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Enhancement of immune response 
against Bordetella spp. by 
disrupting immunomodulation
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Well-adapted pathogens must evade clearance by the host immune system and the study of how they 
do this has revealed myriad complex strategies and mechanisms. Classical bordetellae are very closely 
related subspecies that are known to modulate adaptive immunity in a variety of ways, permitting 
them to either persist for life or repeatedly infect the same host. Exploring the hypothesis that exposure 
to immune cells would cause bordetellae to induce expression of important immunomodulatory 
mechanisms, we identified a putative regulator of an immunomodulatory pathway. The deletion 
of btrS in B. bronchiseptica did not affect colonization or initial growth in the respiratory tract of 
mice, its natural host, but did increase activation of the inflammasome pathway, and recruitment of 
inflammatory cells. The mutant lacking btrS recruited many more B and T cells into the lungs, where 
they rapidly formed highly organized and distinctive Bronchial Associated Lymphoid Tissue (BALT) not 
induced by any wild type Bordetella species, and a much more rapid and strong antibody response than 
observed with any of these species. Immunity induced by the mutant was measurably more robust 
in all respiratory organs, providing completely sterilizing immunity that protected against challenge 
infections for many months. Moreover, the mutant induced sterilizing immunity against infection with 
other classical bordetellae, including B. pertussis and B. parapertussis, something the current vaccines 
do not provide. These findings reveal profound immunomodulation by bordetellae and demonstrate 
that by disrupting it much more robust protective immunity can be generated, providing a pathway to 
greatly improve vaccines and preventive treatments against these important pathogens.

Pathogens are under natural selection for the ability to colonize and persist in their host, and have evolved com-
plex mechanisms of immune modulation that to date we only poorly recognize, appreciate or understand. Natural 
host experimental systems have allowed some of these mechanisms to be studied in detail in classical bordetellae, 
which include Bordetella species that are very successful respiratory pathogens of humans and other animals 
including mice, in which there are sophisticated molecular tools for experimental manipulation of host immu-
nity. In this system these tools have been used to define the contribution of each immune function to the control 
and clearance of infection. In the context of such studies, we and others have observed that various Bordetella 
species manipulate immunity in a variety of ways that would be undetectable in other experimental systems1–25. 
This immunomodulation allows each Bordetella species to achieve remarkable success by either persisting for 
life with limited pathology (B. bronchiseptica) or causing acute coughing disease that facilitates extraordinarily 
rapid transmission to new hosts (B. pertussis)26,27. Despite their divergent ecological strategies and niches, these 
species share a large set of genes whose products mediate interactions with the host, modulating host immunity 
in various ways to optimize their success. The importance of their many immunomodulatory mechanisms is 
only beginning to be appreciated10.
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We recently hypothesized that an aspect of the success of several pathogens including Bordetella spe-
cies involve their in vivo differential regulation of an array of host-manipulating factors28, each of which are 
poorly understood. In exploring host signals that might alert the bacteria of both anti-bacterial challenges and 
immune-modulating opportunities, we and others examined how bordetellae respond to blood components, a 
signal of inflammation and/or access to deeper body tissues28–31. Blood contains a constellation of antimicrobials, 
immunological signals and immune cells. We have previously reported that Bordetella spp. are able to respond to 
blood and serum by differentially regulating several sets of genes28, including a SigE-type sigma factor annotated 
as brpL32,33 that was up-regulated 6-fold in blood and 3-fold in serum. This gene, located in the same operon as 
Type 3 Secretion System (T3SS) regulators such as btrV/btrW34,35, was previously shown to work in conjunction 
with BtrA (anti-sigma factor) to regulate the expression of the T3SS and was therefore renamed btrS35,36. However, 
our transcriptomic analysis revealed that there is a broader set of genes whose expression is potentially affected 
by BtrS. These include autotransporters and ABC transport systems, regulatory proteins, and proteins involved 
in various metabolic functions. Interestingly, genes required for pertussis toxin production (ptxA to -E) and 
secretion (ptlA to -L), previously thought to be quiescent in B. bronchiseptica, were also found regulated by BtrS. 
Altogether, these data suggest that BtrS regulates the T3SS as well as a set of other more poorly characterized 
genes implicated in immunomodulation.

Here we describe a STRING analysis that associated btrS28,36 with various genes including some known immu-
nomodulatory factors, implicating BtrS as a potential regulator of immunomodulatory functions. Deleting btrS 
altered in vitro expression of T3SS genes as well as genes encoding motility, outer membrane proteins, trans-
porters, and other genes with undefined functions, many of which have the potential to affect the host immune 
response in a variety of ways. Deleting btrS did not affect the ability of the bacterium to colonize and grow in the 
respiratory tract, but did profoundly prevent the inhibition of inflammasome activation, and resulted in greater 
inflammation and local immune responses. The mutant was not defective in colonizing or persisting in mice 
lacking B and T cells, indicating that btrS is not required for early steps of the infection process, but is primarily 
involved in immunomodulation that inhibits effective protective anamnestic immunity. The mutant induced the 
rapid recruitment of larger numbers of B and T cells that efficiently and rapidly assembled into pronounced 
Bronchus-Associated Lymphoid Tissue (BALT). The resulting rapid immune response produced much higher 
antibody titers and allowed mice to completely clear infections with the deletion mutant, while the wild type 
strain persisted indefinitely. Furthermore, mice convalescent from infection with this mutant were protected 
from re-infection with all three wild-type classical Bordetella species, being much better protected against both B. 
pertussis and B. parapertussis than mice given the current vaccine.

