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Immunization with Staphylococcus aureus iron
regulated surface determinant B (IsdB) confers
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We have previously shown that IsdB, a conserved protein expressed by Staphylococcus aureus, induces a robust antibody
response which correlates with protection in a murine challenge model. Here we investigate the role of cellular immunity
in IsdB mediated protection using lymphocyte deficient SCID mice. As opposed to WT CB-17 mice the CB-17 SCID mice
were not protected against a lethal challenge of S. aureus after active and passive immunizations with IsdB. Adoptive
transfer of in vitro isolated lymphocyte subsets revealed that reconstituting mice with IsdB specific CD3+ or CD4+ T-cells
conferred antigen specific protection while CD8+ T-cells, CD19+ B-cells and plasma cells (CD138highB220intCD19lo) alone
were not protective. A combination of CD3+ T-cells plus CD19+ B-cells conferred protection in CB-17 SCID mice, whereas
bovine serum albumin (BSA) immune lymphocytes did not confer protection. Active immunization experiments indicated
that IsdB immunized Jh mice (B-cell deficient) were protected against lethal challenge, while nude (T-cell deficient) mice
were not. In vitro assays indicated that isolated IsdB specific splenocytes from immunized mice produced abundant
IL-17A, much less IFN-c and no detectable IL-4. IL-23 deficient mice were not protected from a lethal challenge by IsdB
vaccination, pointing to a critical role for CD4+ Th17 in IsdB-mediated vaccination. Neutralizing IL-17A, but not IL-22 in
vivo significantly increased mortality in IsdB immunized mice; whereas, neutralizing IFN-c did not alter IsdB-mediated
protection. These findings suggest that IL-17A producing Th17 cells play an essential role in IsdB vaccine-mediated
defense against invasive S. aureus infection in mice.

Introduction

The need for a vaccine to prevent invasive disease caused by
S. aureus has become an important public health concern,
increasing in urgency over the last decades.1-3 Development of a
vaccine often depends on gaining an understanding of the
immune response to an organism, which can then be enhanced
through rational vaccine design. Although extensively investi-
gated, natural protective immunity to S. aureus is still poorly
understood. Acute infection with S. aureus does not prevent re-
infection.1 Preclinical and clinical data indicate that immunization
with intact whole bacteria induces high immune titers to
staphylococcus, but does not confer protection from S. aureus
disease.1,4 Clearance of S. aureus is historically thought to be
dependent upon antibody (Ab) and complement mediated uptake
and killing by phagocytes,5-10 with neutrophils being essential to
resolution of disease.11,12 However it has been demonstrated that

S. aureus can in fact survive within neutrophils, leading to
exacerbated disease.11,13 Additionally, the S. aureus stimulated
humoral immune response may not play a meaningful role in
bacterial clearance in some models.14-17 While antibodies
undoubtedly play some role in protection, they may not be
determinative for vaccine protective efficacy because animals and
humans already have sufficient baseline opsonins to allow for
phagocytic uptake by neutrophils.

Recently, the importance of T-cells and T-cell cytokines in innate
immunity to S. aureus has been the object of investigation.14,18-20

T cells were observed to play a pivotal role in the prevention
of S. aureus infection, as demonstrated in models of disseminated
as well as local infection. These studies established a connection
between T cells and neutrophils wherein IL-17A is important for
recruiting neutrophils, enhancing chemotaxis, acting synergistically
with TLR2 to enhance killing (non-antibody, i.e., pattern
recognition), and priming neutrophils for bactericidal activity.21,22
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In addition, Th17 immunity may be important for addressing
S. aureus as an intracellular pathogen23 and IL-17A induced Th1
helper response may be of particular importance in addressing
such organisms.24 Hence we wanted to define the role of
T-cell immunity in response to our vaccine antigen.

IsdB is a ~72 kDa antigen expressed on the cell surface of S.
aureus in iron limited environments.25-27 Its function is to capture
and import heme iron from hemoglobin.27 Due to the low iron
environment of mammalian blood and tissue, IsdB is upregulated
during pathogenesis in vivo.28 IsdB is highly conserved among
diverse S. aureus clinical isolates, both methicillin resistant and
methicillin sensitive and humans, as well as mammals examined to
date, have pre-existing antibody titers to IsdB,29 although it is
unknown whether these pre-existing titers offer protection.
Additionally, Kuklin et al. demonstrated that immunization with
IsdB formulated on amorphous aluminum hydroxyphosphate
sulfate adjuvant (AAHSA) increased murine antibody titers by up
to 20-fold, and non-human primate titers by 4-fold. Importantly,
increased antibody titers correlated with enhanced survival in a
murine disseminated challenge model.30 Also, mAb to IsdB have
in vitro opsonophagocytic (OP) activity, and efficacy in rodent
challenge models.28 Thus IsdB-specific mAb can confer protection
after passive immunization, however it was of interest to determine
what components of the adaptive immune system are important for
protection mediated by active IsdB vaccination. To this end, a series
of experiments were undertaken to dissect the immune response to
IsdB in the murine lethal challenge model. Lymphocyte populations
were evaluated for protective activity, and it was discovered that
protection in this model is mediated by CD4+ T cells, and that
IL-17A plays an important role in vaccine efficacy.

