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Abstract

Natural killer (NK) cells are a specialised population of innate
lymphoid cells (ILCs) that help control local immune responses.
Through natural cytotoxicity, production of cytokines and
chemokines, and migratory capacity, NK cells play a vital
immunoregulatory role in the initiation and chronicity of
inflammatory and autoimmune responses. Our understanding of
their functional differences and contributions in disease settings is
evolving owing to new genetic and functional murine proof-of-
concept studies. Here, we summarise current understanding of NK
cells in several classic autoimmune disorders, particularly in
rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus
erythematosus (SLE) and type 1 diabetes mellitus (T1DM), but also
less understood diseases such as idiopathic inflammatory
myopathies (IIMs). A better understanding of how NK cells
contribute to these autoimmune disorders may pave the way for
NK cell-targeted therapeutics.

Keywords: natural killer cells, autoimmune disease, rheumatoid
arthritis, multiple sclerosis, systemic lupus erythematosus, type 1
diabetes mellitus, idiopathic inflammatory myopathies

INTRODUCTION

Autoimmune diseases are caused by inappropriate
reactivity of adaptive immune cells towards self-
antigens and comprise highly heterogenous
conditions. These diseases can be organ-specific (i.e.
multiple sclerosis and type 1 diabetes) or systemic
(i.e. rheumatoid arthritis, systemic lupus
erythematosus, and idiopathic inflammatory
myopathies). While a complex interplay of genetic
and environmental factors is thought to give rise to
these discrete conditions, aberrant immune and
inflammatory responses drive their initiation,

progression and chronicity. Autoreactive T cells and
autoantibody-producing B cells (plasma cells) are
key upstream drivers of autoimmune diseases.1,2

Innate immune cells such as neutrophils, monocytes
and macrophages are well-described effector cells
mediating tissue damage and inflammation in
targeted organs.3,4 However, other innate effector
cells, including natural killer (NK) cells and other
innate lymphoid cell (ILC) subsets, are also found in
inflamed tissues and may regulate immune
dysfunction and inflammation.5

NK cells are bone marrow-derived granular cells
with classic lymphoid cell morphology.6 The
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steady-state NK cell reservoir includes blood,
secondary lymphoid organs (spleen, lymph nodes
and tonsils) and non-lymphoid tissues (i.e. liver,
uterus). In addition to the active recruitment of
circulating NK cells, NK cells in non-lymphoid
organs (e.g. liver, skin, kidney and intestine)
comprise a subset of tissue-resident NK cells that
develop from local precursors.7 Regardless of their
origin, NK cells are geared for rapid modulation
of immune responses.7

The ontogeny of NK cells has been extensively
investigated. NK cells are generated from
common lymphoid progenitors (which also give
rise to T cells, B cells and other ILC subsets). They,
however, do not rely on the thymic reservoir, but
rather derive from bone marrow haemopoiesis
and are dependent on the cytokine IL-15.8,9 NK
cells and ILCs also differ from other lymphoid cells
as they do not express somatically rearranged
receptors and thus lack antigen specificity.6 In
contrast, NK cells possess both cytotoxicity and
cytokine-producing properties, resembling CD8+ T
cells and CD4+ T helper (Th) cells, respectively, and
share similar transcription factor dependency (i.e.
T-bet and Eomes).10 Through cytotoxicity, cytokine
production and migratory capacity, NK cells
represent a highly versatile immune subset and
contribute to many physiological and pathological
settings, including protection against intracellular
pathogens, anti-tumor immunity, maternal-foetal
immune tolerance, graft rejection, chronic
autoinflammatory diseases and autoimmune
disorders.11–15 While the functional contributions
of NK cells in infection and malignancy are clear,
there have been mixed and often contradictory
findings in autoimmune disease settings (discussed
below). These discrepancies may relate to the
different tissue niche or source of NK cells
analysed, variable experimental systems, stage of
disease, as well as the intrinsic disease
heterogeneity. Here, we review current
knowledge of NK cell biology in some major
autoimmune diseases and discuss the future
immunotherapeutic potential of NK cells.

