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Abstract

The marine phase of anadromous Atlantic salmon (Salmo salar) is the least known yet one

of the most crucial with regards to population persistence. Recently, declines in many

salmon populations in eastern Canada have been attributed to changes in the conditions at

sea, thus reducing their survival. However, marine survival estimates are difficult to obtain

given that many individuals spend multiple winters in the ocean before returning to freshwa-

ter to spawn; therefore, multiple parameters need to be estimated. We develop a model that

uses an age-structured projection matrix which, coupled with yearly smolt and return abun-

dance estimates, allows us to resample a distribution of matrices weighted by how close the

resulting return estimates match the simulated returns, using a sample-importance-resam-

pling algorithm. We test this model by simulating a simple time series of salmon abun-

dances, and generate six different scenarios of varying salmon life histories where we

simulate data for one-sea-winter (1SW)-dominated and non-1SW dominated populations,

as well as scenarios where the proportion returning as 1SW is stable or highly variable. We

find that our model provides reasonable estimates of marine survival for the first year at sea

(S1), but highly uncertain estimates of proportion returning as 1SW (Pr) and survival in the

second year at sea (S2). Our exploration of variable scenarios suggests the model is able to

detect temporal trends in S1 for populations that have a considerable 1SW component in the

returns; the ability of the model to detect trends in S1 diminishes as the proportion of two-

sea-winter fish increases. Variability in the annual proportion of fish returning as 1SW does

not seem to impact model accuracy. Our approach provides an instructive stepping-stone

towards a model that can be applied to empirical abundance estimates of Atlantic salmon,

and anadromous fishes in general, and therefore improve our knowledge of the marine

phase of their life cycles as well as examining spatial and temporal trends in their variability.

Introduction

Studies on population dynamics and life histories depend critically on age- or stage-specific

estimates of natural mortality [1, 2]. Despite their necessity in predicting or hindcasting spa-

tio-temporal trends in population size, mortality often represents the fundamental parameter

about which the least is reliably known. The challenge is particularly acute for organisms that
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spend an extended period of time in the ocean, an environment that presents considerable

logistical challenges for estimating survival relative to most terrestrial and riverine

counterparts.

The Atlantic salmon (Salmo salar) is one of few vertebrates that spends substantive parts of

its life cycle in both fresh water and the sea. Following the autumn spawning period in rivers,

the young hatch in early spring and typically spend 1-4 years in fresh water before migrating

to sea as smolts. After usually one to three winters at sea, adults return to their natal fresh

water environment to spawn. Atlantic salmon are capable of migrating to and from the ocean

more than once, spawning again as ‘returning spawners’ every time they return to fresh water.

In terms of mortality, the initial 1 to 6 months at sea, i.e., the ‘post-smolt’ period, is consid-

ered to be the period during which the daily per capita mortality experienced at sea is greatest

[3]. Thus, the marine phase of anadromous Atlantic salmon is often considered the most

important in relation to their overall population dynamics [4]. Recent declines in abundance

of North American Atlantic salmon populations have been attributed to reductions in their

marine survival [5, 6].

While there are multiple hypotheses of the underlying causes of this reduction in marine

survival (e.g., increased temperature, change in oceanic conditions, etc.), very little is known

about the spatio-temporal dynamics of Atlantic salmon survival at sea [5]. Changes in marine

survival have the potential to drive changes in life histories, for example by compensation

through selective survival or fisheries-induced evolution, and increases in marine survival can

potentially result in Atlantic salmon populations having lower sea ages at maturity [7, 8]. Fur-

thermore, recent research on Atlantic salmon has shown that sea age and repeat spawning are

genetically correlated [9], which can potentially further reduce the reproductive capacity of

individual spawners [10]. Thus, reliable estimates of marine survival are crucial to better

understand the ecology and dynamics of this species.