Results

Lymphocytes are essential for IsdB mediated protection in a
murine sepsis model. IsdB was previously shown to elicit

antibody responses which correlated with protection in a murine
sepsis model. However, it is possible that the antigen also elicits
an effector T-cell response which may contribute to enhanced
survival. To investigate the role of cell mediated immune
responses during IsdB induced protection, CB-17 (WT or
SCID) mice were immunized with IsdB or BSA (negative
control), via intramuscular injection to the thigh, as described in
the Methods section. Mice were challenged with S. aureus and
survival was monitored for 10 d.

Since survival in this disseminated infection model correlates
with antibody titer,30 it was expected that lymphocyte (and
antibody) deficient SCID mice would be susceptible to challenge.
As shown in Figure 1A, IsdB immunized CB-17 WT mice, with
an intact lymphocyte population, showed significantly higher (p =
0.02) survival than IsdB immunized CB-17 SCID mice, or BSA
vaccinated control mice (p = 0.02) (data not shown). It was
expected that if the SCID mice were supplemented with IsdB
specific mAb, they would be protected from challenge.
Monoclonal antibody CS-D7 was used to passively immunize
SCID mice. This monoclonal has been previously demonstrated
to significantly enhance survival in the murine sepsis model.31

Surprisingly, SCID mice treated with CS-D7 were not protected
post challenge and showed similar reduced survival as animals
treated with the isotype control (MK-24), or with animals
uninjected with mAb (naïve mice) (Fig. 1B). This experiment was
performed using the Becker strain28 as well as the SA02531 strain
as challenge inoculum, with equivalent results. Thus using either
method of immunization, it was observed that an intact
lymphocyte system was required for protection post IsdB
immunization in the murine sepsis model of infection.

Identification of lymphocyte subset(s) critical in protection.
Lymphocyte subset(s) were examined to determine which
populations were critical in providing protection mediated by
IsdB. Splenocytes harvested from IsdB or BSA immunized CB-17
WT mice were isolated into five major subsets: CD19+,

Figure 1. Survival of CB-17 (WT or SCID) mice immunized (active or passive) with IsdB. (A)WT or SCID mice (n = 10) were actively immunized i.m. with
20 mg of antigen on days 0, 7 and 21. On day 35, mice were challenged with S. aureus Becker (8.8 � 108 CFU) via the tail vein. Mice were monitored for
survival for 10 d post challenge. Data were pooled from two independent experiments. Survival of IsdB immunized SCID mice vs. IsdB immunized WT
mice, p = 0.02. Survival of IsdB immunized WT mice vs. control BSA immunized WT mice, p = 0.02 (data not shown). (B) Survival of CB-17 (SCID) mice
passively immunized to IsdB and challenged via the tail vein. SCID mice (n = 10) were immunized i.p. with 400 mg of mAb (either IsdB specific CS-D7,
or control MK24), or saline alone, 2 h prior to challenge with S. aureus SA025 (2 � 108 CFU) via the tail vein. Mice were monitored for survival for 10 d post
challenge. Data were pooled from two independent experiments. Survival of IsdB immunized SCID mice vs. isotype immunized mice, p = 0.49. Error bars
indicate the 95% CI.
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CD138highB220intCD19lo, CD3+, CD4+, and CD8+, using MACS
beads. These were adoptively transferred into CB-17 SCID
mice via tail vein injection. Purity of the isolated populations
was confirmed using flow cytometry (data not shown), and each
population was . 95% homogeneous. Mice were challenged via
the tail vein and monitored for survival for 10 d post challenge.

As shown in Table 1, CB-17 SCID mice reconstituted with a
combination of CD19+ plus CD3+ lymphocytes (group #3) from
animals immunized with IsdB were robustly protected, as com-
pared with mice reconstituted with CD19+ plus CD3+ lympho-
cytes from BSA immunized animals (p , 0.01). Individual
CD19+ (group #2) and CD3+ (group #4) lymphocytes were
examined for protective activity. Surprisingly, reconstitution with
IsdB immune CD19+ B lymphocytes alone did not generate
significant protection (p = 0.54) vs. the control CD19+ cells.
In case these lymphocytes were not producing sufficient antigen
specific IgG, immune CD138highB220intCD19lo plasmacytes
(group #1) were isolated and adoptively transferred. Contrary
to our expectations, transfer of the IsdB immunized
CD138highB220intCD19lo plasmacyte subset did not reconstitute
statistically significant protection (p = 0.2) in the recipient mice.
Thus neither IsdB immunized B cells (CD19+) nor plasmacytes
(CD138highB220intCD19lo) were protective. However, adoptive
transfer of CD3+ T cells (group #4) was found to be significantly
protective (p , 0.01) over control. Two subsets of T cells were
isolated and transferred, CD4+ (group #5) and CD8+ (group #6).
No enhancement in survival was noted with the transfer of
CD8+ T cells alone (p = 0.6), thus suggesting that the CD4+ T
subset (p = 0.06) in the CD3+ T cell population was responsible
for enhanced survival of recipient mice. The adoptive transfer
of lymphocyte subsets from control (BSA) mice was unable to
reconstitute protective immunity in any instance.