NK CELL SUBSETS

In humans, NK cells are commonly defined as
CD3– CD56+ NKp46+ mononuclear cells, which can
be further classified into CD56dim or CD56bright

subsets.16,17 In mice, NK cells lack CD56 expression.
Murine NK cells are commonly defined as CD3–

NK1.1+ NKp46+ CD49b+, and are further classified

CD11b+ CD27– and CD11b– CD27+ subsets.18–20

High-dimensional single-cell analysis confirms that
the two murine NK subsets represent conserved
counterparts of human NK cell subsets.17

The CD56dim NK cells are predominantly found
in the blood and represent a highly cytotoxic
subset. They express high levels of inhibitory killer
immunoglobulin-like receptors (KIRs), components
of cytolytic granules (perforin and granzymes),
and FccRIIIA (CD16a+), which collectively mediate
antibody-dependent cell-dependent cytotoxicity
(ADCC).6,21,22 In contrast, the CD56bright NK cells
are abundant in secondary lymphoid tissues such
as lymph nodes and tonsils,21,23 in inflamed tissues
and in the decidua during pregnancy.24–26

CD56bright NK cells express lower levels of KIRs,
cytolytic granules, and CD16 than CD56dim NK
subset, but have higher levels of cytokine
receptors and inhibitory receptor CD94/NKG2A.
Correspondingly, the CD56bright NK subset is less
cytotoxic but more efficient at cytokine and
chemokine production than the CD56dim

subset.21,27 CD56dim and CD56bright subsets also
express discrete cytokine and chemokine
receptors, which contribute to their temporal
regulation in discrete niche.21

It should be noted that the cytolytic or cytokine-
producing capacity of NK cells is not necessarily
restricted to a specific subset. For example,
presumed cytokine-producing CD56bright NK cells
may acquire cytolytic activity equal to, if not
stronger than, CD56dim NK cells upon appropriate
stimulation through cytokines or activating
receptors.28,29 Conversely, CD56dim NK cells can also
produce IFN-c upon contact with target cells.22

Although cell-surface markers can aid in identifying
NK cell subsets in various anatomical locations, this
does not necessarily define the functional
phenotype of NK cells in different physiological
settings. Furthermore, the bilateral system with
CD56 as a classical means to separate NK
subpopulations is becoming outdated. Both single-
cell transcriptomic and mass cytometric analyses
have revealed remarkable phenotypic diversity of
NK cell subpopulations in human peripheral blood
and in primary tumors.30–32

NK CELL ACTIVATION AND LICENSING

In the steady state, peripheral NK cells are
relatively quiescent but can rapidly respond to an
array of germline encoded activating and
inhibitory cell-surface receptors. Sensing and
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signal integration downstream of these receptors
allow NK cells to discriminate ‘altered self’ from
‘normal self’ and thereby play a critical role in
host defence, while also keeping the potentially
self-destructive activity of NK cells in check.33

Examples of NK-activating receptors include the
KIR S family (or the corresponding murine
homolog Ly49D and Ly49H), FccRIII, CD94-NKG2C
complex, NKG2D, NKp46, IgG-like receptor 2B4/
CD244, adhesion molecules DNAM-1/CD226,
lymphocyte function-associated antigen (LFA-1), as
well as various cytokine and chemokine
receptors.33 Cytokines that regulate NK cell
function include IL-15, IL-18, IL-12, IL-23, and type
I interferons (IFNs).34–41

Inhibitory NK cell receptors that recognise
either classical or non-classical major
histocompatibility complex class I (MHC-I) proteins
balance NK-activating signals. Example of NK-
inhibiting receptors include the human KIR L
family (or the corresponding murine homolog
Ly49A and Ly49C), CD94-NKG2A complex, and
TIGIT.33 According to the ‘missing self-hypothesis’,
ubiquitously expressed MHC-I ligands on host cells
spares normal host cells from NK cell-mediated
lysis, while the loss or downregulated level of
MHC-I in infected or transformed cells renders
host cells ‘foreign’ and thus susceptible to NK-
mediated killing.42 Paradoxically, the engagement
of host MHC-I with inhibitory receptors is also
necessary for NK cells to gain full functional
competence (NK cell licensing).42 Without such
signals, unlicensed NK cells from MHC-I-deficient
mice demonstrate diminished cytolytic and
cytokine-producing functions relative to NK cells
from MHC-I-sufficient hosts.43–46