Estimating mortality for marine fishes is difficult, and the complex iteroparous life cycle of

anadromous Atlantic salmon makes it particularly challenging to accurately estimate marine

survival for this species [11, 12]. When smolt abundance estimates are not available, marine

survival has been calculated using aggregated data covering broad ocean basins, allowing for

marine survival to be estimated indirectly using stock-recruitment (S-R) relationships [13, 14].

Recent evidence suggests that most mortality at sea occurs during the early migration (i.e.,

post-smolt) stages [3], meaning that population-level differences in post-smolt survival cannot

be accounted for by basin-level assessments. Furthermore, marine survival estimates from S-R

relationships do not account for population-level differences in egg-to-smolt survival. Incor-

porating smolt data would be beneficial for estimating marine survival, as it would remove the

need to model S-R relationships.

When smolt abundance estimates are available, marine survival can be approximated by

estimating return rates, which is the ratio in the number of adult returns and out-migrating

smolts from the previous year. For Atlantic salmon populations that only spend one winter at

sea (a ‘one-sea-winter’, or 1SW, salmon is also called a ‘grilse’) return rates are indicative of

marine survival rates as most returning adults are from the same smolt cohort. However, these

rates can be misleading for two-sea-winter (2SW) or other multi-sea-winter populations, given

the confounding effect of the complex Atlantic salmon life history [12]. Thus, when salmon in

a given population return to their natal streams to spawn after more than one year at sea,

marine survival encompasses multiple years at sea. As a result, marine survival for these popu-

lations is often estimated using a maturity schedule model, also known as Murphy’s method

which, at a minimum, allows for estimating survival in the first and second years at sea as well

as the proportion of fish that return after one year at sea [15–17]. However, estimating both

survival in the second year at sea and proportion returning after a year at sea is not
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mathematically possible without separating male and female salmon returns and assuming

their survival rates are the same [17–19]. This is problematic, as traditional methods of sex

determination are inaccurate [20] and Murphy’s method is very sensitive to biases in the sex

ratio of smolts [19].

Matrix models can be useful for estimating demographic parameters. They have unique

properties that can provide additional information that is of biological relevance [1]. Normally,

matrix models use known life-history parameters to estimate population trends. However,

matrix models can also be used to estimate life-history parameters when population trends are

known; this is known as an inverse matrix analysis [1]. Inverse matrix approaches can be use-

ful for estimating age- or stage-specific life-history parameters for populations for which there

are time series data available [21–23].

Here, we develop a simple maturity schedule model that uses a simplified stage-structured

matrix, without separating data between sexes, to estimate annual marine survival in the first

and second years at sea (S1 and S2), as well as the proportion of fish returning after one winter

at sea (Pr), using a sample-importance-resampling algorithm, which approximates posterior

distributions for problems where multiple parameters have to be estimated at once (also

known as high dimensional problems, [24]). We also assess the accuracy and precision of the

model by generating a simulated salmon abundance time series with known annual values of

S1, S2, and Pr. In particular, we aim to identify whether a simplified maturity schedule model is

able to accurately estimate marine survival in the first winter at sea (S1).

Methods

Data simulation

The performance of the models developed in the present study were evaluated using a simu-

lated Atlantic salmon abundance time series with six slightly different scenarios of varying life

histories (Table 1). We create a 20-year time series with pre-set numbers of smolts every year

(10,000), account for observation error, and calculate the numbers of 1SW and 2SW returns in

subsequent years, using set values of S1, S2, and Pr from Table 1. We varied the value of S1

across years by gradually increasing it from 0.02 to 0.20 during the 20-year period; to simplify

the assessment of whether the model extracts any information of the other parameters, we

used fixed values of S2 (0.4) across years. We assumed salmon abundances were continuous

rather than discrete values (i.e., fractions instead of integers) to allow the use of continuous

probability distributions.