Results
btrS contributes to immunomodulation.  We recently showed that bordetellae can detect signals in 
blood/serum and respond by altering expression of various genes, upregulating expression of the gene btrS35,36 
(brpL32,33), among others28. BtrS has been shown to be a sigma factor that interacts with at least one anti-sigma 
factor to regulate the T3SS34–38. The particular ability of sigma/anti-sigma factor combinations to integrate input 
from multiple and branched signaling pathways led us to consider BtrS as a potentially pivotal regulator of the 
complex response to dynamic signals from diverse and rapidly changing host environments as Bordetella infec-
tion and the immune response it induces develop over time in different locations within the host. To further 
examine its potential status as an integrator of diverse input signals, we evaluated its association with other known 
and putative immunomodulators by STRING (Fig. 1A) which mines databases for data on gene neighborhood, 
gene fusion, co-occurrence, co-expression, protein homology, and text mining. This analysis revealed a network 
with connections to many other factors, some of which are known to be involved in complex interactions with 
the host. In addition to T3SS, this analysis indicated that btrS is connected with other genes encoding known 
virulence regulators such as hfq39,40 and sigE (RpoE)41,42, as well as iron and heme sensors30,43,44, transporters, and 
other membrane proteins. Roles for some of these factors in immunomodulation and/or pathogenesis of several 
organisms has been reported45–59. We also observed that btrS was up-regulated 2.5-fold when B. bronchiseptica 
was internalized in macrophages60, revealing responsiveness to interactions with immune cells. Altogether, these 
data led us to speculate that btrS is not only a regulator of the T3SS, but potentially integrates multiple, diverse 
signals to coordinate the regulation of numerous immunomodulatory factors that must be carefully controlled 
in a complex, choreographed manner to optimize bacterial success in the challenging environment of the host 
immune response.

btrS is required for the regulation of multiple virulence and immunomodulatory factors.  
Previous studies assessed the role of BtrA/S in the regulation of nearby T3SS genes34–36; however, the role of 
btrS as a regulator of other genes has not yet been studied. To identify btrS-regulated genes, we generated a 
clean, in-frame deletion mutant (Fig. S1) and performed an RNAseq analysis of wild-type (RB50) and the 
mutant (RB50ΔbtrS) after 1 hour incubation in LB media or in blood at 37 °C. Incubation in blood for 1 hour 
had a profound effect on the transcriptome, altering expression of approximately 7% of the genes (Fig. 1B–D and 
Supplementary Dataset 1). Genes associated with T3SS products, iron acquisition, as well as protein transport 
and localization were significantly induced upon blood exposure in the wild-type strain, but not the mutant 
(Fig. 1C), revealing a role for BtrS in their induction. On the other hand, flagellum biosynthesis and metab-
olism (nucleic acids, carbohydrates, organic compounds, phosphate-containing compounds, and glycosylated 
compounds) genes were significantly down-regulated in response to blood in the wild type bacteria, but not the 
mutant, implicating BtrS in their regulation (Fig. 1D). To test whether these changes in transcript levels translate 
into differences in phenotype we examined flagellin-dependent motility. The btrS null-mutant was significantly 
more motile than its wild-type parent (Fig. S3B), supporting the RNAseq data and highlighting the differences in 
flagella expression that might affect interactions with the host, as examined further below. These data indicate that 
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in addition to T3SS, BtrS is involved, directly or indirectly, in the regulation of multiple genes involved in motility, 
membrane proteins, and toxin production, as well as multiple genes of unknown function.

btrS plays an important role in internalization and survival within RAW macrophages.  Based 
on the analyses above, we hypothesized that the RB50ΔbtrS mutant will fail to coordinate factors involved in 
complex interactions with its host. To investigate potential roles in interactions with immune cells, we inoculated 
RAW 264.7 macrophages with wild type or ΔbtrS mutant at Multiplicity of Infection (MOI) of 100 (Fig. S2). 
15 minutes later, less than 2.5% of the wild type bacteria were internalized, while 8.3% of the ΔbtrS mutant bacte-
ria were intracellular (Fig. 2A). 24 hours post-inoculation (p.i.), the numbers of wild-type bacteria were reduced 
by >95%, while the RB50ΔbtrS mutant not only survived but grew in numbers within macrophages (Fig. 2B). 
This apparent gain of function, albeit in an artificial in vitro assay, was unexpected as we hypothesized that the 
deletion mutant strain would be defective in survival due to the loss of expression of several virulence factors.

Figure 1.  Transcriptional regulation role of btrS in medium and serum. STRING analysis of the btrS sigma 
factor. (A) Connections are coded as follow: pink and blue show the known connections, where pink shows 
gene fusions and blue gene co-occurrence; green indicates gene neighborhood, yellow shows textmining, 
black shows co-expression, and finally purple shows protein homology. Heat map of the genes differentially 
regulated in response to blood vs. medium in RB50 measured by RNA sequencing (B), blue is associated with 
low expression. Selected statistically significantly up- (red) or down-regulated (blue) Gene Ontology (GO) 
terms of the genes shown in B. (C) The table below reflects whether these terms are positively (+) or negatively 
(−) regulated by BtrS in blood or medium +/−. Overlap between the genes significantly up-regulated (red) and 
down-regulated (blue) in RB50ΔbtrS compared to RB50 in blood (D).
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Transmission Electron Microscopy (TEM) revealed that macrophages challenged with the mutant strain in 
the assay above contained as many as 22 bacteria in the cytoplasm 4 hours later, while those challenged with the 
wild-type strain contained no more than 8 bacteria within them (Fig. S2B,C). However, the deletion of btrS signif-
icantly reduced bacterial cytotoxicity against macrophages, with the mutant killing less than 5% of macrophages 
while the wild-type killed nearly 70% (Fig. S2C), as we and others have previously shown5,31,61. Since dead cells 
do not effectively harbor and protect intracellular bacteria, the decrease in cytotoxicity can partially explain the 
greater recovery of the mutant within macrophages at 4 hours, but does not explain the noted increase in CFUs 
recovered in intracellular bacteria over 24 hours. Together, these results reveal that btrS contributes significantly 
to macrophage cytotoxicity, and affects internalization and growth within macrophages, suggesting that the two 
effects may be potentially related (Fig. S2D). These effects implicate btrS in the regulation of interactions of B. 
bronchiseptica with macrophages, which play multiple important roles in generating and shaping the protective 
immune response to infection.