NK cells are tightly controlled to prevent
inappropriate responses against host cells.33 In
keeping with the importance of fine-tuning NK
cells in immune homeostasis, several
autoinflammatory conditions have been
associated with mutations in NK cell activating
receptors.14 NK-activating and -inhibitory
receptors can also be harnessed therapeutically.
For example, blockade of the inhibitory NKG2A
receptor promotes anti-tumor immunity by
enhancing the cytotoxic effector function of NK
cells and CD8+ T cells.47 More recently, a first-in-
class trifunctional agonistic antibody targeting
two activating receptors (NKp46 and CD16-
mediated ADCC) and a tumor antigen on cancer
cells augmented NK-mediated tumor killing in
preclinical murine models of cancer.48

Certain combinations of KIR and HLA molecules
may predispose individuals to, or protect them
from, inflammatory diseases. The expression of
KIR S family members (e.g. KIR2DS1, KIR2DS2 and
KIR3DS1), particularly when paired with certain
HLA ligands, is associated with increased
susceptibility to psoriatic arthritis,49–51 rheumatoid
vasculitis,52 and SLE.53 However, these reports
were observational and further functional studies
are warranted to establish the disease-promoting
role of these KIR S isoforms in NK cells across
autoimmune disorders. It is important to note
that a lower level of NK inhibitory receptors does
not necessarily translate to heightened
autoreactivity. Rather, these ‘unlicensed’ NK cells
may be rendered hyporesponsive to further
stimulation by activating receptors. Conversely,
elevated levels of inhibitory receptors could
contribute to potent ‘licensing’ effects in NK cells
in inflammatory settings. Indeed, patients with
ulcerative colitis,54 Crohn’s disease55 and
spondyloarthropathy56,57 express more inhibitory
KIRs (i.e. KIR2DL2/3 and KIR3DL1/2) and their
cognate ligands compared with healthy controls.
Spondyloarthropathy is associated with HLA-
B27,56,57 tends to form heavy chain homodimers
(so called B272). B272 can in turn interact with
KIR3DL2 expressed by NK cells and T cells. Such
interactions were shown to promote the survival
and effector functions of KIR3DL2-expressing NK
cells and T cells, including enhanced NK cell
cytotoxicity and T cell production of IL-17.56,57

Furthermore, genetically ‘licensed’ individuals,
determined by the presence of KIR2DL2/3 and
homozygosity for HLA-C1, exhibit augmented
CD4+ T cell proliferation and Th17 differentiation,
compared with those from unlicensed
individuals.58

IMMUNE REGULATORY FUNCTIONS OF
NK CELLS

Natural killer cells are implicated in both
protective and pathogenic immunity, depending
on the type and stage of the immune response,
the target organ and NK subsets analysed. A well-
recognised function of NK cells is contact-
dependent cytotoxicity. This occurs through
release of cytolytic granules containing proteases,
granzymes, and perforins into target cells via a
lytic synapse, and through the induction of
caspase-dependent apoptosis of target cells via
the engagement of natural cytotoxicity receptors
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(NCRs), NKG2D, CD16a, LFA-1, DNAM-1, FAS
ligands, and TNF-related apoptosis-inducing
ligand (TRAIL).28,29,48,59–63 Rapid NK cell-mediated
killing of infected or transformed cells is an
important protective function against intracellular
pathogens and malignancy, respectively.64 Self-
directed attack by cytotoxic NK cells could also
aggravate pathology as has been observed in
experimental autoimmune encephalomyelitis
(EAE).65,66 NK cells can also modulate immune
responses by directly killing other immune cells
such as monocytes/macrophages,67–70

neutrophils,59,71 and CD4+ Th17 and T follicular
helper (Tfh) cell subsets.29,61,63,72–76

