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Rapidlymutating viruses, such as hepatitis C virus (HCV) andHIV, have adopted evolutionary strategies that allow escape from the
host immune response via genomicmutations. Recent advances in high-throughput sequencing are reshaping the field of immuno-
virology of viral infections, as these allow fast and cheap generation of genomic data. However, due to the large volumes of data
generated, a thorough understanding of the biological and immunological significance of such information is often difficult. This
paper proposes a pipeline that allows visualization and statistical analysis of viral mutations that are associated with immune escape.
Taking next generation sequencing data from longitudinal analysis of HCV viral genomes during a single HCV infection, along
with antigen specific T-cell responses detected from the same subject, we demonstrate the applicability of these tools in the context
of primary HCV infection. We provide a statistical and visual explanation of the relationship between cooccurring mutations on
the viral genome and the parallel adaptive immune response against HCV.

1. Introduction

The complete lack or limited efficacy of vaccines for rapidly
mutating viruses causing chronic infections (e.g., HIV and
HCV) or seasonal pandemics (Influenza) is due to the
extreme and rapid adaptation dynamics of these viruses at
both the within and between host level. The extremely high
mutation rate of these genomes results in single nucleotide
polymorphisms (SNPs) emerging in the viral genome in a
short time scale, which in turn gives rise to immune escape
phenotypes. These mutations result in new viral variants
that avoid detection from the adaptive immune responses
(T-cell and B-cell responses), which previously targeted the
original virus. However, these mutations are likely to have
fitness costs and limit the successful transmission of viral
escape variants to a new host. Viruses have to compensate
for these costs with additional mutations. Therefore, to
understand viral immune escape it is important to study the
cooccurrence of multiple mutations on the same genome,
as these are the source of compensatory mutations that can
drive successful transmission of immune escape variants
at the population level. An important lesson learned from

the failed T-cell based HIV vaccine (STEP) [1] trials is that
T-cell induced responses are not protective against the virus
if their targets are viral antigens with a high likelihood of
beneficial compensatory mutations, which would allow rapid
and successful immune escape. Rather, the data suggests that
successful vaccines need to induce strong immune responses
against epitopes for which viral escape variants are unlikely
to establish a successful new viral population. For instance,
T-cell responses should be induced on viral epitopes that
are associated with significant deleterious effects on virus
viability.

1.1. Next Generation Sequencing Technology (NGS). Recent
advances in high-throughput sequencing allow researchers
to generate very large data sets of pathogen genomes as
well as that of host genomes and transcriptomes. These data,
although useful, also carry a complexity that requires compu-
tational analyses to understand and represent the biological
phenomena. NGS, in particular, has become a powerful tool
for deep sequencing analyses of highly variable genomic
populations, such as those arising during an infection with
rapidly mutating pathogens, or metagenomics [2]. Similarly,
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in immunology, NGS is increasingly utilized for sequencing
of highly polymorphic protein encoding regions, which are
key elements of pathogen recognition, including HLA genes,
T-cell receptor [3–5], and the B cell receptors [6]. NGS
technology has been also utilized to study the evolution
of complex viral populations evolving during an infection
within host, such as the detection of rare viral variants in
hepatitis C virus (HCV) [7], or in HIV [8]. These data have a
strong significance in the study of the dynamics of immune
escape as it provides deep insights into the kinetics and extent
of viral immune escape [9].

1.2. HCV and Host Immune Response. HCV establishes
chronic infections in 60–80% of the infected population [10].
Those individuals who have chronic infection outcomes can
eventually undergo liver damage and the development of
hepatocellular carcinoma (HCC) [11], the fifthmost common
cancer worldwide [12]. HCV is a single stranded RNA virus;
it evolves by rapidly mutating its genome during a single
infection with an estimated mutation rate of 1.2 × 10−4 per
site per cell [13]. Similar to other RNA viruses, HCV mutates
frequently across the genome, resulting in a high degree of
heterogeneity between the seven different HCV genotypes,
which carry only ∼65% identity. The high mutation rate
occurs because the viral encoded RNA-dependent RNA
polymerase lacks proof-reading capacity, resulting in at least
one error in each genome copied [14]. Consequently, HCV
exists as a diverse and evolving population within each
infected host. However, it is estimated that about a third of
the mutations introduced are deleterious [13], hence many
new variants are eliminated in a potent negative selection
process [15]. These high error rates are also advantageous
to the virus, as they drive rapid adaptation to changing
environmental landscapes, such as transmission to a newhost
or an emerging immune escape variant [16, 17]. Therefore,
there is a tradeoff between beneficial and deleteriousmutants.
This rapid evolution is critical for the survival of these
viruses during the establishment andmaintenance of chronic
viral infections. It facilitates viral escape from host immune
responses [18] and optimizes replication efficiency.

Whether infected individuals clear HCV or have viral
persistence can be determined by the host immune response
[9, 19]. In particular, observation of HCV cytotoxic T-cells
(expressing CD8+ marker, CD8+ T-cells henceforth) has
shown that these cells contribute to the infection’s outcome,
where virus-specific CD8+ T-cells are crucial in controlling
HCV replication [18, 19]. Although HCV specific CD8+ T-
cells are found in acute HCV infection, their efficacy in per-
sistent infection is limited by several factors including T-cell
exhaustion and immune escape. The drive behind immune
escape is due to the error prone replication mechanism of
HCV, thus allowing adaptation to the immune selection pres-
sure through genomic sequence mutations [18]. For example,
nonsynonymous mutations in the viral genomic sequence
can lead to a peptide change at the protein level of the
genome.Thismutation can abrogate the immune recognition
pathway at several levels. For instance, this mutation can
impair antigen processing from viral proteins, as well as the
presentation of CD8+ T-cell epitope [20].