CD4+ mediated protection was antigen specific. The enhanced
survival observed in SCID mice reconstituted with IsdB specific

CD4+ cells was investigated to determine if the response was
antigen specific. Although BSA immune lymphocytes did not
confer protection (Table 1), it was possible that IsdB immune
lymphocytes could have induced a non-specific stimulation of the
innate immune system leading to enhanced survival against S.
aureus challenge. CD4+ lymphocytes from IsdB immune CB-17
mice were adoptively transferred into SCID mice. The mice were
challenged with a lethal dose of S. aureus Becker isdB/harA
deletion strain (KO), or the WT parental strain. A double deletion
strain was used because harA has high homology with isdB, and
therefore both genes need to be deleted to ensure complete
removal of this antigen.

As observed in the adoptive transfer experiments above, SCID
mice replete with IsdB immune CD4+ lymphocytes were
significantly protected after challenge with the S. aureus Becker
WT strain, when compared with SCID mice replete with BSA
immune CD4+ lymphocytes, p , 0.003 (Fig. 2). However, when
similar sets of mice were challenged with the S. aureus Becker KO
strain, the IsdB immune SCID mice did not exhibit greater
survival (p = 0.26) than the BSA immune SCID mice. Therefore,
the protection mediated by IsdB immune CD4+ lymphocytes
was antigen (IsdB) specific.

Lack of T cell immunity has fatal outcome while lack of B cell
immunity does not. The inability of IsdB specific plasma and
CD19+ B cells to confer protection in the CB-17 SCID adoptive
transfer model prompted us to investigate the role of B and T cells
in IsdB mediated protection, using an alternative strategy.
Genetically altered immunoglobulin heavy chain deficient Jh
(Balb/c background) and T cell deficient nude mice (Balb/c) were
immunized with IsdB, or BSA using the same protocol as above.
Mice were challenged with a lethal dose (LD80–90) of S. aureus
Becker and survival was monitored for 10 d.

As shown in Figure 3A, IsdB immunized Jh (B cell deficient)
mice were significantly protected after S. aureus challenge,

Table 1. Survival of CB-17 SCID mice after adoptive transfer of isolated lymphocyte populations and challenge via the tail vein with S. aureus*

Cell Type Immunity Number of mice surviving, days post challenge

1 2 3 4 5 6 7 8 9 10 % survival P value

CD138+B220+/2CD19-(Plasma cells) BSA 10 7 5 5 3 3 3 3 3 3 30 0.20

IsdB 10 10 9 7 7 6 5 5 5 5 50

CD19+(B cells) BSA 10 10 8 7 5 4 4 4 3 3 30 0.54

IsdB 10 10 7 5 4 4 2 2 2 2 20

CD19+CD3+(B cells+T cells) BSA 10 7 5 3 3 1 1 1 1 1 10 , 0.01

IsdB 10 10 8 8 8 8 8 8 8 8 80

CD3+(Tcells) BSA 10 10 7 4 2 2 2 2 2 2 20 , 0.01

IsdB 10 10 10 8 8 8 8 8 8 8 80

CD4+(Th cells) BSA 10 10 7 6 4 4 3 3 3 3 30 0.06

IsdB 10 10 10 9 7 7 7 7 7 7 70

CD8+(T cells) BSA 10 10 7 5 5 4 2 2 2 2 20 0.60

IsdB 10 8 7 5 5 5 4 4 4 4 40

No transfer 10 6 2 0 0 0 0 0 0 0 0

*Results represent a single experiment which was repeated three times with similar results. p values were determined using Prism1 Log Rank survival
statistics, for pairwise comparison of each experimental group to its matching control group.
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compared with the BSA control Jh mice (p = 0.04) which
were not protected. The control naive (unimmunized) Jh
mice were also not protected. The IsdB immunized nude (T
cell deficient) mice (Fig. 3B) were not protected after S.
aureus challenge in comparison to the BSA immunized
control nude mice (p = 0.88). These data were in agreement
with our prior adoptive transfer experiments, indicating a
critical role for T lymphocytes, but not B lymphocytes nor
plasma cells, in mediating protection after immunization
with IsdB, in the murine sepsis model. Titers to IsdB were
measured for each group of mice. Jh mice had no IgG titer
to IsdB (Fig. 3C) while nude mice had IsdB titers post
immunization, although lower than the expected titer for
WT mice (Fig. 3D).