We ran scenarios with three different life history strategies: 1SW-dominated (relatively

high Pr), 2SW-dominated (relatively low Pr) and a mixed 1SW-2SW scenario (intermediate

Pr). For each life-history scenario, we used either a fixed Pr value or a variable Pr (i.e., drawn

from a distribution) for a total of six scenarios (Table 1). We removed the first three years

Table 1. Parameters used to simulate time series data of Atlantic salmon in the six scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Parameter Fixed Pr,

1SW-dominated

Variable Pr,

1SW-dominated

Fixed Pr,

mixed 1SW-2SW

Variable Pr,

mixed 1SW-2SW

Fixed Pr,

2SW-dominated

Variable Pr,

2SW-dominated

S1 seq(0.02, 0.2) seq(0.02, 0.2) seq(0.02, 0.2) seq(0.02, 0.2) seq(0.02, 0.2) seq(0.02, 0.2)

S2 0.4 0.4 0.4 0.4 0.4 0.4

Pr 0.95 unif(0.6, 0.95) 0.4 unif(0.2, 0.7) 0.15 unif(0.05, 0.3)

https://doi.org/10.1371/journal.pone.0232407.t001
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from any simulation output because these years have incomplete abundance values for 2SW

returns.

We first simulate a stable run of 10,000 smolts for every year and include observation error

in these estimates

smoltst ¼ 10000þ �smolts;t ð1Þ

where �smolts,t is the error term and is defined as �smolts,t = Normal(0, 500), which is equivalent

to a coefficient of variation of 5%. We then simulate the smolt-to-returning adult part of the

life cycle using the following maturity schedule equations:

R1;t ¼ smoltst� 1 � S1t � Prt þ �1;t ð2Þ

R2;tþ1 ¼ smoltst� 1 � S1t � ð1 � PrtÞ � S2tþ1 þ �2;t ð3Þ

where R1,t and R2,t+1 are the simulated abundances of 1SW and 2SW salmon returning in years

t and t+ 1, respectively, smoltst−1 is the number of outmigrating smolts in year t − 1, S1t is the

proportion of salmon surviving in their first year (t) at sea, Prt is the proportion of salmon that

return to spawn at year t, S2t+1 is the survival in their second year at sea of the same cohort of

salmon who did not return to spawn at year t, and �t is the observation error term. This error

term is heteroscedastic and is modeled as �s, t = Normal(0, Rs,t
� 0.05), with s being the life stage

(1SW or 2SW), and t being the year.

For simplicity, and to focus on assessing the estimation of marine survival in the first win-

ter at sea, we do not model repeat spawners and we assume that no fish spend three or more

winters at sea before returning to spawn for the first time. This assumption is representative

of many populations in southeastern Canada, where maiden spawners spending more than

two winters at sea are rare. Nonetheless, modeling only 1SW and 2SW returns results in an

identifiability issue between S2 and Pr, where these two parameters cannot be estimated

independently [19].

Marine survival estimation

We estimate marine survival on our simulated dataset using a maturity schedule model, which

allows for estimating survival in the first and second years at sea as well as the proportion of

fish that return after one year at sea [15–17]. We first model the smolt-to-return part of the life

cycle using the maturity schedule model outlined in Eqs 2 and 3. These maturity schedule

equations are embedded in a simplified 3 × 3 stage-structured matrix that only includes infor-

mation on the abundance of smolts, 1SW, and 2SW returns:

0 0 0

Prt � S1;t 0 0

ð1 � PrtÞ � S1;t � S2;tþ1 0 0

0

B
@

1

C
A�

smoltst� 1

0

0

0

B
@

1

C
A ¼

0

1SWt

2SWtþ1

0

B
@

1

C
A ð4Þ

This projection matrix is not a Leslie matrix as it can only estimate abundance of 1SW and

2SW returns for separate years in the future. In accordance with empirical data for most

salmon populations [25], we assume there are no maiden fish that spend three or more winters

at sea. We also assume that the survival probability of the second year at sea (i.e. S2) is additive

to the survival of the first year at sea (S1), even though the fish that remain at sea after the first

winter do not return to the estuaries like 1SW fish do.
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Sample-importance-resampling model

We use a sample-importance-resampling (SIR) algorithm to approximate the distribution of

survival estimates for S1, S2, and Pr [24]. In a nutshell, the SIR method consists of 1) generating

a distribution of matrices based on prior parameter distributions, 2) calculating the likelihood

of each matrix in the distribution based on how well the resulting estimated returns match the

simulated returns, and 3) resampling the distribution of matrices weighted by the likelihood to

obtain pseudo-posterior parameter distributions [24].