1.3. Transmitted/Founder Virus. The transmitted/founder
virus is the strain that successfully infects a new host after
a transmission event. In HCV studies it has been shown
that very few (1–3) transmitted/founder viruses are present
in acute infections [7]. An additional study has shown that
a genetic bottleneck (an event where genetic variation is
greatly reduced) occurs later in infection when selective
pressure from the host immune response acts against the
transmitted/founder virus [7]. The study observed that as
a result of genetic bottleneck events, new viral populations
emerge in subjects that become chronically infected with
HCV. These arising variants were characterized by fixation
events, namely, mutations occurring in >90% of circulating
viral genomes. Close examination on viral sequences found
only a minority of these fixations events were likely to be
under immune-driven selection.

1.4. Cooccurrence of Genomic Mutations and Its Impact on
the Dynamics of Immune Escape. Most genomic mutations
in RNA viruses are deleterious [13] and can lead to the
extinction of the viral variant through negative selection. A
smaller proportion of these mutations may have beneficial
effects on the survival of the virus. For instance, cooccur-
ring mutations where a new mutation can compensate for
the fitness loss given by previously generated mutations,
termed compensatory mutations, are beneficial to the sur-
vival of the virus [21]. Thus cooccurring mutations can
lead the virus to immune escape or even drug resistance
phenotypes. As a consequence, it is crucial to study the
interactions between immune responses and the resulting
mutations to better understand the mechanism behind viral
escape.

1.5. Visualizing Genomic and Immunological Data. Given the
level of complexity involved with HCV and the increas-
ingly vast amount of generated data from technologies like
NGS, representation of the virus’s genomic information is
becoming increasingly difficult. As a result, computational
methods are becoming more and more crucial in terms
of data processing, analysis, visualization, and ultimately
understanding biological information. The need for software
packages allowing combined analysis of viral evolution,
detection of compensatory mutations, and identification of
immune escape patterns is evident. Thus the goal of this
study was to develop a set of computational and statistical
tools to analyze immune escape viral variants. We address
this issue by taking the dynamic HCV genome as an example
and applying the viral sequence data to our bioinformatics
pipeline.

2. Materials and Methods

2.1. Data

2.1.1. NGS Viral Sequences. Longitudinal viraemic samples
were collected and sequenced from a subject (Ch 240) that
developed chronic HCV infection from genotype 3a. The
longitudinal samples were deep sequenced using NGS 454
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Roche (for more details see Bull et al. [7]). Four viraemic
samples fromCh 240were deep sequenced, corresponding to
44 days after infection (DPI), 57DPI, 220DPI, and 538DPI,
respectively. 454 Roche data were retrieved in a pair of
fasta (.fna) and quality score (.qual) format file from each
individual time point.

2.1.2. CD8+ T-Cell Responses. HCV specific CD8+ T-cell
response data were available for Ch 240. These responses
were measures of HCV specific CD8+ T-cell responses using
ELISPOT assay. This assay detected active T-cell responses
against specific epitopes, a short amino acid sequence rec-
ognized by CD8+ T-cells via presentation of HLA-epitope
complex on the surface of infected cells. Two CD8+ T-
cell responses specific for epitopes

1602

RAQAPPPSW
1610

and
1633

RLGPVQNEV
1641

were utilized in this study. These
epitopes are both located in the NS3 region of the HCV
genome (nucleotide region 4000–5499 and amino acid region
1200–1800, according to the HCV gt1 reference genome H77,
GenBank accession number AF009606).

2.1.3. Single Genome Amplification (SGA) Sequences. Longi-
tudinal sequence data were retrieved from publicly available
data [22]. We analyzed sequences from three time points
within the first 4 weeks of acute infection from one subject
(10012) infected with HCV genotype 1a.

2.2. Tools for Computational Analysis

2.2.1. Quality Control and Sequence. Each fasta and quality
score file are processed by choplqb.py with options −w
8 −t 15 for initial data cleaning. Refined outputs from
choplqb.py are then given to qualfa2fq.pl to combine the
fasta file and quality score file into a single fastq file. This
is then used for sequence alignment using the Burrow
Wheel algorithm, implemented in the software package
BWA [23]. BWA and qualfa2fq.pl are both available
at http://sourceforge.net/projects/bio-bwa/files/ (see
README.md at the GitHub repository located below
for more information).

2.2.2. HCV NS3 Reconstruction. Refined NGS data are pro-
cessed by SamTools [24] (version 0.1.19, http://sourceforge
.net/projects/samtools/files/latest/download) to convert the
sam file into bam format in order to apply the data to
the genome reconstruction software ShoRAH [25] (Short
Reads into Assembly Haplotypes). This software allows
for reconstruction of partial or full genome sequences
from a mixed population of genomes, henceforth recon-
struction of viral haplotypes (this software is available at
http://www.bsse.ethz.ch/cbg/software/shorah). The options
for ShoRAH include −a 0.05 −w 300 and a length restric-
tion of 1500 nucleotides in the NS3 region 4000–5499.
Sets of reconstructed and aligned viral sequence files in
fasta format are retrieved using this software. For this
analysis, only full-length (1500 nt) reconstructed fasta files
(.popl) from ShoRAH that carry viral variants with fre-
quency of occurrence of 1% or greater are applied to this
pipeline.

2.2.3. Reducing Insertion andDeletion Errors. Viral sequences
reconstructedfor each time point are piped into indelRe-
mover.py using option −fq 2 for insertion and deletion reduc-
tion. The output is another fasta format file with reduced
insertion and deletions around homopolymers regions in the
viral sequences.