IsdB Immunization primarily induced secretion of
IL-17A but not IFN-g or IL-4. As observed in the adoptive
transfer experiments, the CD4+ T cells were the cell
population which conferred protection after challenge with
S. aureus. To define the cytokine response induced by
vaccination, spleens were harvested from IsdB and BSA
immunized CB-17 WT mice two weeks post boost
(day 28). The splenocytes were stimulated ex vivo for
20 h with IsdB peptide pools or IsdB intact protein

Figure 2. Survival of CB-17 SCID mice replenished with IsdB or BSA immunized
CD4+ T cells. CD4+ T cells from CB-17 mice immunized with either IsdB, or BSA
were adoptively transferred into SCID mice (n = 10) via the i.v. route, and
the mice were challenged with either WT S. aureus Becker, or KO Becker
(isdB/harA2/2)(LD80–90; 4.9 � 108–8.7 � 108) via the tail vein. Mice were
monitored for survival for 10 d post challenge. Survival of mice challenged with
WT S. aureus Becker, p = 0.003 for IsdB immunized SCID mice vs. BSA immunized
SCID mice. Survival of mice challenged with KO S. aureus Becker, p = 0.26 for
IsdB immunized SCID mice vs. BSA immunized SCID mice. Error bars indicate
the 95% CI values.

Figure 3. Survival of IsdB immunized B and T cell deficient mice challenged via the tail vein. IgH deficient Jh mice [(A) n = 10] or T-cell deficient nude
mice [(B) n = 10] were actively immunized i.m. with IsdB or BSA and challenged with S. aureus Becker, (6.4 � 108 CFU, LD 80–90) via the tail vein, as
described in the Methods section. Mice were monitored for survival for 10 d post challenge. IsdB immunized Jh mice survival compared with control BSA
immunized Jh mice (p = 0.04). T-cell deficient nude mice immunized with IsdB survival compared with BSA immunized nude mice (p = 0.88). Jh (C) and
nude (D) mice were bled prior to IsdB vaccination on day 0, and post vaccination on day 28, and titer of IsdB antibody response measured using an ELISA,
as described in the Methods section.
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(as described in the Methods section) and cytokine secretion by
CD4+ T cells was measured by Elispot assay and ICS assay.

Intracellular cytokine staining (ICS) using intact IsdB protein
revealed a significant increase in the frequency of IL-17A secreting

CD4+ T cells post IsdB immunization (Fig. 4A and S1), as
compared with BSA immunized control mice (Fig. 4B and S1). A
minimal increase in IFNc-secreting CD4+ T cells was also noted
upon stimulation (Fig. 4A). No response from IL4 secreting

Figure 4. ICS and ELISpot evaluation of IsdB immune splenocytes for cytokine secretion. Splenocytes were isolated from IsdB (A) or BSA (B) immune
CB-17 mice and stimulated for 20 h in vitro with IsdB or BSA, or left unstimulated. IL17A, IFNc and IL4 secreting CD4 T cells were identified by flow
cytometry as described in the Methods section. Overlapping 15 mer peptide pools from IsdB were used to stimulate splenocytes from IsdB immune CB-
17 mice. Splenocytes were subsequently analysis by ELISpot for the production of IL17A (C) or IFNc (D) release. ICS was used to confirm ELISpot results
by evaluating which IsdB peptide pools stimulated intracellular secretion of either IL17A (E) or IFNc (F).
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CD4+ T cells was observed. Additionally we also evaluated the
secretion of IL-17A and IFN-g from immune splenocytes using
IsdB peptide pools in an ELISpot assay (Fig. 4C and D). It was
observed that IsdB peptide pools 1 (a.a. 42–93) and 7 (a.a. 242–
333), stimulated robust secretion of IL-17A from splenocytes
(Fig. 4C). Pools 1 (a.a.42–93), 10–11(a.a.402 to 457) stimulated
IFN c response, however, this was not as robust as the IL-17A
response (Fig. 4D). Alternatively, secretion of IL17A, IFN-c and
IL4 from splenocytes using IsdB peptide pools was also evaluated
in an ICS assay. Similar to Elispot results, stimulation with pools
1, 6 and 7 resulted in robust IL-17A secretion from splenocytes
(Fig. 4E; Fig. S2) however we did not detect a robust IFN-c
response upon stimulation with the overlapping IsdB peptide
pools using ICS technique (Fig. 4F; Fig. S3).

IsdB does not mediate protection in p19KO mice. Based
upon the data above, it appeared that IsdB mediated immunity
induced a robust Th17 (IL-17A), as opposed to a Th1 (IFN-c), or
Th2 (IL4) response in the CB-17 mice. It was therefore possible
that stimulation of the Th17 response contributed to protection
in mice in the sepsis model. To investigate this possibility,
IL-23p19 KO mice (C57Bl/6 background) were utilized. Genetic
deletion of the IL-23p19 subunit prevents production of the
cytokine IL-23, and thus the formation of IL-17 and IL 22-
secreting CD4+ T-cells.21,32 IL-23p19 KO mice, or the parental
WT C57Bl/6 were immunized with either IsdB or BSA as
previously described, and challenged with S. aureus.

As indicated in Figure 5, IL-23p19 KO mice immunized
with IsdB had a similar survival rate as mice immunized with BSA
(p = 0.77). Although both IsdB and BSA immunized groups of
mice had a higher survival rate than the naïve, unimmunized
mice, there was no difference in survival between the two
immunized groups.