Deleting btrS alters induction of macrophage immune signaling pathways.  To investigate the 
role of btrS in the transcriptional activation of macrophages, we performed an RNAseq analysis of RAW 264.7 
macrophages at 15 minutes and 4 hours post-challenge with either wild type or ΔbtrS mutant. IPA analysis of 
canonical pathways (Qiagen)62 revealed multiple macrophage-signaling pathways that are differentially expressed 
following challenge with the two strains. While wild-type increased the expression of genes associated with the 
inflammasome and ephrin pathways, the ΔbtrS mutant increased expression of pathways involved in macropino-
cytosis, interferons, innate immunity, and T cell activation/differentiation (Supplementary Dataset 2). Differential 
induction of these by the mutant indicates that in wild-type B. bronchiseptica, btrS mediates the suppression of 
this important set of immune-related genes.

To more directly examine the effects on inflammation, we challenged macrophages with wild-type or mutant 
bacteria for 15 minutes and assessed expression of IL-1β (Fig. S2E and Supplementary Dataset 2) and several 
other genes involved in apoptosis and cell death. All these were strongly up-regulated by wild type bacteria, 
indicating activation of the inflammasome pathway and an oxidative stress response, as well as positive regu-
lation of TNF-α production (Supplementary Dataset 2). Interestingly, macrophages challenged with the ΔbtrS 
mutant increased expression of cytokines and chemokines associated with an increase in immune cell recruit-
ment, NF-|B signaling (pro-inflammatory response), and other factors that positively regulate the activation of 
an adaptive immune response (T cell activation, leukocyte differentiation, leukocyte activation, and others). The 
ΔbtrS mutant also activated genes associated other pathways such as hematopoiesis (Supplementary Dataset 2).

Figure 2.  btrS mediates intracellular survival in macrophages. Internalization and survival of RB50 (blue) 
and RB50DbtrS (red) in RAW 264.7 was measured at 15 minutes (n = 4) (A), and up to 24 hours (n = 6) (B), 
respectively. Caspase-1 activity, as measured via luminescence with the Caspase-Glo 1 Inflammasome Assay, 
induced by RB50 and RB50DbtrS in THP-1 human-derived macrophages (C) and mouse bone marrow-
derived macrophages (D) within 1 hour (n = 6). Statistical significance was calculated using Two-Way ANOVA. 
*p < 0.05, **p < 0.005, ***p < 0.0005, and ****p < 0.0001. Error bars indicate SEM.
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To further investigate the effects of exposure to wild-type or ΔbtrS mutant bacteria, we performed an RNAseq 
analysis of macrophages after 4 hours post-inoculation. RB50-challenged macrophages mostly activated genes 
involved in T cell migration. Macrophages inoculated with RB50ΔbtrS increased the expression of genes involved 
in innate immunity such as antigen presentation or positive regulation of the acute inflammatory response, as 
well as genes involved in adaptive immunity, including lymphocyte proliferation, differentiation, and activation. 
Together, these assays revealed that the ΔbtrS mutant, relative to the wild type strain, induces a more profound 
increase in the expression of genes involved in stimulating various aspects of immunity. Altogether, these results 
suggest that in the wild-type bacteria, BtrS plays a role in suppressing various aspects of inflammation and 
immune signaling pathways, potentially modulating the development of effective adaptive immunity.

btrS induces inflammasome activation.  The up-regulation of genes related to the inflammasome path-
way led us to investigate the role of btrS in its activation, a critical aspect of both inflammation and the generation 
of adaptive responses63–65. To do so, we measured caspase-1 levels in the human-derived macrophage-like cell 
line THP-1 and primary murine bone marrow-derived macrophages. 30 minutes post-inoculation, THP-1 cells 
challenged with RB50 (Fig. 2C) contained approximately 8-fold more caspase-1 compared with those infected 
with the deletion mutant. 2 hours post-challenge, murine bone marrow-derived macrophages inoculated with 
wild type bacteria expressed 2-fold more caspase-1 than those challenged with the mutant (Fig. 2D). These results 
in both human- and mouse-derived macrophages demonstrate that the inflammasome pathway is substantially 
induced by RB50 but not by the mutant strain, indicating that BtrS mediates robust activation of the inflammas-
ome pathway.