2.2.4. Analysis of Cooccurring Mutations. Fasta files of viral
genome populations are given to a-smupfi.py with options
−g −gf 0.01 −e −sc 242 −m 1-2 −s 4000–5499, which pro-
duced four text files containing the combinations of shared
mutations and their frequency of occurrence between viral
sequences observed in the data set. From these four files, the
file with suffix EasyOutputShared.txt is used as input data for
javssim.py with option −e. The result provided by javssim.py
contains a list of shared combinations of mutations. This
tool utilizes the Jaccard similarity coefficient, calculated for
a given pair of mutations 𝐴 and 𝐵, as 𝐽 = 𝑁

𝐴𝐵

/(𝑁
𝐴𝐵

+

𝑁
𝐴0

+ 𝑁
0𝐵

), where 𝑁
𝐴𝐵

represents the number of variants
carrying mutations 𝐴 and 𝐵, 𝑁

𝐴0

represents the number
of variants containing 𝐴 but not 𝐵, and 𝑁

0𝐵

represents the
number of variants containing 𝐵 but not 𝐴. The algorithm
implemented here for the detection of statistically significant
pairs was taken from Rhee et al. [26]. Briefly, statistically
significant pairs are identified from the expected Jaccard
similarity coefficient and its standard error assuming the two
mutations independently distributed. 𝐽RAND was calculated
as the mean Jaccard similarity coefficient after 2,000 random
rearrangements of the 𝑋 or 𝑌 vector (containing 0 or 1 for
presence or absence of a mutation, resp.). 𝐽SE was calculated
using a jackknifed procedure, which removed one sequence
at a time, repeatedly for each sequence. The standardized
score 𝑍, 𝑍 = (𝐽 − 𝐽RAND)/𝐽SE, indicates a significant positive
association (𝑍 > 1.65) or a significant negative association
(𝑍 < −1.65) at an unadjusted 𝑃 < 0.05.

The results from this analysis are then found in the file
with suffix EasyOutput.txt from javssim.py. This file without
a header can be parsed into jaccardToCircos.pywith option−li
for format conversion into a style that can be understood by
Circos [27] (software is available at http://circos.ca/) to draw
connections between significant cooccurring mutations.

2.2.5. Analysis of Covariance. The covariance analysis was
performed on viral sequences translated into amino acid
using ExPASy tools [28].These are then inputted into omes.py
for calculation of the covariance score, according to the
observed minus expected squared (OMES) method [29] as

Covscore =
∑
𝐿

1

(𝑁obs − 𝑁exp)
2

𝑁sequences
,

𝑁exp =
(𝐹
𝑎𝑗

× 𝐹
𝑏𝑘

)

𝑁sequences
,

(1)

where each paired position 𝑗 and 𝑘 has residue 𝑎 and residue
𝑏, respectively. 𝐹

𝑎𝑗

is the frequency of occurrence of 𝑎 at
position 𝑗 and 𝐹

𝑏𝑘

is the frequency of occurrence of 𝑏 at
position 𝑘.𝑁sequences is the number of sequences at positions

http://sourceforge.net/projects/bio-bwa/files/
http://sourceforge.net/projects/samtools/files/latest/download
http://sourceforge.net/projects/samtools/files/latest/download
http://www.bsse.ethz.ch/cbg/software/shorah
http://circos.ca/
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Figure 1: Flowchart representing the bioinformatics pipeline. Shared Mutation Analysis workflow is indicated by green arrows. Covariance
Analysis workflow is indicated by red arrows. Both branches of the pipeline require an aligned viral sequence file in fasta format.
Immunological data are optional and can be both experimental or bioinformatics predicted.

𝑗 and 𝑘. 𝑁obs is the frequency of occurrence of the pair
𝑎 and 𝑏 at positions 𝑗 and 𝑘. 𝐿 is the number of unique
pairs counted at positions 𝑗 and 𝑘. This output is parsed
into sifconvertor.py to generate a network file (.sif ), which
can be parsed into Cytoscape [30] (software is available at
http://www.cytoscape.org/) for simple network visualization.
For this analysis only mutation pairs that have a covariance
score equal to or greater than 0.5 (cut-off value taken from
Aurora et al. [31]) were considered for further analysis.

2.2.6. Histogram Generation. Using the same set of output
from a-smupfi.py, the file with suffix EasyOutputUnique.txt
is applied as input into circosconverter.py with options −hi
to generate Circos format histograms. The bam file from the
NGSdata (also used for generating haplotypeswith ShoRAH)
is used to identify SNPs within the viral population.This SNP
detection was performed using LoFreq (version 0.5.0) [32]
(software is available at http://sourceforge.net/projects/lofreq/
files/) using default options for additional SNP calling. How-
ever, other software can be utilized for SNP detection from
NGS bam file. SNPs data are then parsed into snpExtractor.py
and then those outputs are given to snpExtractConvertor.py
for Circos format conversion into histogram files.

2.2.7. Phylogenetic Tree Generation. Viral sequences of all
four time points from Ch 240 have been appended into
one sequence file and given as input to PhyML Ver.
3.0.1 [33] (software available at http://www.atgc-montpelli-
er.fr/phyml/) changing options S (Tree topology search
operations) to Best of NNI and SPR (extensive tree search)

and B (nonparametric bootstrap analysis) to 1000. The
phylogenetic treewas generated under the substitutionmodel
HKY85 using estimated 𝛾 distribution on sites. The out-
put file from PhyML is represented and visually edited
through the software FigTree Ver. 1.3.1 (software available at
http://tree.bio.ed.ac.uk/software/figtree/).

Script names in italics are original tools and are available
at the GitHub repository: https://github.com/PrestonLeung/
SMuPFi-Repository.