Protection in mice is mediated by IL-17A and not IFN-c.
Results from the IL-23p19 KO mouse strain supported the
possibility of Th17 cells contributing to the IsdB vaccine-
mediated protection of Balb/c mice in the sepsis model. If this

were so, then IL-17A could be an important cytokine involved in,
or mediating, the IsdB vaccine protection.33,34 Since IL23p19KO
mice are also deficient in IL22 producing CD4T cells, the role
of both IL17A and IL22 in protection was evaluated using
neutralizing mAbs to each of these cytokines (Fig. 6; Fig. S4).
IsdB immunized Balb/c were administered saline, or 400 mg of
either IL-17A, IFN-c, IL22 neutralizing mAb, or isotype control
mAb per mouse, through the i.p. route. Two hours post
administration of saline or mAb, mice were challenged through
the tail vein and survival was monitored for 10 d.

When IsdB immunized Balb/c mice were injected with saline
(IsdB), or were injected with isotype control mAb, prior to
S. aureus challenge, they had equivalent survival in this model
(60% and 55% respectively) (Fig. 6A). IsdB-immunized mice
administered neutralizing antibody to IL-17A had a significant
decrease in survival, when compared with IsdB-immunized mice
administered isotype control mAb (p = 0.004). IsdB immunized

Figure 5. Survival of p19KO mice immunized with IsdB or BSA and
challenged via the tail vein. p19KO mice (n = 10) were immunized i.m.
with 20 mg of antigen on days 0, 7 and 21. On day 35 mice were
challenged with S. aureus Becker (8 � 108 CFU) via the tail vein. Mice
were monitored for survival for 10 d post challenge. Survival of IsdB
immunized p19KO mice vs. BSA immunized p19KO mice, p = 0.77.
Error bars = 95% CI values.

Figure 6. Survival of Balb/c mice immunized with IsdB (A) or BSA (B) and
challenged in the presence of neutralizing mAbs. Balb/c mice (n = 10)
were immunized i.m. with 20 mg of antigen on days 0, 7 and 21. On day
35 mice were injected ip with 400 mg of neutralizing IL17A, IFN-c or
isotype control mAb, or an equal volume of saline. After 2 h, mice were
then challenged with S. aureus Becker (7.8 � 108 CFU) via the tail vein.
Mice were monitored for survival for 10 d post challenge. Data shown is
from a single experiment repeated two times with equivalent results.
(A) Survival of IsdB immunized mice injected with IL17A mAb vs. isotype
control mAb, p = 0.004; survival of IsdB immunized mice injected with
IFNc mAb vs. isotype control mAb, p = 0.48. (B) Survival of BSA
immunized mice injected with IL17A mAb vs. isotype control mAb,
p = 0.17; survival of BSA immunized mice injected with IFN-c mAb vs.
isotype control mAb, p = 0.18. Error bars = 95% CI.
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mice administered IL-17A neutralizing mAb had the same
survival rate as for negative control BSA immunized mice
(20%). Administering IFN c neutralizing mAb to IsdB immune
mice resulted in a somewhat lower survival than for isotype
control mAb injected mice, however, the difference was not
significant (p = 0.48). BSA immune mice served as the negative
control for this experiment. As shown in Figure 6B, there was no
significant difference in survival in BSA immunized mice with
saline nor any antibody injected (p = 0.05). Additionally, we
found that IL22 does not play a major role in this model, as there
was no significant drop in survival of IsdB immunized mice,
challenged with a lethal S. aureus dose, comparing the IL22
neutralizing mAb to an isotype control mAb (p = 0.59, Fig. S4)
This experiment indicates that there is a direct link between IsdB
immunization, IL-17A production, and efficacy in the murine
model of lethal sepsis.

Discussion

The humoral immune response to S. aureus is believed to be
important for protection from infection, and as such, has been
extensively investigated.35-39 However this response may not
necessarily contribute to clearance of bacteria or reduction of
disease.15,40 Evidence is mounting that antibody plays a limited
role in the clearance of multiple bacterial pathogens. For example,
the clearance of Streptococcus pneumoniae colonization may not
depend on the humoral immune response,41-43 and antibodies are
not important in the clearance of Helicobacter pylori in a murine
challenge model.44,45 Investigation of human genetic linked
disease has implicated a role for CD4+ Th17 cells in the natural
clearance of S. aureus. Patients with hyperimmunoglobulin E
syndrome (HIES), or Job syndrome, suffer from repeated
S. aureus and C. albicans infections of the skin and mucosal
surfaces.46 Recently mutations in the signal transducer and
activator of transcription 3 (STAT3) intracellular regulator were
described in these patients, and the resulting defective STAT3 was
linked to dramatically decreased or missing IL-17A-producing
CD4+ cells (i.e., Th17 cells).47-49 A significant decrease in IL-17A
was observed in these patients, which could account for the lack of
protection against repeated S. aureus and C. albicans infections.22