btrS is required for respiratory tract persistence.  The effect of btrS deletion on various in vitro meas-
ures of aspects of interactions with host cells paints a complex picture difficult to extrapolate to understanding its 
true in vivo role(s). The B. bronchiseptica natural host infection model in mice allowed us to evaluate this more 
directly. We therefore followed the course of infection of wild-type and mutant strains in wild type C57BL/6J 
mice (Fig. 3). Both strains efficiently colonized and grew in the lower respiratory tract during the first few days 
of infection, indicating that btrS is not required for colonization or growth in the host (Fig. 3B,C). However, 
after one week, when adaptive immunity begins to be detectable66,67, the mutant began to demonstrate profound 
defects in persistence throughout the respiratory tract. Wild-type bacteria persisted in the lungs up to 56 days, 
whereas the mutant was nearly cleared by day 14 and was undetectable by day 21 (Fig. 3C). Even more striking 
was the phenotype of the mutant in the nasal cavity (Fig. 3A). As expected, wild-type B. bronchiseptica persisted 
in the nasal cavity of mice for at least 56 days in this experiment, consistent with observations from many previ-
ous experiments demonstrating that this wild-type strain always persists indefinitely in the nares of mice41,68. In 
contrast, the btrS mutant was completely cleared from the nasal cavity by day 56. This is the first B. bronchiseptica 
mutant described that efficiently colonizes and grows within mice, but is completely cleared from the upper and 
lower respiratory tract23,36,69,70. To rigorously verify that this profound defect of the ΔbtrS mutant is not due to 
any other mutation, we compared wild-type and ΔbtrS mutant, to the ΔbtrS complemented with btrS contained 
on the plasmid pBBR1MCS (ΔbtrS::btrS complemented strain). After 28 days complemented strain persisted 
in the respiratory tract of mice, confirming that this profound defect in persistence is due to the ΔbtrS deletion 
(Fig. S3A). This phenotype is much more profound than that reported for a mutant lacking a functional T3SS, 
indicating that BtrS mediates persistence via effects involving other genes.

btrS mediates decreases in neutrophil and macrophage recruitment to lungs.  The remarkable 
early clearance of the mutant suggests that btrS mediates the modulation of the functions of immune effector cells 
that can otherwise clear infection. This is consistent with our observation that macrophages infected with the btrS 
mutant have increased expression of chemokines such as PPBP (neutrophil recruitment) and CCL7 (macrophage 
recruitment) (Supplementary Dataset 2). To evaluate the effect of deleting btrS on innate immune cell recruitment 
during infection, we enumerated neutrophils and macrophages recruited to the lungs of mice challenged with 
the mutant and wild-type strains71,72. By three days post-inoculation, lungs of wild-type infected mice showed a 
modest increase in numbers of neutrophils compared with naïve mice (Fig. 3D). However, mice challenged with 
RB50ΔbtrS had almost three times as many neutrophils in their lungs. These numbers decreased by day 7, but still 
remained significantly higher than RB50-infected mice. These results indicate that BtrS is required to suppress 
neutrophil recruitment to the lungs.

Wild-type bacteria did not substantially increase numbers of macrophages in the lungs over control mice. 
However, challenge with RB50ΔbtrS increased macrophage numbers in the lungs at day 14 post-challenge by 
over 60% (Fig. 3E), suggesting that BtrS is involved in the suppression of macrophage recruitment. Together, these 
data demonstrate that btrS mediates suppression of recruitment and retention of macrophages and neutrophils, 
potentially modulating their important roles in the generation of adaptive immunity.

Rapid clearance of the btrS mutant requires TLR5.  The increased neutrophil and macrophage recruit-
ment in response to similar or lower numbers of mutant bacteria led us to consider whether BtrS modulates 
expression of bacterial molecules that contribute to inflammation. The increased expression of flagella genes 
and motility in the mutant strain and its rapid clearance suggests an immunological mechanism potentially link-
ing these observations21,73–77. Flagella are known to be agonists of TLR5, raising the possibility that BtrS might 
mediate suppression of flagellar expression to prevent a flagellin-TLR5 response. To examine the role of TLR5 
activation in the robust response to and clearance of the ΔbtrS strain, we compared the ability of wild-type and 
mutant bacteria to colonize, infect and persist in TLR5-deficient mice. Our results revealed that TLR5-deficient 
mice did fail to rapidly clear the ΔbtrS mutant (Fig. 3F,G), indicating that the rapid clearance of this mutant by 
wild-type mice is TLR5-mediated. These data provide additional evidence that the phenotype of this mutant is 
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not simply due to the effects of BtrS on T3SS expression, but rather suggest that BtrS-mediated suppression of 
flagellin expression prevents a TLR5 response that would otherwise substantially augment protective immunity.

btrS modulates T cell recruitment to lungs.  The rapid clearance of the ΔbtrS mutant strain and the 
increased recruitment of innate cells in the lungs prompted a histological examination of immune cell recruit-
ment to the lungs, which revealed both substantial lymphocyte recruitment by the mutant as well as unique 
distribution of those cells. Histological sections of lungs revealed the formation by day 14 p.i. of pronounced 
Broncho-alveolar Associated Lymphoid Tissue (BALT) in the lungs of mice challenged with the ΔbtrS mutant 
but not wild type (Fig. S3C). Analysis of T cell numbers in the lungs 14 days post-inoculation via flow cytometry 
(Fig. S3)71,72 revealed that infection with wild-type RB50 did not significantly increase CD4+ T cell numbers in 
the lungs (Fig. 4A), and only modestly increased CD8+ T cells (Fig. 4B) compared to the non-infected control, 
while challenge with the ΔbtrS mutant resulted in more than twice as many CD4+ and CD8+ T cells in the lungs. 
It is important to highlight that at this time point (day 14), infection with RB50ΔbtrS induced a much greater T 
cell response even though the mutant was present at roughly 1/1000 the numbers of the wild-type strain (Fig. 3C). 
This suggests that wild-type bacteria, via mechanisms that require BtrS, can substantially block the recruitment of 
T cells and the formation of organized local lymphoid organoids (BALT), allowing it to grow and persist at high 
numbers in the lungs.