3. Results

3.1. An Overview of the Pipeline. A workflow of the proposed
pipeline for the analysis of genomic and immunological
data related to immune escape during HCV infection is
shown in Figure 1. The pipeline builds a path that connects
NGS data, viral sequence quality control, alignment software,
haplotype reconstruction (e.g., using ShoRAH), and iden-
tification of the distribution of variants sharing a number
of SNPs. It also provides graphical representation of these
findings through Circos and Cytoscape. In this pipeline, we
present the Shared Mutation Pattern Finder (SMuPFi), a
novel algorithm package that analyses cooccurring mutation
patterns with a series of supporting tools inside the package.
Figure 1 shows the workflow that describes the cooccurring
mutation analysis and the covariance network analysis. The
pipeline uses viral sequences and immunological data as the
input source where the region of interest is selected based
on immunological data. The cooccurring mutation analysis
uses viral sequences as the main data source. Combinations

http://www.cytoscape.org/
http://sourceforge.net/projects/lofreq/files/
http://sourceforge.net/projects/lofreq/files/
http://www.atgc-montpellier.fr/phyml/
http://www.atgc-montpellier.fr/phyml/
http://tree.bio.ed.ac.uk/software/figtree/
https://github.com/PrestonLeung/SMuPFi-Repository
https://github.com/PrestonLeung/SMuPFi-Repository
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of mutation with length of 2 and occurring on the same
viral genome are then selected. Combinations of mutation
pairs that are shared by more than two viral variants are
identified for further analysis. This dataset is then used
to identify those combinations of coupled mutations that
occur in the viral population at a frequency higher than that
expected by randommutation.These are recognized through
a test for statistical significance implementing the Jaccard
similarity coefficient (see Section 2). Statistically significant
cooccurring mutations are identified from the expected
distribution of cooccurrence assuming independency of the
two mutations of interest. These pairs are then graphically
represented via Circos plots.The covariance network analysis
similarly uses viral sequences as input data. It identifies
pairs of mutated sites and utilizes the paired positions and
frequencies to calculate a covariance score. This score reveals
those pairs that are likely to have a relationship such that
their cooccurrence is more than an expected value, which is
calculated as the product of frequencies of each residue in the
pair, divided by the total number of sequences (OMES see
Section 2). The data is then represented in a network using
Cytoscape.

3.2. Application of the Pipeline to HCV. Virological and
immunological data from a subject (Ch 240) chronically
infected with HCV has been applied to the pipeline using
deep sequencing data available from four time points
(44DPI, 57DPI, 220DPI, and 538DPI). The input data
consisted of viral sequences from a segment of the NS3
region (nucleotide region 4000–5499 and amino acid region
1200–1800, see Section 2 formore details) and immunological
data, which were available ELISPOTmeasurements of CD8+
T-cell responses specific for two HCV antigenic epitopes
1633

RLGPVQNEV
1641

and
1602

RAQAPPPSW
1610

. Both of
these epitopes were located within the sequencedNS3 region.

Figure 2 shows a phylogenetic tree representation of
the viral sequences from the partial NS3 region of the
HCV genome of subject Ch 240 displaying the genetic
distances measured by nucleotide differences using the trans-
mitted/founder virus (labeled H 44DPI 0) as the root of
the tree. In this subject it is evident that the viral pop-
ulation significantly evolved from the transmitted/founder
virus during the early acute phase of the infection with
rapid genomic diversification undergoing sequential genetic
bottlenecks events. In this figure, the viral dynamics plot
(zoomed panel in Figure 2) describes the level of variability
in the genome using Shannon entropy measured across the
full HCV genome.This plot shows the first genetic bottleneck
occurring at approximately 100DPI where viral diversity
significantly decreases, along with the viral load and the loss
of the dominant viral variants [7]. At 200DPI, the viral load
increases, along with the number of distinct circulating NS3
variants, thus indicating a new viral population characteriz-
ing the chronic phase of infection. Of note, a second genetic
bottleneck occurs between 220 and 538DPI. While the figure
shows sequences from 44DPI and 57DPI evolving into the
latter group (220DPI and then 538DPI), notably there is a
large time period of approximately 300 days between 220DPI

and 538DPI. This rapid evolution is a major component
driving the success of the virus to establish chronic infection
and escape the host immune response. These mutations are
further explored in the following analyses.

3.3. Identification of Cooccurring Genomic Mutations. We
considered the evolutionary dynamics of circulating viral
genomes and HCV specific CD8+ T-cell responses over
the course of an infection. Figure 3 shows the evolutionary
dynamics of viral genomes in subject Ch 240 and the dis-
tribution of cooccurring genomic mutations and their rela-
tionship with viral diversity and T-cell responses. Figure 3(a)
shows the viral dynamics as already explained in Figure 2.
Figure 3(b) shows the experimental results (ELISPOT data)
detailing the measurement of two HCV specific CD8+ T-cell
responses targeting epitopes

1602

RAQAPPPSW
1610

(green)
and
1633

RLGPVQNEV
1641

(pink) within the NS3 region.
Immune responses are first detected at 44DPI but at very
low amount. In this context of early onset of CD8+ T-cell
responses, and a concomitant genetic bottleneck event char-
acterizing the circulating HCV viral population, we inves-
tigated the hypothesis that these immune responses were
driving evolution ofHCVgenomes.We therefore assessed the
distribution of mutations and their cooccurrence before and
after this genetic bottleneck, as well as the evolution of these
mutants in relation to the appearance of the two CD8+ T-cell
responses identified within this region. Viral diversification
was very limited within the first 57DPI, and no statistically
significant cooccurring mutations were observed. In par-
ticular, nonsynonymous substitution P1606S was observed
within the CD8+ T-cell epitope