Th17 cells are thought to mediate protection from intracellular
bacteria, extracellular bacteria and fungal infections21,32,50,51

particularly at mucosal surfaces.22 IL-17A secreted by Th17 cells
stimulates release of chemokines and granulocyte colony
stimulating factors, thus recruiting neutrophils to sites of
pathogen invasion.50 Although IL-17A reduction was linked to
the repeated S. aureus and C. albicans infections in Job syndrome
patients, autoantibodies to IL-17A and IL-17F, as observed in
autoimmune polyendocrine syndrome type I (APS-1) patients do
not lead to S. aureus infections. These patients exhibit repeated
C. albicans infections, but no unusual level of infections with
other pathogens.52 Perhaps the difference between the two
syndromes resides with the intact Th17 activity in the APS-1
patients, which might provide some activation of mucosal cells
and keratinocyte cationic peptide defenses and thus provide some
residual immunity for pathogens like S. aureus at these sites. In

any event, the connection between STAT3, Th17, IL-17A and
S. aureus immunity is a complex and evolving story.53

Mice models have been used to investigate the role of Th17 in
natural immunity to S. aureus. In the absence of both IL-17A and
IL-17F in a cytokine deletion murine strain (Il17a2/2IL17f2/2),54

formation of spontaneous mucocutaneous abscesses was observed
around the nose and mouth. These abscesses contained S. aureus,
indicating the involvement of IL-17A/F cytokines in the natural
control of S. aureus infections. However after active iv challenge
with S. aureus, no difference was observed in survival, or kidney
bacterial burden, between the Il17a2/2IL17f2/2 strain and the
wild type progenitor strain. Therefore, IL-17A/F were not critical
immune modulators during disseminated S. aureus infection, but
only for local mucocutaneous infection.54 It is important to note
that the mice in these experiments were un-immunized. The role
of IL-17A in mucocutaneous protection from S. aureus was
confirmed in work from a second group.55 These investigators
demonstrated that mice deficient in CD3+ cdT cells exhibited
cutaneous lesions significantly larger than observed in wild type
mice. Reconstituting the mice with a single dose of IL-17A could
restore the impaired immunity of the deletion strain back to that
of the wild type strain.

IsdB has significant vaccine activity when administered to mice,
and IsdB specific antibodies generated by active immunization can
confer protection.28,30,56 In light of the expanding evidence
supporting the importance of T cells in immunity to bacteria, we
initiated experiments to explore the role of lymphocytes in IsdB
mediated protection. To this end, lymphocyte populations were
investigated to determine which population(s) conferred protec-
tion. In the absence of any lymphocytes (in SCID mice), no
protection was observed after IsdB immunization, which was not
unexpected, because these mice are defective for IgG production.
However, protection could not be reconstituted by passive
immunization with IsdB specific mAb in the absence of
lymphocytes. The dependence of mAb mediated protection on
having an intact lymphocyte system may be explained by the fact
that Abs promote a more effective inflammatory response in the
presence of T cells. Infact there are several other instances in
which passive mAb efficacy requires an intact immune system.57,58

Thus, lymphocytes played a critical role in protection mediated by
anti-IsdB mAb in our model. The identity of the critical
population of lymphocytes was investigated through passive
transfer of isolated lymphocyte sub-populations into SCID mice.
The active cells were determined to be T cells (CD3+/CD4+),
whereas B lineage cells (CD19+ or CD138hB22+/2CD19/-)
provided little or no protection. This was an unexpected finding,
and was confirmed through active vaccination and challenge of
B-cell deficient, and T-cell deficient mice. B-cell deficient
immunized mice were protected from challenge, whereas T-cell
deficient mice were not. These data suggest that IgG and B-cells
do not play a primary role in protection mediated by IsdB. We
have previously shown that increasing antibody titers after
vaccination with IsdB correlate with protection in a murine
model of disseminated staph infection.30 However a side by side
evaluation of T-cell responses was not done in those experiments.
In light of these data, it is likely that the rising antibody titers were
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a consequence of a robust CD4 T helper cell response. In fact,
antibody titers have been used as surrogate markers of protection59

and shown to be elevated during polarized T helper responses.60

Thus, IsdB vaccine efficacy in this model of disseminated infec-
tion was in fact mediated by IL-17A-secreting CD4 T lympho-
cytes. Additionally, protection mediated by T cells was antigen
specific, as demonstrated in SCID mice passively immunized with
IsdB specific CD4+ T cells and challenged with the S. aureus isdB-/
harA- deletion strain. In that case, mice were not protected against
challenge. These data confirm that T cell mediated protection was
not due to non-specific immune stimulation stimulated by IsdB
immune T cells. This experimental result is thus consistent with
earlier findings in which Balb/c mice were actively vaccinated with
IsdB and were not protected after challenge by the S. aureus isdB-/
harA- deletion strain.30

