multilayer ANN), introducing the concepts of
“computational learning models,” machine learning (ML)
and deep learning (DL).

ML is based upon the so-called “reverse training”
method, in which computer systems focus on specific
pathological features identified during a training period [5].
)us, ML applications require a set of data on a specific
pathology on which the computer can train itself, and those
data must necessarily contain the desired outcome that
needs to be predicted (e.g., nodules or emphysema on chest
X-rays, focal liver lesions, hemorrhage in head CT, and so
on). Big data is the type of data that may be supplied into the
analytical system so that an ML model could learn, im-
proving the accuracy of its predictions. Once trained, the
computer can apply this information even to new cases
never seen before [6, 7]. ML can be supervised or un-
supervised, depending, respectively, on the “labeled” input
previously selected by human experts, or directly extracted
by the machine using several computational methods [6, 8].
Among the evaluated features, the ideal ML model should
include those most relevant to the outcome and the most
generic ones which can be applied to the general population,
even though it may not be possible to identify these features
beforehand. Typical ML tasks in radiology are the identi-
fication of specific patterns/conditions or image segmenta-
tion, which can be defined as the representation through
partitioning of the digital image into meaningful parts (i.e.,
pixels or segments) for interpretation. Both have been
successfully applied over a wide range of clinical settings
including for the detection of fatty liver using ultrasound
[9], CT carotid plaque characterization [10], and prediction
of lesion-specific ischaemia from quantitative coronary CT
angiography [11].

A significant step forward is represented by deep
learning (DL), which is based on the implementation of a
large number of ANN layers, allowing determination of
more complex relationships (similar to neuronal net-
works) and a more sophisticated performance, attributes
particularly suited for imaging. More important, DL is
able to perform higher level classification tasks and to
automatically extract and learn features, which is valuable
when managing the information content of digital images
that are only partially detectable and usable by a
human reader. )is concept unveils the extraordinary
potential of DL in comparison with conventional imaging
management.

)e presence of numerous neural layers between input
and output and the use of several techniques (most com-
monly called convolutional neural networks—CNN) con-
tribute to the plasticity of DL and offer the potential to mimic
human brain mechanisms in the training process. Crucial to
success of the method is the exposure of CNN to data, in
particular images, which can be processed during “training”
(supervised or unsupervised). If data are unlabeled, the
learning process is based on the automatic clustering of
image findings according to their natural variability. Hybrid
learning models that include some human guidance are most
often used, due to the difficulty of successfully achieving truly
unsupervised training. DL represents a hot topic in research,
literally exploding in the last years.

Matching ML/DL image processing with clinical and
when available pathological/histological data, to correlate
intrinsic diagnostic patterns and features of a CT or MRI
scan to a specific pathology and histological subtype, has
opened a new window in research establishing so-called
radiomics [12–14]. In this setting, CAD can also be taken to a
higher performance level. ML-based CAD can be taught on
the intrinsic differences of a population and then detect and/
or diagnose the variations of a single lesion, allowing the
identification of common as well as uncommon cases [15].

Supervised and unsupervised learning are largely based
on statistical algorithms [16], with important differences
between them. Supervised learning deals primarily with
classification (i.e., identification of categories for new ob-
servations using the same collected on labelled training data
sets) and regression (i.e., predictions on continued variables
for new observations inferred on training sets). Un-
supervised learning cannot take advantage on the labelling
process and manages unclassified data; therefore, recogni-
tion of latent patterns is performed by applying clustering
(aimed to define groups within data) and dimensionality
reduction [16]. )e sense of such a classification needs a
subsequent validation to assess its utility.

Whichever the ML technique used, each approach
presents advantages and disadvantages. General pros have to
be considered for ML ability to process large volumes of
data, to identify trends and patterns only partly detectable by
humans, to face with complexity (multidimensionality of
data), and to perform high computational tasks.

)ese advantages are not without cons. First, huge data
sets are necessary to train ML machines, whose collection
has been limited for a long time in healthcare (although the
development of large databases in the era of the so-called
“big data” is going to be more widespread). But even when
available, the “quality” of data is a major challenge both for
the supervised training (due to the large amount of effort
needed for labelling data) and the unsupervised training
(process of selection and validation).