1602

RAQAPPPSW
1610

at low
frequency at 44DPI but this mutation was not detected
at 57DPI, most possibly because it was at a frequency of
occurrence lower than 1% (the minimum threshold detected
after error correction of sequencing data). CD8+ T-cell
responses against the two epitopes

1633

RLGPVQNEV
1641

and
1602

RAQAPPPSW
1610

were detected at increased magnitude
at 85DPI, close to the time of the first genetic bottleneck
(Figure 3(a)). This was followed by the emergence of a
new viral population after 100DPI (Figure 2). Following this
genetic bottleneck, a new mutation P1606L was identified
within the epitope region

1602

RAQAPPPSW
1610

(Figure 3(e)),
which was shared among 80% of the viral population. This
mutation is therefore likely to be an immune escape variant.
Another mutation, G1671R, was then identified to cooccur
with the immune escape mutation P1606L at 220DPI. The
mutation G1671R was not present when the P1606S was
first identified, and these data suggest G1671R is potentially
compensating for P1606L within the epitope region targeted
by CD8+ T-cell responses. Secondly, P1606S occurred at
a very low frequency at 44DPI followed by nondetection
in 57DPI (perhaps due to extremely low frequency of
occurrence), indicating the possibility that it is an individual
deleterious mutation, which restricts the fitness or success
of the escape variant. This analysis hence indicates that
detection of cooccurring mutations over the course of the
infection can be utilized to detect key patterns of immune
escape.
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Figure 2: Phylogenetic tree representation of viral sequences obtained from Ch 240. Phylogenetic tree of circulating HCV variants from
sequences derived from the NS3 region (nucleotide region 4000–5499, amino acid region 1200–1800). This tree shows the significant rapid
evolution of HCV genome over the course of the infection from acute phase (in red viral sequences from 44DPI, in pink those for 57DPI)
through the chronic phase of infection (in green sequences from 220DPI, and in blue from 538DPI). The infection is characterized by two
sequential genetic bottlenecks, one soon after the acute phase of infection, the other after 220DPI, both indicating substantial changes in the
circulating viral populations. The label H 44D 0 indicates the transmitted/founder virus used to root the phylogenetic tree. The numbers at
branches indicate the bootstrap value after resampling 1000 times. Viral Dynamics plot (b) shows the viral load (grey shading) over time,
while the orange diamonds indicate available deep sequence data (from left to right: 44, 57, 220, 538DPI). Shannon entropy calculated from
the full distribution of HCV genomic mutations and the one from the distribution of nonsynonymous mutations only are indicated by a
purple line and red line, respectively.
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Figure 3: A representative example of the output of the pipeline applied on longitudinally collected viral sequences and immune responses
data from a patient chronically infected with HCV. (a)The same viral dynamics plot carried over from Figure 2. (b)The experimental results
from ELISPOT detailing the measurement of two HCV specific CD8+ T-cell responses targeting epitopes
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RAQAPPPSW
1610

(green)
and
1633

RLGPVQNEV
1641

(pink). Immune responses are first detected at around 50DPI at low amount. These responses then increase in
magnitude at 80–100DPI and then decline over the course of the infection. (c–f) Circos plots representing the partial NS3 region (amino
acid region 1200–1800) in Ch 240 that contain the two epitopes targeted by the CD8+ T-cell responses in (b). The red histogram around the
circle shows the frequency of occurrence of nonsynonymous mutations with a scale from 0% to 100% at that site. These two CD8+ T-Cell
epitopes
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RAQAPPPSW
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(green trapezium) and
1633

RLGPVQNEV
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(pink trapezium) are also represented. Fixation events (mutations
at frequency>90%) are representedwith # in (e) and (f).The arcs shown in the inner circular area represent statistically significant cooccurring
pairs ofmutations that are shared by two ormore viral variants.The asterisk (∗) in (e) denotes the potential compensatorymutation at position
G1671R cooccurring with immune escape variants identified within
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(green).
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Figure 4: A representative example of the covariance network analysis. Network representation pair-wise covariance analysis of
nonsynonymous mutations detected over the course of infection within the NS3 region (nucleotide region 4000–5499, amino acid region
1200–1800) in subject Ch 240. Nodes presented in the network are positions in the viral sequence found to have significant covariance values
that indicate strong covariation between two mutation sites. In each network, the degree of connectivity is increasing from left to right.
Hexagonal nodes denote mutation positions that lie within an epitope region, while those in red are mutations that have been detected as
statistically significant cooccurring mutations using the Jaccard similarity coefficient. Covarying mutations, which are not shared between
two or more viral variants, have their nodes colored in green.

As infection progressed, increased variability in the NS3
region at 538DPI was observed (Figure 3(e)) approximately
300 days after the previous sequenced time point, despite
the overall decline in viral diversity across the full genome
(Figure 3(a)). This information suggests that the new viral
population is evolving in a specific direction, where HCV
viral variants possess mutations that enable the evasion
of the CD8+ T-cell responses targeting the NS3 region.
As observed in Figure 3(f), the paired mutations P1606L and
G1671R that were detected at 220DPI were lost at 538DPI.
New HCV genomic variants were identified at 538DPI, with
new mutations all cooccurring with P1606L, and a fixation
event at V1641I. It is important to note that all HCV genomes
at 538DPI carry the epitope variant

1633

RLGPVQNEI
1641

.
Closer examinations revealed that all cooccurring mutations
were connected with either position P1606L, V1641I, or both.
We also found a fixation event at position T1509N. However
this was not a compensatory mutation as the same mutation
was already fixed at 220DPI.