We first generate a distribution of matrices by drawing 30,000 parameter vectors. The

parameters used to populate Eq 4 are drawn from the following distributions:

S1;t � expð� lognormalð0:6; 0:3ÞÞ

S2;t � expð� lognormalð0:2; 0:3ÞÞ

Prt �

inv logitðlogisticð2:4; 0:35ÞÞ For 1SW‐dominated populations

inv logitðlogisticð� 0:5; 0:5ÞÞ For Mixed 1SW‐2SW populations

inv logitðlogisticð� 1; 0:5ÞÞ For 2SW‐dominated populations

ð5Þ

8
>>><

>>>:

Note that the priors for S1 and S2 are based on log-normal priors for the instantaneous mor-

tality rates (Z1 and Z2) and are converted back to survival by S = e−Z. Similarly, the prior of Pr
is converted from logit-transformed Pr, so that logit(Prg)*logistic(μ, s). Assessing the propor-

tions 1SW and 2SW returns is straightforward to do by looking at the yearly abundance esti-

mates, and thus can help inform the priors being used, hence our different choices of priors

for Pr.
We then multiply the matrix with the population vector for year t, which is based on simu-

lated abundances of smolts and adult returns (see Eq 4), to obtain the estimated population

vector for year t + 1. The values from previous years (specifically S1,t−1 and Prt−1) were

included by estimating a median parameter value from the sample-importance-resampling

routine in the preceding year, which means uncertainty in those parameters was not propa-

gated. The population vector at each year, specifically the estimates of 1SW and 2SW, are our

estimated returns that are used in the likelihood function below.

Likelihood function. We drew 10,000 samples from the joint prior (with replacement) by

weighting the resampling based on the likelihood for every set of parameters in each year year

t based on the difference between the estimated and simulated returns for each life stage i (in

this case 1SW and 2SW). The likelihood function is based on the algorithms used in Wilson

et al. [26], Brandon et al. [22], Zhang [27], and Smart et al. [23]. We used the following equa-

tion

L½Djyt� ¼ exp �
X2

i¼1

ðRobs
i;t � Rest

i;t Þ
2

C � sobs
i

ð6Þ

where Robs
i;j and Rest

i;j are simulated and estimated returns, respectively, for years t and life stages i
(1SW and 2SW), and sobs

i is the standard deviation of simulated abundances of life stage i. The

constant C controls the “spread” of the likelihood function, where higher values result in wider

distributions. We considered the SIR algorithm to have converged when the number of unique

parameter vectors in the sample from the posterior is higher than 50% of the total number of

parameters in the prior (i.e. >3000) and when no point in the posterior is assigned more than

1% of the total probability [24]. The value of C was adjusted for each scenario so that the SIR

algorithm resulted in converged posteriors.
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The cost function is scaled by the variance of simulated abundance estimates for each life

stage. This likelihood function is applied to the returns estimates produced from a given

matrix in a given year (Eq 4), thus each matrix in the distribution of parameters has an associ-

ated cost value in a given year. Finally, the resulting likelihood values were used to weight the

resampling of matrices with replacement, with a weighting equivalent to the likelihood. The

resulting distribution of resampled matrices is the one that produces the final estimates of S1,

S2, and Pr for each year of the six scenarios. All models were written in R v3.6.1 [28].

Fig 1. Simulated time series of returning adult salmon abundance in the six scenarios. The lines denote the simulated

abundance estimates without observation error while the points are the same estimates including observation error.

https://doi.org/10.1371/journal.pone.0232407.g001
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Results

The simulated time-series of salmon returns resulted in increasing salmon abundances in all six

scenarios (Fig 1), with the highest increases in abundances correlated to scenarios with higher Pr
values and, thus, those with more 1SW returns. The 1SW-dominated scenarios resulted in almost

no 2SW returns, while in the mixed 1SW-2SW scenarios 1SW returns were slightly more numer-

ous than 2SW returns, the latter two being similar in their simulated abundances (Table 2).