btrS suppresses B cell recruitment.  RB50ΔbtrS induced macrophages to produce significantly higher 
levels of CCL18 and IL-6 than did wild-type bacteria (Supplementary Dataset 2 and Fig. S2F), suggesting the 
mutant might increase recruitment of B cells to the site of infection. Inoculation with wild-type RB50 only slightly 

Figure 3.  btrS promoted persistence in the respiratory tract by suppressing TLR5 mediated clearance. Recovery 
of B. bronchiseptica RB50 (blue) or RB50ΔbtrS (red) from the respiratory tract of C57Bl/6 J mice, nasal cavity 
(A), trachea (B), and lungs (C), over time (4–6 mice per experiment, n = 5). Number of neutrophils (D) 
and macrophages (E) was evaluated in the lungs (n = 5). Recovery of RB50 or RB50ΔbtrS bacteria from the 
nasal cavity (F) and lungs (G) of TLR5 deficient mice over time (4 mice per group). X-axis indicates days 
post-inoculation. Statistical significance was calculated using Two-Way ANOVA. *p < 0.05, **p < 0.005, 
***p < 0.0005, and ****p < 0.0001. Error bars indicate SEM, ND stands for Not Detected. The dotted line 
indicates the limit of detection.
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increased B cell numbers in lungs compared with the non-infected control, whereas RB50ΔbtrS more than dou-
bled B cells numbers in lungs (Fig. 4C). The anti-B. bronchiseptica serum IgG antibody titers induced by the 
mutant were measurably higher as early as day 7 post-inoculation (Fig. 4D). This is a striking finding, since anti-
bodies are generally not detectable this early after initial colonization, indicating that BtrS mediates robust B cell 
suppressive mechanism(s) that delay and/or reduce anti-B. bronchiseptica antibody titers.

Clearance requires adaptive immunity.  To investigate if rapid clearance of RB50ΔbtrS is mediated by 
the T and B cells it rapidly recruits, wild-type and ΔbtrS mutant were compared in Rag−/− mice, which lack T 
and B cells. 21 days post inoculation both wild-type and mutant bacteria were recovered in similar numbers 
from all organs of the respiratory tract, indicating that the profound defects of the ΔbtrS mutant are B and T cell 
dependent. To ensure that these results were not affected by the relatively large inoculum potentially overcoming 
the remnant immune functions in these immunodeficient animals, we performed a second challenge in which 
mice were intranasally inoculated with 5 μl of PBS containing 150 bacteria. 24 days later, RB50 and RB50ΔbtrS 
were both recovered in similarly high numbers (Fig. S4) indicating that the mutant is not defective in any of the 
functions necessary for colonization, growth and spread to the lower respiratory tract, although slightly lower 
numbers were recovered from the nasal cavity. The observations that btrS is required for persistence in wild-type 
mice but does not affect infection and persistence in trachea and lungs of T and B cell-deficient (Rag−/−) mice 
indicates that BtrS is required for the disruption of a robust host adaptive immune response that is otherwise able 
to completely clear this notoriously persistent bacterium.

The ΔbtrS mutant induces sterilizing protective immunity to B. bronchiseptica.  The substan-
tially increased recruitment of B and T cells leading to rapid and complete clearance of the ΔbtrS mutant suggests 
that it induces robust immunity that could protect against subsequent infection. To test this, protective immu-
nity was evaluated in three groups of mice that were 1) challenged with RB50ΔbtrS, 2) vaccinated and boosted 
with the commercial acellular pertussis vaccine Adacel, or 3) administered PBS as a control. Two months later, 
mice were intranasally challenged with 5 × 105 wild-type B. bronchiseptica (schematic in Fig. 5A). PBS-treated 
mice (control group) showed high levels of colonization across the entire respiratory tract 7 days post-challenge 
(Fig. 5B). Mice previously vaccinated with the acellular vaccine eliminated bacteria from the trachea and lungs, 
demonstrating protection against disease that is conferred by this vaccination (Fig. 5B). However, Adacel vacci-
nation provided no significant reduction in the number of bacteria isolated from the nasal cavity. Thus, despite 
conferring protection of the lower respiratory tract, the acellular vaccine does not prevent colonization of the 
nasal cavity, allowing for transmission of the disease, consistent with clinical observations and previous results 

Figure 4.  btrS dampens the host adaptive response. Number of CD4+ T cells (A), CD8+ T cells (B), and B cells 
(C) in the lungs of mice at day 14 post-infection with B. bronchiseptica RB50 (blue), RB50ΔbtrS (red) or naïve 
control (grey). Anti-B. bronchiseptica IgG antibody titers (D) at day 10 post-infection (4–6 mice per group, 
n = 5). Statistical significance was calculated using Two-Way ANOVA. *p < 0.05, **p < 0.005, ***p < 0.0005, 
and ****p < 0.0001. Error bars indicate SEM, ND stands for Not Detected.
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in mice and baboons78,79. Importantly, mice convalescent from challenge with the ΔbtrS mutant were completely 
free of B. bronchiseptica in the lungs, trachea, and nasal cavity, indicating that this mutant confers completely pro-
tective sterilizing immunity throughout the respiratory tract (Fig. 5B). This is both qualitatively and quantitatively 
greater protective immunity than has been previously reported for any vaccine against B. bronchiseptica.