3.4. Covariance Network Analysis. We then analyzed, in a
more general fashion, the network of genetic mutations
that were identified during the course of the infection
in subject Ch 240. To do so, we constructed a covari-
ance score (see Section 2) between all the pairs spanning
the entire region (amino acid region 1200–1800). Figure 4
shows the network representing the evolving pattern of
the connections between pairs of sites with mutations in
the partial NS3 region of subject Ch 240. Each position
with a mutation shown on the network is referred to as
a node and each line drawn with a neighboring node is
referred to as a connection. The most striking feature of
the covariance network analysis is the evolving pattern of
connections with node 1606. This node, which represents
the mutations P1606S (44DPI) and P1606L (220DPI and
538DPI), was observed in the epitope

1602

RAQAPPPSW
1610

at the earliest time point and was subsequently detected in
all other time points, with new connections at every time
point.
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Covariance network representing 44DPI (Figure 4(a))
shows a small number of nodes with P1606S connecting to
only one neighbor. Diversification of connections is seen at
57DPI (Figure 4(b)) where the network is more complex due
to an increase in the number of nodes and higher degree
of connections between nodes. At 220DPI (Figure 4(c)) an
emerging pattern is revealed, wheremutation P1606L appears
to be a “hub” mutation, having connections with the majority
of nodes within the network. 538DPI (Figure 4(d)) shows a
further increase in the number of new connections stemming
fromP1606L. In particular, the node corresponding toV1641I
is another mutation that lies within the CD8+ T-cell epitope
1633

RLGPVQNEV
1641

. Close examination reveals that most
nodes detected at 538DPI (Figure 4(d)) are connected to
P1606L orV1641I.These data suggest that themutants P1606L
and V1641I form a potential pair of mutations that is critical
for viral escape dynamics.

3.5. Comparison of Cooccurring Mutation Analysis and
Covariance Network Analysis. In the analysis of cooccurring
pairs of genomic mutation (Figure 3) we showed that HCV
immune escape dynamics are characterized by the existence
of potential compensatory mutations, which characterize
the HCV viral populations, thus suggesting that a strong
adaptation mechanism is at play. The covariance network
analysis shown in Figure 4 highlights the increasing com-
plexity between the distributions of covarying mutations
with the evolution of the infection. These data suggest
that cooccurring mutations that affect immune response
(hexagonal nodes in Figure 4) are also part of the set of
genomic mutations that form the “hub” of the network of
covaryingmutations (see red nodes in Figure 4). For example,
it is interesting to note how the covariance network shows
an evolving and complex network of nodes, which supports
the appearance of theG1671R being a compensatorymutation
to P1606L at 220DPI after the first genetic bottleneck, when
increasing CD8+ T-cell responses were observed. Notably,
the appearance of a novel viral population at 538DPI char-
acterized by the appearance of the pair P1606L and V1641I
again reveals a new pattern of connected genetic mutations
that contributes to the viral escape dynamics and eventually
to viral chronic persistence in subject Ch 240. Interestingly,
the network analysis between 44 and 220DPI showed a
rapid modification of the network of covarying mutations,
which revealed unstable distribution of mutations connected
to the mutation P1606L. This suggests that without the
cooccurrence of G1671R at 220DPI, the immune escape
mutation P1606S carries a significant fitness cost, which may
limit the survival capacity of this escape variant against CD8+
T-cell response.This is supported by the absence of P1606S at
57DPI, where there may be a deleterious effect hindering the
survivability of the variant.

At 538DPI (Figure 4(d)), approximately 300 days after
the previous time point, the covariance network highlights
an increasing complexity of the network, where the majority
of the nodes previously observed at 220DPI disappear and
only a few nodes are carried over. In particular, the mutation
P1606L is characterized by a completely new set of covarying

mutations, again confirming the results from the analysis of
cooccurring mutation analysis. This analysis also revealed
several highly connected genomic mutations that were also
identified from the analysis of cooccurring mutation using
the Jaccard similarity coefficient (red nodes in Figure 4).
In particular, the fixation at position T1509N is also found
as a highly connected node at 538DPI. Moreover, this
analysis identified a triplet of genetic mutations (K1405N,
C1406S, and L1694R) that were also connected to the immune
escape mutation P1606L, clearly indicating the existence of a
subnetwork of evolving genomic variants.

3.6. PipelineValidationwith SGAData. Wevalidated the pro-
posed bioinformatics pipeline with the analysis of sequences
obtained from a subject infected with HCV (Sub 10012,
data retrieved from Li et al. [22]) within the first month of
infection (measured by weeks after infection or WPI). Given
the early stage of infection, we hypothesize the absence of
adaptive immune responses targeting those viral populations.
Indeed, phylogenetic analysis of sequences from 5 end to
partial NS2 of the HCV genome showed the presence of a
random evolution of three major viral populations arising
from three transmitted/founder variants that successfully
started the infection (Figure 5). The Circos plots show an
overall increase in frequency of occurrence of these muta-
tions over time, suggesting the presence of diversifying viral
populations without immune pressure. However, despite this
apparent random evolution, we identified several cooccur-
ring mutations (Circos plots in Figure 5) that showed highly
connected mutation patterns between these three viral popu-
lations. Therefore, there is evidence of inheritance of specific
mutations throughout the viral evolution, with mutations
that occur very early in infection beingmaintained during the
generation of new variants. The covariance networks across
the three time points (Figure 5) illustrate the positions where
the inherited mutations occur. This highlights several pairs
of genomic sites that mutate in each of these populations,
thus representing hubs of the evolutionary dynamics of HCV
genome during early infection. The comparison of subject
10012 and subject Ch 240 clearly indicates a very different
evolutionary pattern driven by the presence of immune
response.