Returns of 2SW were more abundant than 1SW returns only in the 2SW-dominated scenario.

All scenarios resulted in plausible estimates of S1 (i.e. within biologically reasonable bounds)

albeit with considerable associated uncertainty, and in some cases biased with respect to the

underlying simulated values (Fig 2). All but the two 2SW-dominated scenarios were able to track

the temporal increase in S1 (Fig 3). Our model overestimated S1, on average, by 17.6% in the

1SW-dominated, fixed Pr scenario and underestimated it by -7.4% in 1SW-dominated, variable Pr
scenario. In both Mixed 1SW-2SW scenarios, our model overestimated S1 by an even larger

amount (62% and 43% on average in fixed and variable Pr scenarios, respectively), while the bias

in S1 estimates was positive in early years and negative on latter years in the 2SW-dominated sce-

nario given the this model was not able to track the temporal trend in S1 estimates (Table 3, Fig 3).

With regards to estimates of the other two parameters, our model was unable to estimate S2

or Pr in any of the six scenarios (Fig 2). In all scenarios with variable Pr, this variability was

largely undetected by the model, but instead spuriously reflected as variability of S2 estimates

(Fig 2). Regardless of the true value of Pr, our model estimated this parameter to be around the

values set in the priors, while the three scenarios with variable Pr resulted in highly variable

estimates of S2. Furthermore, with an increasing proportion of 2SW returns in the simulation,

Table 2. Simulated abundance time series of smolts, one-sea-winter (1SW), and two-sea-winter (2SW) returns for all six scenarios examined.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Year Smolts 1SW 2SW Smolts 1SW 2SW Smolts 1SW 2SW Smolts 1SW 2SW Smolts 1SW 2SW Smolts 1SW 2SW

1 10685 - - 9478.4 - - 10283.8 - - 8999.5 - - 10436.4 - - 10373.4 - -

2 9718 199.9 - 9954.9 147.0 - 9753.6 82.1 - 10166.9 90.0 - 10484.8 32.6 - 9787.2 27.6 -

3 10182 247.9 4.3 10311.8 213.0 20.8 10000.0 106.1 48.8 10585.7 128.1 35.3 10191.9 42.5 71.0 9614.0 21.8 78.2

4 10316 373.5 5.6 9523.2 332.0 30.2 10561.4 164.9 71.9 11029.8 153.6 71.1 9074.2 57.8 109.1 10076.4 75.2 106.7

5 10202 503.4 8.2 9728.6 397.7 31.2 10719.9 201.8 85.3 9311.6 171.9 108.2 9973.0 68.0 135.2 10494.3 120.3 128.2

6 9947 614.3 9.6 10290.5 453.2 34.8 9451.4 242.4 133.1 9424.6 275.2 149.8 10532.4 86.8 154.9 9963.3 106.9 132.9

7 10756 622.9 11.0 10384.1 489.8 30.6 9941.3 238.9 155.4 9647.1 383.5 100.4 10406.6 108.3 194.9 9306.5 158.9 213.7

8 9953 775.1 13.7 10231.9 693.9 71.2 10600.7 305.4 151.7 9473.0 189.3 109.4 9904.6 134.7 240.5 9346.7 123.3 201.3

9 11009 744.2 15.9 9557.1 767.1 24.3 9765.1 351.4 170.1 9677.1 551.0 234.0 8650.0 123.0 278.4 9615.8 116.4 232.7

10 9969 1024.9 18.4 9450.1 626.6 25.3 9973.8 364.2 226.7 9907.3 254.9 103.9 10030.5 111.2 305.1 9736.4 264.3 262.6

11 10652 965.0 20.6 10756.4 876.8 108.6 9956.9 447.0 229.9 9399.4 269.3 274.7 10286.9 160.5 264.2 9989.3 264.9 262.9