The ΔbtrS mutant induces sterilizing protective immunity to B. pertussis and B. parapertussis.  
Since the protective immunity generated by the ΔbtrS mutant against B. bronchiseptica is substantially improved 
over that conferred by the acellular pertussis Adacel vaccine, and we have previously demonstrated variable 
cross-immunity between classical Bordetella spp.80–83, we tested whether immunity induced by the ΔbtrS mutant 
could also protect against the closely related and antigenically similar human pathogens, B. pertussis and B. para-
pertussis. PBS-treated control mice challenged with B. pertussis or B. parapertussis contained high bacterial num-
bers in all respiratory organs at day 7 post-challenge (Figs. 5C, S5A,B). Vaccination with Adacel prior to infection 
resulted in reduced numbers of bacteria in the lower respiratory tract, but all three Bordetella species were still 
able to persist in the nasal cavity at day 7 post-challenge (Figs. 5C, S5A–C). These results are consistent with clini-
cal and laboratory findings that acellular vaccination confers protection against disease, but is not completely suc-
cessful at preventing colonization and transmission79. In contrast, mice convalescent from prior exposure to the 
ΔbtrS strain were completely protected against B. pertussis and B. parapertussis colonization of the nasal cavity, 
trachea, and lungs at day 7 post-challenge coinciding with the peak of colonization in naïve animals (Figs. S5A–C, 
and 5C), demonstrating fully sterilizing immunity against all three species.

To determine if a very low dose of the ΔbtrS mutant is sufficient to provide protection against the classi-
cal Bordetella species, mice were challenged with 5 CFU of the mutant and 60 days later challenged with B. 
bronchiseptica, B. pertussis, or B. parapertussis. While naive control animals were colonized to high levels, prior 
exposure to 5 CFU of the ΔbtrS mutant resulted in nearly complete protection against colonization by B. bron-
chiseptica (Fig. 5D) and B. parapertussis (Fig. 5F). Prior exposure to 5CFU of of the ΔbtrS mutant resulted in 
complete protection against B. pertussis colonization of the lower respiratory tract and greater than 99% reduction 
in numbers in the nasal cavity.

In all cases, exposure to even very low numbers of the ΔbtrS mutant effectively protected against all three 
classical Bordetella species.

Discussion
During the course of infection, bacteria are confronted with an ever-changing assortment of antimicrobials in 
a variety of challenging host micro-environments with varying levels of inflammation and adaptive immune 
functions10,28,29,84–93. The host immune response involves a complex series of signals that recruit and activate a 
succession of immune cells to confront the bacterial threat. Yet successful pathogens, such as Bordetella spp., 

Figure 5.  Vaccination with RB50ΔbtrS induces sterilizing immunity to classical bordetellae. Workflow of the 
vaccination experiment; PBS control (black), mice vaccinated with Adacel (violet), and mice vaccinated with 
the RB50ΔbtrS mutant (red). (A) Number of CFU recovered from the nose, trachea, and lungs of mice at day 7 
post re-challenge with B. bronchiseptica RB50. (B) Number of CFU in the nasal cavity 7 days after re-challenge 
with B. bronchiseptica (BB), B. pertussis (BP), or B. parapertussis (BPP). (C) CFU recovered from the respiratory 
tract of mice vaccinated with 5 ml of PBS containing 5 CFU of RB50ΔbtrS and re-infected with B. bronchiseptica 
(D), B. pertussis (E), or B. parapertussis. (F) 4–5 mice per group, n = 3. Statistical significance was calculated 
using Two-Way ANOVA. *p > 0.05, **p > 0.005, ***p > 0.0005, and ****p > 0.0001. The dotted line indicates 
the limit of detection.
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rapidly respond to, suppress and evade host immunity to persist and mediate their own transmission to new 
hosts, and can even lay the groundwork for future reinfection of the same host94–96. Our results indicate that by 
deleting a single bacterial sigma factor, btrS, we were able to interrupt the ability of B. bronchiseptica to suppress 
effective host adaptive immunity, indicating that this sigma factor is a key regulator of immunomodulatory func-
tions including T3SS, flagella, and membrane proteins. BtrS appears to mediate an increase in inflammasome 
activation and macrophage cell death, conditions that would be expected to cause a deficient adaptive immune 
response, as observed here and as previously reported for other bacterial species63–65. The BtrS-mediated decrease 
in chemokine production by macrophages and immune cell recruitment may explain the reduction in B and T 
cell recruitment that delays clearance from the lower respiratory tract and allows long-term persistence in the 
upper respiratory tract. The robust immune response elicited by challenge with this mutant led to protection 
against further challenge with any of the three classical bordetellae. Importantly, this protection was even better 
than that conferred by convalescent immunity with the wild-type strain, highlighting that these immunomod-
ulatory abilities can also suppress protective memory97. Even 5 CFU of the mutant is enough to robustly protect 
against further challenge with a half-million CFU of B. bronchiseptica, B. pertussis, or B. parapertussis. Together, 
these data demonstrate that the sigma factor BtrS is involved in regulation of numerous genes and that these col-
lectively mediate profound immunomodulation.