Moreover, ML assessment represents a critical aspect in
terms of statistical power definition (sensitivity, specificity,
error susceptibility, and so on) of ML within the task (es-
pecially in clinical settings), often in the absence of “dis-
closure” about “how and why” machines elaborate their
tasks, which raises problems when ML applications are
introduced in routine medical activity [1, 2, 6, 8, 16].
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)e aim of this article is to integrate evidence-reported
literature and experience-based perceptions, while
attempting to make the information easy to access, assisting
not only residents and fellows who are training in inter-
ventional radiology, but also practicing colleagues who are
attempting to gain further expertise with these locoregional
mini-invasive treatments.

2. AI and Interventional Radiology

2.1. Treatment Response. AI applications appear promising
for radiology scenarios, as they naturally affect and poten-
tially improve upon lesion detection, segmentation, and
interpretation of imaging—prerequisites for good inter-
ventional radiology (IR) practice [17]. Moreover, advantages
are foreseen even in areas previously not addressed.

One of the biggest challenges of interventional radiology
is to estimate/forecast the outcomes and/or the benefits of a
treatment before actually performing it [18]. )e identifi-
cation of an accurate method to predict the success rate of a
specific treatment in a specific patient could reduce un-
necessary and useless procedures and interventions, re-
ducing healthcare costs and dramatically decreasing the risk
for the patient. It should also be useful to investigate how a
patient’s demographic and pathologic characteristics before
the treatment can influence treatment efficacy, which can
then be measured with posttreatment evaluations.

)is type of challenge can be readily taken up using AI
and DL, using a computer which autoimproves itself by
learning from given inputted data. A patient’s baseline di-
agnostic images, clinical data, and characteristics and out-
comes of the planned intervention can be retrospectively
applied to a cohort of patients to teach the computer to
construct and work on amodel that can correlate and “learn”
the relationship between those model variables and pro-
cedural results. )e resultant refined model would then
allow the prediction of the procedural outcome in future
new patients even before performing the procedure, as-
suming the characteristics of the intervention are specified.
Classification of patients as a responder (complete or partial)
or nonresponder could potentially be used in daily clinical
practice as an indicator to decide whether or not a specific
intervention should be performed [19]. DL-based prediction
models can assist interventional radiologists in making
decisions as to what procedure will offer the best outcome
for each patient. Obviously, these prediction models would
require a continuous evaluation and validation to limit or
even eliminate possible errors and improve performance in
both terms of diagnostic and therapeutic efficiencies.

)e field of interventional oncology could greatly benefit
from AI, given the great variety of data on which the pre-
diction for daily clinical practice can be made, even though
there is the need for more data to help implement ML in the
best way [18]. A robust and trustworthy perspective on
procedural outcomes could give interventional radiologist
more and more solid data upon which to recommend a
particular and specific treatment to each patient. In par-
ticular, Abajan et al. evaluated the capacity of artificial in-
telligence to predict chemoembolization outcomes in

patients with hepatocellular carcinoma, based on baseline
magnetic resonance imaging, dividing patients into re-
sponders and nonresponders. )ey obtained a very good
negative predictive value (88.5%) based upon theMLmodels
that relied upon the two features of tumour signal intensity
and the presence or absence of cirrhosis [19]. In another
anatomic site, the brain, Asadi et al. performed studies on
prediction of procedural outcome in stroke and brain ar-
teriovenous malformations patients and successfully in-
dividualized treatment based on predicting features [20, 21].
Nonetheless, even if AI can provide information on disease
and treatment correlation, it does not necessarily provide an
insight on causality and pathophysiology; this information
can be, however, obtained from randomized controlled
trials, making these two approaches complementary to each
other, to design the best treatment strategy.

2.2. Procedural Guidance and Support. Owing to the evo-
lution ofML/DL, we are currently surrounded by technology
to such an extent that it can assist us, among other tasks, to
overcome distances and grant access to extensive knowledge.
Touch and touchless devices are everywhere, simplifying our
life in many ways, from phone and home assistants to in-
telligent lights or thermostats, to smart-locks and navigators,
and with the introduction of sharing platforms and net-
works, streaming channels, and live-chat channels as well,
our world can be seen as a great, unique web of people.