12 11143 1187.6 21.7 10129.0 1198.7 58.7 9556.2 453.0 251.9 11018.5 670.8 300.4 10022.9 171.0 358.4 10335.2 111.0 321.3

13 9306 1361.3 24.8 10044.2 1073.9 38.2 9777.7 449.3 276.3 10053.9 662.8 150.6 10078.7 190.9 399.9 9782.7 350.5 462.0

14 9861 1243.0 26.6 9939.6 1047.1 88.0 9985.3 527.1 276.6 9957.9 667.5 295.0 10215.8 193.9 407.2 9443.1 342.6 345.6

15 9933 1300.2 26.8 9402.8 1442.7 96.7 9793.1 561.4 319.5 10247.8 438.3 238.3 9801.7 243.6 434.4 10303.6 298.2 392.0

16 10318 1476.7 29.1 10306.0 1245.4 38.9 10556.7 615.5 348.1 10018.7 865.1 394.5 10655.0 223.0 481.6 10137.7 278.0 448.6

17 9858 1452.6 30.5 9891.4 1348.5 58.7 9759.5 733.5 353.7 9934.0 709.2 292.7 10235.2 252.9 523.6 10578.7 276.3 511.9

18 8672 1543.8 33.9 9908.6 1474.4 128.9 9783.4 636.6 383.3 10738.4 1242.0 341.7 9378.7 261.2 575.0 9158.8 199.6 539.5

19 8780 1428.1 35.0 10466.7 1140.8 74.0 10348.4 724.6 416.0 9891.5 1269.0 208.4 10690.8 265.7 573.7 10043.7 115.8 643.1

20 10660 1397.3 31.5 10410.9 1746.4 232.3 9471.8 792.0 436.9 9358.2 907.3 270.1 10602.2 307.0 582.0 10676.7 315.1 631.8

https://doi.org/10.1371/journal.pone.0232407.t002
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the model spuriously assigned the temporal increase in S1 to the estimates of S2, and to a lesser

extent also to the estimates of Pr as well (Fig 2).

Discussion

Our study provides evidence that a simple maturation schedule matrix model, using a sample-

importance-resampling algorithm without sex-specific data, is able to track temporal changes

in marine survival during the first year at sea, under certain conditions, even when parameters

for survival during the second year at sea and the proportion of fish returning after 1SW (S2

and Pr, respectively) cannot be estimated properly. The ability of the model to track changes

in S1 diminished with increasing relative abundance of 2SW returns in comparison of 1SW

returns. While being able to estimate both S2 and Pr would ideally be desirable, obtaining rea-

sonable estimates of S1 using only adult return data, is useful both as a means of estimating

absolute survival as well as capturing temporal trends in survival within a given population.

When absolute estimates of smolt abundance are lacking, relative indices can be used to obtain

relative estimates of marine survival, which can be useful to estimate trends in marine survival

through time within populations.

Our model can, thus, serve as an informative starting point for future work on estimating

temporal patterns in the marine survival, in the first year at sea, of anadromous fish species.

This represents a key contribution to the study of life-history variability and population viability

in fishes that migrate between fresh and salt water, given that patterns in survival tend to be of

greater value in examining environmental correlates of mortality than absolute estimates per se.

Fig 2. Yearly estimated S1, S2, and Pr values in the six scenarios. True values are denoted by blue circles, black circles show median estimates, error bars indicate the

25% and 75% quantiles.

https://doi.org/10.1371/journal.pone.0232407.g002
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Notwithstanding the merits of the model, a number of caveats need to be considered. First,

there is a degree-of-freedom problem for estimating S2 and Pr parameters as the product of

these two parameters is a constant, meaning that they cannot be optimized individually [19].

Second, the likelihood function is arbitrary in regard to the degree to which parameter vectors

are penalized, in our case being dependent on the variance of return abundances. The cost

function is flexible, and could be changed to differences in absolute differences between simu-

lated and estimated, if these are deemed to be more appropriate.