4. Discussion

In analyzing viral sequences through the proposed pipeline,
this study has revealed a pair of mutations within a region
of the viral genome that may form the hub of a network
of covarying mutations allowing viral persistence in subject
Ch 240. Using the proposed bioinformatics pipeline we
addressed the details of immune escape from longitudinal
observations of viral evolution of HCV infection and pro-
vided insight into the evolution of the virus in relation
to the selective pressure exerted by CD8+ T-cell immune
responses. Moreover, this analysis provided evidence that
the cooccurrence of P1606S and V1641I may be central to
the success of immune escape variants against CD8+ T-cell
responses targetingHCVduring the establishment of chronic



10 BioMed Research International

404

405

407

408

444

445

454

446

463

395

391

387

386

384

628

622

753

178

633

396

398

574

402

533

400 399

577

482

528

522

500

524

608

642

580

10012-4WPI

10012-4WPI
10012-2WPI

10012-2WPI
10012-3WPI

10012-2WPI 10012-2WPI

0.0040

10012.08.TA4

100
12.

08.
B3

10012.08.B21

10012.10.C2

10012.10.C19

10
01

2.
10

.C
12

10012.06.5Q1.TA14

10012.10.C14

10012.10.C6

10012.10.TA1

10012.06.5Q1.TA4

10012.06.5Q1.TB14

10
01

2.0
6.5

Q1
.T

B1
1

10012.10.TB6

10
01

2.0
8.B

4

10012.06.5Q1.TA9

10012.10.C11

10012.10.TA6

10012.06.5Q1.TC11

10
01

2.0
8.T

A6

10012.06.5Q1 .TC10

10012.10.TA3

10012.06.5Q1.TA12

10012.08.TC5

10012.10.TB21

10012.10.TB11
10012.10.TB8

10012.08.TB2

10012.10.C1

10012.08.A4

10012.06.5Q1.A2

10012.10.C37

10012.06.5Q1.TA10

10012.08.TC6

10012.10.C26

10012.10.TB19

10012.10.TA5

10012.06.5Q1.TC14

10012.10.TB16

10012.10.C4

10012.10.TB15

10012.06.5Q1.TC7

10012.08.B1

10012.06.5Q1.TC6 10012.08.TA7

10012.08.B12

10012.06.5Q1.TC5

10012.10.C2410012.10.C32
10012.08.B18 10

01
2.1

0.C
15

10012.08.TB1

10012.10.C31

10
01

2.0
8.A

3

10012.10.TB12

10
01

2.0
8.B

11

10012.08.A2

10
01

2.0
6.5

Q1
.TB

3

10
01

2.0
6.5

Q1
.TA

19

10012.10.C27

10012.06.5Q1.TC2

10012.10.TB9

10012.06.5Q1.TA1

10012.08.TA5

10012.06.5Q1.TC910012.06.5Q1.TA16

10012.06.5Q1.TA2

10012.08.B2

10012.10.C22 10
01

2.0
8.B

9

10012.10.TB10

10
01

2.0
8.T

C3

10012.10.C17

10012.06.5Q1.TB12

10012.08.TB7

10012.10.TB22

10012.06.5Q1.TA13

10012.10.TA4

10012.08.B8 10012.08.B26

10
01

2.1
0.T

B1
4

10012.10.C23
10012.10.TB7

10012.08.B13

10012.08.TC7

10012.06.5Q1.TB7

10012.08.B17

10012.10.C39

10012.10.C21

10012.06.5Q1.TA5

10
01

2.0
8.B

5

10012.08.B16

10
01

2.0
6.5

Q1.T
A7

10012.06
.5Q1.TA6

10012.06.5Q1.TB9

10012.10.C33

10012.06.5Q1.TB5

10
01

2.0
6.5

Q1
.TA

8
10

01
2.

06
.5

Q
1.

TB
6

10012.06.5Q1.TC4 10
01

2.0
8.T

B4

10012.06.5Q
1.TA15

10012.10.TB18

10012.06.5Q
1.A

1

100
12.

06.
5Q

1.T
A17

10012.06.5Q1.TB1810012.08.B25

10012.06.5Q1.TB10

10012.06.5Q1.TB13

10
01

2.
06

.5
Q1.

TC
15

10012.06.5Q1.TB15
10012.06.5Q1.TA18

10
01

2.0
6.5

Q1
.TB

4

10012.06.5Q1.TB2

10012.10.C48

10012.10.TB17

10
01

2.0
6.5

Q1
.TC

3

10012.10.C41

10012.10.TB5

10
01

2.
10

.T
B2

0

10012.06.5Q1.TB17

10012.10.TB1

10
01

2.0
6.5

Q1
.A3

10012.06.5Q1.TB8

10012.06.5Q1.TB16

10
01

2.0
6.5

Q1.T
B2010012.08.TB6

10012.08.B14

10012.08.A1

10012.10.C29
10012.06.5Q1.TC1

10012.06.5Q1.TA11

10012.10.C45
10012.08.A5

10
01

2.
08

.B
20

10012.06.5Q1.TA3 10012.10.C40

408

444

463

446

482

445

405

407

500

454

400

528
524

395
404

402
399

522

398

396

384

178

386

642

753

387

391

608

577

580

622

574
533

0%

100%

0%

100%

8
4
4

4
4

8
4
4

4
4

Figure 5: A representative example of a HCV infection presenting highly diverse viral population. Single Genome Amplification (SGA) data
from longitudinally collected HCV populations over three time points (2, 3, and 4WPI) taken from a subject (10012) infected with HCV
genotype 1a. This analysis was based on sequences from partial Core protein, p7, E1, and E2 protein of HCV from 2WPI and 4WPI (3WPI
not shown). Unrooted phylogenetic tree displays three major subpopulations of viruses. A substantial viral diversification is observed since 2
weeks after infection. During this early stage of infection it is unlikely that HCV specific T-cell and B-cell responses are targeting the infection.
However, the Circos plots highlight the presence of highly connected variants with specific patterns of cooccurring mutations.This is further
validated from the covariance network showing high number of pairs of sites, which are maintained during the early phase of infection.