In an operating room setting, andmore specifically in the
interventional radiology suite, one of the most important
things in procedural planning is the assessment of the pa-
tient’s anatomy and its pathophysiologic changes. )ere is
also much other valuable information archived in online
databases or literature, ranging from (1) individual patient
characteristics such as those on tumour characteristics and
behaviour which are useful in the specific field of oncological
interventions; (2) evidence to support or overcome a par-
ticular and unforeseen problem or finding; and (3) local
hospital information on angio suite supplies, on the avail-
ability of specific devices such as a microcatheter, guidewire,
or metallic coils. Currently, however, in large part but not
exclusively due to sterility issues, procedural information
must be collected beforehand, in the preprocedural plan-
ning, whereas, during the procedure, the interaction be-
tween the operator and the great amount of patient,
literature, and supply data can only be achieved through
sterile covers, or indirectly made by other team members,
which implies a certain amount of distraction, errors, and
time consumption. Nevertheless, these obstacles could be
overcome with the implementation, in medical clinical
practice, and particularly in operatory theaters and angio
suites, of touchless interaction devices, ranging from eye-
tracking systems to inertial sensors, to cameras or webcams,
to voice-driven smart assistants [22].

Gesture-capture camera systems, with or without utili-
zation of inertial sensors, have been experimented with
defining and associating specific actions to a variety of
gestures to control medical image viewers while in surgical
scrub [23–25]. Indeed, voice recognition interfaces have
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been demonstrated to enable significant time sparing when
dealing with switching on and off operating room com-
ponents [26]. Navigation systems constructed using inertial
sensors worn under sterile gloves have been tried for needle
insertion path planning, with a claimed gesture-recognition
rate of 100% for 3/4 gestures [27]. Augmented reality de-
vices, such as glasses, which interactively display to the
operator the whole variety of relevant information or di-
agnostic images have also been tested [28, 29].

A group of researchers from the University of California,
San Francisco, tested the possibility to question a smart
assistant—previously instructed with a large database of
information on sheath sizes and compatibility—to obtain
suggestions as to which sheath is likely to be most appro-
priate for the deployment of a particular endovascular stent,
during a specific interventional procedure, without re-
moving the sterile surgical scrub, with good results both in
terms of time sparing and accuracy [30].

As in the above-mentioned case, questions regarding the
correct size of a device or on the time-consuming task of
assess for the availability of a particular device or instrument
according to the hospital stocks could be directly and in-
stantaneously answered by the smart computer. Questions
to the smart assistant could also imply a cost analysis,
allowing the operator to choose between two devices not
only assessing their dimensions but also their expensiveness
in relation to outcome data, providing to all angio-suite staff
the perception of the real global cost of a procedure, which
must not be taken lightly, minimizing the waste and the
inappropriate utilization of guidewires, catheters, coils, and
other devices [18].

3. Future Perspectives

Most researchers agree that the future of AI lies in enhancing
and assisting interventional radiology, not taking over from
interventionalists.

Augmented reality, in which additional information
about the patient can be provided to the operator in real time
during the operation, is another technology already being
put into practice. When this is combined with machine
learning, the algorithm could help the radiologist to make
more rapid proper and accurate decisions in terms of di-
agnosis, treatment management, and planning. Earlier di-
agnosis through quicker, more accurate reading of scans
might enable cancer to be detected earlier, enabling treat-
ment at an earlier stage, with less need for invasive standard
surgical approaches. Collaboration between computer
algorithms—with their ability to synthesize and spot pat-
terns in vast data sets—and skilled operators—who are able
to make sense of the “messiness” of the human body by
arriving at correct conclusions despite the multiplicity and
complexity of the situation—could raise the standard of IR
across the board. Yet, there are significant challenges to
overcome before these technologies can be considered
mainstream. Regardless, currently, there is intense enthu-
siasm on the part of clinicians who are calling for increased
collaboration between computer scientists, biomedical en-
gineers, and interventional radiologists as machine learning

is posited to play a more prominent role in interventional
radiology procedures, from informing the initial diagnosis to
patient selection and intraprocedural guidance.

4. Conclusions

)e emerging role of AI may offer the opportunity to better
tailor treatment to patients according to “big data” that can
be rapidly analyzed, uncovering new insights that may
otherwise have required decades of prospective trials. )us,
this new approach could most likely result in a paradigm
shift in the near future, definitively changing the current
conventional treatment algorithms of tumour therapy,
providing superior really personalized care to patients.
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