CD4+ T cells were identified as the effectors for IsdB mediated
protection, in the adoptive transfer experiments. These cells were
examined for the expression of cytokines to determine which
T-helper population was likely mediating protection. Analysis of
IsdB immune CD4+ cells revealed minimal or no increase in the
frequencies of IFNc (Th1) and IL-4 (Th2) secreting CD4 T cells
upon stimulation with IsdB, whereas IL-17A (Th17) secreting
cells made upto 4% of the CD4+ population. These results were
confirmed using ELISpot and ICS analysis. To confirm that Th17
cells were important in IsdB mediated efficacy, mice deficient in
IL-23 (IL-23p19 KO) were immunized and challenged with
S. aureus. These mice cannot produce functional IL-23, which is
critical in differentiation of Th17 cells.32 Consequently, protec-
tion was not observed in this strain of mice. Additionally, anti-IL-
17A mAb eliminated IsdB mediated protection in Balb/c mice
(p = 004), whereas anti-INFc mAb had much less effect
(p = 0.48). Neither mAb affected survival in BSA immunized
mice (p = 0.17 or p = 0.18 respectively). Since IL23p19KO mice
are also deficient in the production of IL22, mice were also
evaluated for survival post challenge by neutralizing only IL22,
but not IL17A, in vivo. Here, upon challenge with S. aureus we
found no difference in the survival of mice treated with anti IL22
mAb or not treated with the (IL 22) mAb (p = 0.59).

Taking the data in total, the protection using the IsdB vaccine
in this disseminated lethal challenge model is mediated through a
Th17 response, in which IL-17A plays an important role. Neither
immune B cells nor immunoglobulin support efficacy. Other
vaccine antigens that have been reported to enhance efficacy
against lethal S. aureus challenge, in a disseminated murine model
or kidney infection model, through Th17 stimulation; are the
Candida albicans adhesin Als3p14,19 and S. aureus fibrinogen
binding clumping factor A (Clf-A).58 Als3p antigen protects mice
from both C. albicans and S. aureus challenge in the absence of
B lymphocytes.14 IsdB differs from Als3p in that antibodies to
IsdB, when passively administered, can provide protection from a
lethal S. aureus challenge.28,30,56 Data elucidating the underlying
protective murine immune responses to these antigens may shed
light on the necessary mechanism of adaptive immune response to
induce protection to S. aureus in humans.58,61 There are several
observations which imply that antibodies may not be sufficient for
protection against S. aureus infection. For example, antibodies

targeted to several S. aureus surface antigens have demonstrated
preclinical efficacy, including polyclonal anti-capsule type 8 and
type 5,62-64 polyclonal and monoclonal anti- ClfA65,66 and Fab to
an ABC transporter.67 However, human clinical trials resulted in
a disappointing lack of statistically significant efficacy.68-70 Taken
together, the role of vaccine induced Th17 response should be
evaluated as a biomarker for vaccine efficacy, along with antibody
response, for future vaccine development. IsdB induces both
humoral and cellular immune responses which may both con-
tribute to efficacy.

Methods

Ethics statement. All animal work was performed in strict
accordance with the recommendations in the Guide for care and
use of Laboratory Animals of the National Institutes of Health.
The protocol was approved by Institutional Animal Care and Use
Committee (IACUC, APS# 10079975730248), Merck Research
Labs, West Point, PA.

Bacterial strains: bacteria. Bacteria used in this investigation
were as follows: S. aureus Becker-MSSA (obtained from Prof Chia
Lee, University of Arkansas), S. aureus Becker isdB harA deletion
mutant-MSSA, and SA025-MRSA (Merck clinical isolate).31

Bacteria were grown on tryptic soy agar (TSA), or tryptic soy
broth (TSB) overnight, pelleted and stored as frozen 15% glycerol
stocks. For use in experiments, bacteria were thawed, pelleted, and
resuspended in the appropriate buffer or medium. Bacterial CFU
were quantitated by serial dilution and plating on TSA, with
growth overnight at 37°C.

Murine strains. Mice were purchased from Taconic Farms Inc.
CB-17 WT and CB-17 SCID mice were used for adoptive
transfer studies. The CB-17 strain of mice is genetically similar to
Balb/c except for the presence of immunoglobulin heavy chain,
Igh-1b allele of the C57BL/Ka strain. These mice were chosen
because of the availability of the SCID counterpart on the CB-17
background.4 Additionally, immunoglobulin heavy chain deleted
Jh (Balb/c) and nude (Balb/c) mice from Taconic farms were used
for lethal challenges. C57BL/6 mice genetically deficient in
IL-23p19 (B6.129-IL23p19tm1Dnax) also called IL-23p19 KO,
were obtained from Merck Research Labs, Palo Alto, CA) All
animals were housed in a specific-pathogen-free environment and
were negative for pathogens in routine screening.