infection. We showed that HCV evolution under CD8+ T-
cell response is characterized by a complex evolving pattern
of mutations that consists of mutations in multiple regions
functioning as a whole to provide the virus with the ability
to escape immune pressure. This analysis, although limited
to a small portion of the HCV, provides useful information
in identifying potential factors that contributes to the virus’s
overall escape outcome.

In this study we presented a novel bioinformatics
approach for the identification of key viral mutations events
that dictate success of viral escape in the establishment of
a chronic HCV infection. The output of our computational
analysis offers a detailed description of the complex pat-
terns characterizing immune escape dynamics during HCV
infection and can therefore be relevant in studying immune
escape dynamics inHCVandmore in general in other rapidly
mutating viruses. In combination with experimental data of
CD8+ T-cell responses, our analysis provided a novel method

to characterize the dynamics of compensatory mutations. As
experimental measures, such as ELISPOT, only test CD8+
T-cell responses against specific epitopes of 8–10 amino
acids, analysis of viral genomes is required to explore the
distribution of other mutations outside the epitope region,
which can serve as compensatory mutations. This analysis
has remained elusive because of the lack of appropriate deep
sequencing data to measure low frequency variants and the
lack of appropriate methods to link distant mutations. With
the rise of NGS technologies, and the development of new
computational methods for haplotype reconstruction from
NGS data [34], this information is becoming accessible.
Hence the proposed bioinformatics pipeline is one of the
first proposed to provide an exhaustive scenario of immune
escape dynamics that takes both genomic and immunological
data as input variables.

In the bioinformatics pipeline, we have also provided
an array of graphical representation of evolving genomic
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mutations connected to each other. With the increasing
availability of data and reduction of NGS cost, analyses using
computational pipelines are necessary to unravel complexity
of large data sets. Moreover, computational analyses can
be utilized to minimize experimental costs and reduce
time for manually laborious data processing. Since there
is no direct monetary penalty in reruns of computational
pipelines, exploratory procedures can be done on data
with less limitation. For instance the pipeline could be
used to obtain preliminary data on viral sequences prior
to deciding whether certain regions of the HCV genome
are worth spending resources, such as limited samples,
or employing assays requiring a large number of cells to
achieve sufficient specificity and sensitivity (e.g., ELISPOT
or tetramer staining). Bioinformatics predictions of viral
epitopes targeted by CD8+ T-cell responses are also available
(see http://www.immuneepitope.org).These data can be sub-
stituted into experimental measurements and integrated in
this pipeline.

The study performed on the partial NS3 region of Ch 240
is only one of many ways of using the pipeline. The tools
designed in this pipeline are implemented specifically so that
each component of the pipeline can be applied separately.
Moreover, different types of viral sequences can be consid-
ered as input data. For example, haplotype reconstruction
sequences fromNGSdata can be replacedwith single genome
amplification data, which are often used to study viral
evolution [22] (see Figure 5). Furthermore, supporting tools
in the package are able to take in generic fasta sequences
and convert these into a format that can be processed in the
pipeline.

There are a number of limitations in the proposed
pipeline. For example, in this study, only pairs of cooccurring
mutations were utilized, in order to limit the complexity of
the results. Investigation of a higher number of cooccurring
mutations (such as triplets or quadruplets) is possible. How-
ever as the length of the viral sequence under investigation
increases, the number of cooccurring mutations will also
increase (see for instance Figure 5). Using the pipeline with-
out NGS data is also advantageous because current analysis
suffers from highly error prone data. For instance, our
analysis with haplotypes for subject Ch 240 was based on 454
Roche sequences data, which have been used to reconstruct
viral haplotypes with computational demanding software
packages. Although the viral genome reconstruction was
successful in our study, this method still presents a high false
positive rate when reconstructing low frequency variants
[35, 36]. However, to address the issue, we have chosen to
consider only viral variants reconstructed as haplotypes with
a frequency of occurrence greater than 1%.

This computational and statistical framework can also
be applied to other viruses and to identify more complex
patterns of immune escape or drug resistance. For instance,
understanding the dynamics of escape variants against both
T and B cell responses. This is a common feature during
infections with rapidly mutating viruses, such as HIV [37].
Moreover, the use of Jaccard coefficient allows the identifica-
tion of specific patterns ofmutations that are likely to cooccur
more than random expectation. This could be for instance

also applied to the detection of drug resistance mutations
and for the identification of compensatory sites.The network
of mutations performed with the covariance analysis holds a
broader goal, and that is to screen viral sequences for major
mutating sites or “hubs,” identifying sites that are mutating at
a significantly high rate across the full genome.

5. Conclusion

This work proposed a novel bioinformatics pipeline for
the analysis of immunological and virological data of viral
infection, which simplifies the analysis and visualization of
complex patterns of viral mutations during the course of an
infection. It also allows for a statistical analysis of the rela-
tionship between viral mutations and the immune response
targeting specificHCVvariants.This type of software package
is likely to become increasingly common in the near future, as
a result of the increasingly large amount of data being rapidly
generated and the overwhelming need for computational
tools for analysis of complex multidisciplinary data in a time
efficient manner.
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