Another limitation of our model is that time-lagged parameters (specifically S1 and Pr from

previous years needed to estimate 2SW returns; see Eq 3) have to be included as a median value

from the sample-importance-resampling routine in the previous year. As a consequence, there

is no uncertainty being propagated with these estimates. This shortcoming of using a sample-

importance-resampling algorithm can be addressed, however, by a modelling approach that

Fig 3. Comparison of estimated and true S1 values in the six scenarios. True S1 values are deterministic, black circles

show median S1 estimates, error bars indicate the 25% and 75% quantiles, while the blue line denotes a linear model fit

of the medians. The one-to-one relationship is shown by the gray dashed line.

https://doi.org/10.1371/journal.pone.0232407.g003
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incorporates more typical Bayesian or maximum likelihood methods. It is also possible that the

ability of the model to detect changes in S1 over time is not robust to different trend directions.

While in our simulations we presented scenarios in which increasing values of S1 resulted in

increasing return abundances, scenarios with declining abundances in return estimates provide

very similar estimates of S1, S2, Pr and the model was also able to accurately detect the underly-

ing S1 trend (see S1 File).

We envisage means by which our modelling approach could be strengthened. The model

could incorporate a hierarchical structure, similar to what has been done by [29], to allow for

partial pooling of parameters among multiple populations. Priors in a “true” Bayesian frame-

work could also be included. To account for the non-independent estimates of S1, S2, and Pr,
random effects could be added to allow these parameters to be estimated around a distribution

of potential values. In addition to data on smolt abundance, one could incorporate a S-R rela-

tionship, based on egg production, to better inform the model. That said, given the high uncer-

tainty associated with most S-R relationships, this approach might only have inherent value

when smolt data are unavailable. As mentioned previously, the model could be improved by

incorporating sex-specific data, thus enabling the estimation of S2 and Pr (which was not possi-

ble with out model), yet this introduces the issue of accurate sexing and additional data

requirements (see [17, 19]).

The estimates of Pr and S2 are strongly influenced by their priors; appropriate priors for

these two parameters are crucial for the accurate estimation of S1. Adequately informative pri-

ors provides an alternative to the use of sex-specific return data, enabling the application of the

maturity-schedule method presented here to wild populations of Atlantic salmon. While these

priors can be based on expert knowledge, it might prove difficult to create priors that are

grounded in empirical estimates of S2 and Pr.

Table 3. Bias of estimates (shown as percentage difference) for estimated S1, S2, and Pr values across years and scenarios.

Fixed Pr
1SW-dominated

Variable Pr
1SW-dominated

Fixed Pr
Mixed 1SW-2SW

Variable Pr
Mixed 1SW-2SW

Fixed Pr
2SW-dominated

Variable Pr
2SW-dominated

Year S1 S2 Pr S1 S2 Pr S1 S2 Pr S1 S2 Pr S1 S2 Pr S1 S2 Pr
4 44.9 -24.3 -4.0 22.3 -24.9 13.8 195.8 -19.9 -54.4 124.9 -16.6 -41.3 114.7 -22.8 -13.9 155.2 -24.6 -18.5

5 39.0 -28.8 -4.0 18.3 -25.5 13.1 145.5 -48.5 -51.8 109.8 -49.0 -24.2 91.8 -26.6 -5.3 96.2 -29.3 -42.0

6 18.7 -30.3 -4.0 3.4 -22.4 7.0 104.2 -50.4 -52.6 124.2 -45.8 -38.0 61.9 -26.4 -3.7 79.8 -31.2 -8.3

7 29.2 -27.6 -4.2 14.6 -25.2 23.4 103.9 -42.8 -44.2 41.7 -29.5 -60.2 41.3 -24.2 1.5 48.4 -28.4 -30.9

8 1.0 -32.9 -4.1 9.1 -25.2 -1.1 87.2 -40.6 -41.6 98.9 -46.7 45.6 20.9 -20.5 -1.5 31.9 -24.4 -10.9