Murine lethal challenge model: Active and passive immuniza-
tion and challenge. Active and passive immunization were used
to evaluate IsdB-mediated protection in a disseminated lethal
challenge model. The challenge model was previously described.28

Briefly, mice were actively immunized three times with IsdB
(20 mg per dose) formulated with amorphous aluminum hydro-
xyphosphate sulfate adjuvant (AAHSA) or bovine serum albumin
(BSA, negative control) formulated with AAHSA. The doses were
administered as two 50 mL intramuscular injections on days 0, 7
and 21. The mice were bled on day 28, and sera were screened for
reactivity to IsdB by ELISA. On day 35 the mice were challenged
with an LD80–90 dose of S. aureus (from TSA culture, 4.9 � 108

to 8.7 � 108 CFU/ mouse) by intravenous tail vein injection, and
survival was monitored for 10 d, as most fatalities were
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encountered between 2 and 6 d post challenge. Unless otherwise
noted, S. aureus strain Becker was used throughout for lethal
challenges. In some experiments, 400 ug/mouse of a neutralizing
rat anti-mouse IL-17A antibody (JL7.1D10, Merck Research
Labs), a neutralizing rat anti-mouse IFN-c antibody (XMG
1.2, Merck Research Labs), and mouse anti-human IL-22mAb
(100% crossreactive with mouse IL-22, R&D Systems, Catalog
# 782IL) or isotype control mAb (7D7, Merck Research Labs)
were administered i.p. to immunized mice 2 h prior to iv
bacterial challenge.71 For passive IsdB immunization, CB-17
(WT and SCID) mice were injected with 400 mg of IsdB specific
mAb (CS-D7) or irrelevant isotype matched control (MK-24)
via the i.p. route, 2 h prior to lethal challenge with S. aureus
SA025, as previously described.31 Lethal challenge was done via
tail vein using SA025 (TSA culture, 1.9 � 108 to 8.7 � 108 CFU)
via tail vein injection. Survival was monitored for 10 d post
challenge.

ELISA assays. To measure anti-IsdB titers an ELISA was
performed as previously described.30 IL-17A levels in the serum
were determined using mouse IL-17A ELISA kit (Invitrogen,
Catalog #KMC 3021) as per manufacturer's instructions (data
not shown).

ELISpot assays. The gamma interferon (IFN-c) and IL-17A
spot ELISA (ELISpot) assays were performed using kits (Mabtech,
Catalog # 3321–2A and 3521–2A respectively). Briefly, peptides
spanning the entire length of IsdB were synthesized (JPT
PeptideTech) and pooled such that each pool had a final con-
centration of 1mM. Peptides were synthesized as 15mers with 11
amino acid overlap and covered aa 1–645 of SACOL 1138 (IsdB).
Splenocytes (2.5 � 105) were incubated with 10 mM peptide
pools, for 18–20 h. Cells were suspended in 100 ml RPMI supple-
mented with 10% fetal bovine sera (Atlanta Biologicals), 10 mM
HEPES, 2 mM glutamine, 100 U penicillin ml–1 and 100 mg
streptomycin ml–1 (P/S) in duplicate wells. Spot-forming cells
(SFCs) were detected with a biotin–avidin alkaline phosphatase
conjugate, using an immunospot analyzer (Cellular Technology).

Lymphocyte isolation and adoptive transfers. Lymphocyte
subsets, namely CD4+ T-cells, CD8+ T-cells, CD3+ T-cells,
CD19+ B-cells, and CD138/B220/CD19+ plasma cells were
purified from spleens of CB-17 mice using immuno magnetic
selection (Miltenyi Biotec) as per the manufacturer's directions.
Briefly, cells were labeled with a cocktail of cell surface markers
except the marker for the population of interest. The labeled cell
population was passed through a magnetic column and the

negative fraction (unbound cells) was collected. A small sample
from the eluted purified population was labeled with the CD
marker of interest, and analyzed on a FACS Calibur flow
cytometer (BD Biosciences) to assess the purity(data not shown).
107 isolated lymphocytes from IsdB immunized or BSA
immunized mice were transferred into each recipient mouse via
the tail vein. Lethal i.v. challenge with S. aureus was performed
2 h post transfer of lymphocyte subsets.

Cytokine analysis. The cytokine secretion analysis was done
using intracellular cytokine staining kits (BD Biosciences, Catalog
# 51-2041AK). Briefly, 1–2 � 106 lymphocytes were incubated
with or without peptide pools (10 mg/mL) or with or without
intact protein (IsdB, 25 mg/ml) for 2 h. Cells were treated with
brefeldinA for an additional 4 h then washed, permeabilized and
fixed using the cytofix/cytoperm reagent. PE-conjugated mouse
IFN-c, IL4 and IL-17A mAbs were used to measure cytokine
secretion. PE-conjugated isotype control cocktail as well as
purified blocking antibody cocktail were used to measure back-
ground. Additionally, in some instances cells were also stained
with APC labeled anti-CD4 mAb (BD Biosciences, 553051) to
determine the frequency of CD4+ cytokine+ cells. Forward- vs.
side-scatter profiles were used to define the live splenocyte
populations, and gates were set based on antibody isotype con-
trols and cells that stained positive for the protein of interest.
Samples were collected on a FACSCalibur flow cytometer (BD
Biosciences), and analysis was performed using Treestar Flow Jo
(Ashland) software.

Statistical methods. For comparison of survival in the murine
lethal challenge experiments individual experiments were analyzed
using the Prism software (Prism for Windows, version 5.01,
GraphPad Software), and choosing the Log rank, Mantel Cox test
statistical method for testing statistical significance. Probability (P)
values , 0.05 were considered significant. In some cases, data
were pooled from identical experiments for analysis.
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