Although we previously showed that TLR4-deficient mice are highly susceptible to B. bronchisep-
tica98–101, TLR5-deficient mice were not highly susceptible to B. bronchiseptica, indicating that its detection 
of Microbe-Associated Molecular Patterns (MAMPs) such as flagellin are not crucial to the normal immune 
response to the wild-type strain. Combined with transcriptional data demonstrating that btrS is required to sup-
press flagellin expression, these data lead to a compelling model: BtrS mediates the suppression of the TLR5 
agonist flagella to prevent the generation of more effective protective immune response. In 1995, Akerley et al. 
demonstrated that Bvg is important not only for activation of virulence factors, but also for the suppression of 
other factors21. In that study, ectopically expressing flagella during infection led to a severe defect in persistence in 
rats and rabbits. At the time, it was known that flagella can be highly immunogenic, but its effects on TLR5 were 
yet to be discovered. Our results revealed that the mutant lacking BtrS fails to suppress flagella expression and 
induces robust protective immunity that is TLR5-dependent, suggesting that the careful regulation of potential 
immunostimulants is critical for successful infection and persistence. Our results suggest that TLR5 contributes 
to the generation of much more robust protection that can be cross-protective against other Bordetella species 
an area of investigation that could lead to the development of improved vaccines against these and other path-
ogens75–77. These results are consistent with the observations that addition of TLR5 agonists have increased the 
performance of vaccines against malaria, bubonic plague, flu, Enterococcus spp., and Francisella tularensis102–109. 
Our results suggest that TLR5 agonists could significantly increase the performance of the current acellular per-
tussis vaccine.

Overall, the evidence that BtrS is a regulator of immunomodulatory functions provides a novel perspective on 
Bordetella-host interactions. The SigE family of sigma factors is conserved among a wide range of bacterial spe-
cies, but despite intriguing evidence that implicates them in host-pathogen interactions41,42,52,110,111, their in vitro  
roles in stress response are better understood than their roles in vivo. Efficient natural-host infection and mouse 
immunological tools available in Bordetella spp. experimental infection systems allow such interactions to be 
probed in detail. Our results reveal that regulators such as sigma factors can respond to host signals and play 
important roles in manipulation of host immune responses. Moreover, their roles appear to be significantly more 
sophisticated than the linear control of one or two virulence factors and may not be accurately simulated in vitro. 
Exquisite in vivo regulation of immunomodulatory mechanisms, such as secretion systems, flagella, toxins, mod-
ulins, adjuvants and antigens, is likely to be an important facet of efficient infection and pathogenesis of other 
well-adapted pathogens.

Immunity observed in convalescent animals is commonly believed to be the “gold standard” against which 
vaccines are compared. However, this concept is in conflict with substantial evidence that many well-adapted 
pathogens modulate immunity and, as in the case of B. pertussis, do not provide lifelong immunity. The results 
of this work suggests that Bordetella spp. harbor mechanisms that are finely tuned to modulate the host immune 
response, enabling them to increase persistence while modulating inflammation and immunity to enhance their 
opportunity to transmit to another host. The rapid and robust innate and adaptive immunity that resulted in early 
clearance of the btrS mutant is measurably increased over that induced by the wild-type strain, raising questions 
about whether natural immunity to infection with this and other Bordetella species should be considered the 
standard against which vaccines are judged. The ability of the btrS mutant to confer protective immunity against 
further encounters with this and related Bordetella species demonstrates that immunity induced by infection is 
substantially suppressed and should not be considered the “gold standard” for optimal immunity. Our vision of 
what is possible should set our sites much higher, as we have now demonstrated that significantly better protec-
tion is possible.

Materials and Methods
Bacterial strains and culture conditions.  Bordetella spp. were grown on plates of Difco Bordet-Gengou 
agar (BD, cat. 248200) supplemented with 10% sheep defibrinated blood and 20 μg/mL working concentration 
of streptomycin28,112. Strains used in this study are the same strains of B. bronchiseptica, B. pertussis and B. para-
pertussis used in our previously published manuscript28. Knock out mutants were generated as previously descr
ibed5,22,112–115.

Complemented strain generation.  PCR was used to amplify btrS as well as to linearize the plas-
mid pYS003 (a pBBR1-mcs5 derivative). pBBR-fhaB-GFP was derived from pLC007(pBBR-gfp) by swapping  
the lac promoter of GFP with Bordetella bronchiseptica fhaB promoter region. The parental vector pLC007 was linearized  
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by PCR with primers YS031 & YS032 to delete the lac promoter regions (YS031_PIPEve_pLC009_F CACATTAAT 
TGCGTTGCGCTCACTGC//YS032_PIPEve_pLC009_R ATGAGTAAAGGAGAAGAACTTTTCACTGGA). The 
fhaB promoter region was amplified by PCR with YS037 & YS038 (YS037_PIPEin_fhaB_F 5′-3′ GCAACGCAAT 
TAATGTGcggtttcgccgatgacttcgaatc//YS038_PIPEin_fhaB_R 5′-3′ CTTCTCCTTTACTCATattccgaccagcgaag 
tgaagtaatc). In both cases, PCR was performed without the final extension step in order to leave single-strand DNA 
fragments on both ends of the products (PIPE Cloning PCR116). The plasmid was digested with Dpn1 (BioLabs, 
cat. R0176S) and reamplified. The two products were then purified again and ligated. The plasmid was extracted 
and electroporated into competent knockout mutant bacteria (RB50ΔbtrS) at 2500 V. The presence of the btrS 
insert in RB50ΔbtrS and in DH5α was verified via PCR.

Macrophages assays.  Internalization and intracellular survival assay.  Intracellular survival in RAW264.7 
and THP-1 cell lines was assessed following the traditional gentamicin protection assay method117. In brief, mac-
rophages were challenged at MOI of 100, followed by centrifugation at 300 g for 5 minutes. After 1 hour, after 
which the media was replaced by media containing 300 μg/ml of gentamicin. Antibiotics were maintained for the 
whole length of the experiment. For all consecutive experiments, we also followed this approach (adding gen-
tamicin after the first hour of incubation). To measure internalization, cells were washed twice with PBS followed 
by 5 minutes incubation in ice with 1% Triton (Invitrogen, cat. HFH10). The recovered bacteria were plated on 
BG/strep plates and enumerated 48 hours later. For the intracellular survival assays, we followed the same pro-
cedure at all different time points specified on the graphs. All the experiments were performed in triplicate; see 
details of the numbers of replicates on each figure.