9 32.2 -26.9 -3.8 -18.1 -17.3 -2.7 65.7 -44.0 -42.2 24.0 -26.3 -61.6 9.9 -22.9 -3.9 50.7 -24.7 53.0

10 1.5 -36.9 -3.9 6.8 -23.3 33.9 70.3 -37.0 -33.5 12.3 -11.8 -6.7 16.1 -11.7 16.8 33.5 -24.4 -28.3

11 24.8 -27.1 -3.7 33.5 -25.0 6.9 52.2 -38.8 -33.0 60.0 -43.0 60.2 0.8 -12.5 11.2 -8.3 -10.2 -46.3

12 22.7 -36.7 -3.8 -3.3 -17.7 -0.1 41.0 -37.3 -34.1 49.9 -25.0 -37.0 -5.1 -11.3 15.6 25.5 -17.8 131.9

13 -1.2 -39.7 -3.6 -7.3 -17.3 12.6 43.8 -29.6 -26.1 27.0 -43.1 -19.3 -10.8 -8.0 18.1 13.4 -22.0 -21.7

14 14.9 -26.7 -3.9 18.0 -25.1 11.3 35.9 -29.0 -24.8 -0.3 -7.6 -39.1 -9.6 -3.0 30.1 1.5 -13.8 -19.3

15 14.6 -36.2 -3.7 -3.0 -23.6 -1.6 31.1 -30.0 -21.3 36.4 -21.1 38.6 -18.3 -0.9 22.2 -6.8 -6.2 -5.8

16 4.9 -34.7 -3.8 3.1 -10.5 1.7 33.9 -25.0 -12.4 10.3 -25.0 -28.4 -17.4 7.1 34.7 -16.4 -6.0 15.0

17 1.2 -34.4 -3.8 -3.0 -19.8 13.7 14.5 -26.8 -22.0 42.9 -42.6 16.9 -24.3 2.6 30.0 -29.6 5.9 3.4

18 -7.3 -36.9 -3.9 -25.1 10.0 2.7 19.4 -15.7 -13.1 38.7 -36.0 -23.4 -26.1 5.4 33.9 -44.8 5.5 46.0

19 -2.4 -33.5 -3.7 6.2 -15.7 43.4 17.8 -16.0 -7.8 5.6 -23.8 -33.6 -22.7 14.7 51.5 -20.7 11.4 204.9

20 31.7 -21.4 -3.1 -6.2 -2.6 5.7 8.4 -25.5 -11.3 -30.6 17.0 -32.0 -30.1 20.1 38.3 -30.5 15.7 24.0

mean 15.9 -31.5 -3.8 4.1 -18.3 10.8 63.0 -32.7 -31.0 45.6 -28.0 -16.7 11.4 -8.3 16.2 22.3 -13.2 14.5

https://doi.org/10.1371/journal.pone.0232407.t003

PLOS ONE Estimating marine survival of Atlantic salmon using an inverse matrix approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0232407 May 19, 2020 10 / 13

https://doi.org/10.1371/journal.pone.0232407.t003
https://doi.org/10.1371/journal.pone.0232407


In conclusion, the modelling approach detailed here provides a means of reliably describing

trends in survival of salmon during the first year at sea, that can be applied to empirical abun-

dance estimates, particularly for populations without a predominant 2SW component to their

returns. Under some life-history scenarios, absolute estimates of S1 can be made as well. How-

ever, the approach uses a somewhat arbitrary cost function, and more importantly is not able

to provide information on survival for multi-sea-winter fish nor the proportion returning as

1SW (a degrees-of-freedom problem). Thus, when fitting this model to simulated population

data, the resulting survival estimates for the first winter at sea (S1) are somewhat biased, given

the issues associated with estimating the proportion of fish that return to spawn after spending

a single winter at sea. In addition to providing temporally reliable estimates of at-sea survival

during the first year for Atlantic salmon, the benefits of our modelling approach include the

articulation of life-history matrix properties, the ease with which life stages can be differentially

weighted in how the cost function is structured, and the simplicity of the model.
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