Transmission electron microscopy.  Samples were fixed at different times (15 minutes and 4 hours post-challenge) 
with 2% glutaraldehyde.

Cytokine production.  To asses IL-1β, TNF-α and IL-6 expression, the supernatant of infected cells was utilized 
to quantify levels of cytokines via commercially available ELISA kits (DuoSet ELISA system, R&D Systems)118. 
Inflammasome activity was evaluated following the protocol of the Caspase-Glo 1 Inflammasome Assay Kit 
(Promega, cat. G9951).

Cytotoxicity assay.  Briefly, RAW murine macrophages RAW264.7 were cultured in RPMI medium 1640 (Gibco, 
Life Technologies) supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, Life Technologies) and 100 U/ml 
Penicillin-Streptomycin (Gibco, Life Technologies) to 95% confluency. Then macrophages were washed twice with 
RPMI supplemented with 2% FBS and lacking antibiotics to allow bacterial infection. Multiplicity of infection was 
100 (MOI 1:100). After the bacterial addition samples were centrifuged at 300 g for 10 min and incubated for 15 min-
utes or 4 h at 37 °C in a 5% CO2 atmosphere. The cytotoxicity was measured as the release of LDH using the CytoTox 
96 Kit (Promega) following the manufacturer’s protocol. As controls, we performed the same assay on media con-
taining bacteria at the same concentration, lacking macrophages, confirming that no-cytotoxicity is detected.

RNA sequencing.  RNA was extracted following manufacturer’s recommendations of the RNAeasy Kit (Qiagen, 
cat. 74104) as previously detailed28,62.

Bioinformatics.  RNA was sequenced on an illumina Hiseq platform by Mr. DNA Lab, Shallowater, TX. For the 
analysis of the response of B. bronchiseptica to medium and serum, a total of 15 to 18 million 2 × 150 bp reads 
were obtained for each sample. For the analysis of the macrophage transcriptome in response to B. bronchiseptica 
infection, approximately 500 million 2 × 150 bp reads were obtained for each sample. Quality control, trimming, 
and mapping were performed using the CLC Genomics v.11 analysis suite. Samples were mapped either to the 
transcriptome of B. bronchiseptica or Mus musculus and changes in gene expression analyzed by performing 
an empirical analysis of DGE119. Changes in gene expression were considered significant if the false discovery 
rate was <0.05. Additional data analysis included gene set enrichment analysis (GSEA120) and string analysis121. 
Datasets were deposited at SRA (Bioproject numbers PRJNA559660).

Enzyme-linked immunosorbent assays.  96-well microtiter plates (Costar) were coated with heat-killed B. bron-
chiseptica wild-type or mutant as previously reported67. SureBlue (SeraCare, cat. 5120-0076) was added to start 
the reaction, which was terminated with HCl after three minutes. The plates were read at an OD of 450 nm. The 
titer was determined to be the reciprocal of the lowest dilution in which an OD of 0.1 was obtained.

Animal experiments.  Wild-type C57BL/6J and Rag−/− (B6.129S7 Rag1tm1Mom/J) mice were obtained 
from Jackson Laboratories, Bar Harbor, ME or our breeding colony (established from Jackson laboratories mice). 
Mice were bred and maintained at Paul D. Coverdell Center for Biomedical and Health Sciences, University of 
Georgia, GA, (AUP: A2016 02-010-Y2-A3)28,122. All experiments were carried out in accordance with all institu-
tional guidelines (Bordetella Host Interactions AUP: A2016 02-010-Y2-A6). Nasal cavity, trachea, lungs, spleen 
and blood were collected post-mortem in 1 mL of cold PBS. When tissues were used to enumerate colonies, 
collection was performed in beaded tubes, and when organs were used for immunology, they were collected in 
15 mL falcon tubes containing sterile PBS. All results were graphed in GraphPrism v8 and statistical significance 
was calculated using two-way ANOVA. A power analysis was used (G-Power 3) to compare the immunological 
response and colonization and we utilized at least 6 mice per group (and experiments were performed in tripli-
cate) at alpha 0,05 and power of 80%.
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Flow cytometry.  Spleen and lungs were processed and stained as previously described71,72. Numbers of live cells 
were enumerated with Countess II (Thermo Fisher) with trypan blue stain. Two million live cells were seeded 
in each well for staining. Antibody panels are shown in Supplementary Table S1. The acquisition of the data was 
performed using BD-LSR II (Becton Dickinson) and analysis was performed with FlowJo 10.0 following standard 
gating strategy. Statistical significance was calculated using two-way ANOVA in GraphPrism.

Ethics statement.  This study was carried out in strict accordance with the recommendations in the Guide for 
the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by 
the Institutional Animal Care and Use Committee at the University of Georgia, Athens (A2016 02-010-Y2-A3 
Bordetella-Host Interactions and A2016 07-006-Y2-A5 Breeding protocol). All animals were anesthetized using 
5% isoflurane and euthanized using carbon dioxide inhalation followed by cervical dislocation to minimize ani-
mal suffering. Animals were handled following institutional guidelines, in keeping with full accreditation from 
the Association for Assessment and Accreditation of Laboratory Animal Care International.
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