Natural killer cells secrete cytokines and
chemokines, orchestrating interactions with other
immune cells. For example, NK cell-derived IFN-c is
essential for early Th1 priming in draining lymph
nodes.77 Abundant IFN-c production by NK cells
has also been associated with the pathogenesis of
several inflammatory disorders such as SLE78,79

and psoriasis.80 Furthermore, NK cells found in
target non-lymphoid tissues, such as the inflamed
joint of RA patients,81,82 the central nervous
system (CNS) of MS patients,83 and the inflamed
skin of psoriasis patients,80 were found to
produce high levels of pro-inflammatory cytokines
including IFN-c and tumor necrosis factor-a (TNF-
a). In addition to IFN-c and TNF-a, NK cells may
also secrete other cytokines such as
granulocyte/macrophage-colony stimulating factor
(GM-CSF), macrophage-colony stimulating factor
(M-CSF), IL-5, IL-10, IL-13, and chemokines CCL3,
CCL4, CCL5, IL-8, RANTES and XCL1.83–92

The protective effect of NK cells in autoimmune
disorders is thought to occur by the
downregulation of autoreactive adaptive immune
responses. NK cell ‘degeneration’, defined as
numerical and/or functional deficits (reduced
cytotoxicity), has been extensively documented in
peripheral blood of patients with many
inflammatory autoimmune diseases including
RA,93 MS,83 T1DM,94 SLE,95 Sjogren’s syndrome96

and idiopathic inflammatory myopathies.97–99

These findings have also been observed in animal
models of autoimmune diseases such as the
collagen-induced arthritis model for RA,100 a
model of systemic juvenile idiopathic arthritis69

and the non-obese diabetes (NOD) model for
T1DM.101,102 Reduced cytotoxicity of NK cells in
these settings is thought to impair the restraint of
pathogenic immune cells, while reduced
circulating NK cell numbers might reflect

enhanced recruitment to sites of inflammation.
Enrichment of NK cells has been found in the
synovial joints of RA patients,25,26,81 the kidneys
of patients with lupus nephritis,103 cerebrospinal
fluid and brain lesions of MS patients,83,104 acute
psoriatic plaques,80 and fibrotic lungs of patients
with anti-synthetase syndrome.98 These tissue NK
cells have upregulated expression of tissue-
homing chemokine receptors.26,80,81,103

Natural killer cell ‘degeneration’ does not
necessarily portend autoimmunity. NK-deficient
(Mcl1fl/fl:Ncr1Cre) mice,105 or patients with
congenital deficiency in NK cells,106 do not
develop spontaneous autoimmunity, most likely
because of compensatory tolerogenic mechanisms
and immune checkpoints. Studies using anti-NK1.1
or anti-asialoGM1 monoclonal antibodies to
deplete NK cells in mice have produced mixed
results (discussed below). In the following sections
we discuss how NK cells, which only account for a
small fraction of total lymphocytes, nevertheless
contribute to the outcomes of inflammatory and
autoimmune diseases.

NK CELLS IN RHEUMATOID ARTHRITIS

Rheumatoid arthritis (RA) is a chronic
inflammatory autoimmune disease that is
characterised by persistent joint inflammation,
cartilage damage, and bone erosion.107 Studies
using the autoimmune collagen-induced arthritis
(CIA) model of RA identify Th17 cells and
germinal centre-dependent humoral responses as
key drivers of disease,108–110 while innate immune
cells (neutrophils, monocytes/macrophages and NK
cells), fibroblast-like synovial cells and bone-
resorbing osteoclasts cause joint inflammation
and destruction.111–114

In RA, the frequency of NK cells is increased in
peripheral blood of patients81,115 but these NK
cells consistently display impaired effector
functions such as reduced IFN-c production and
decreased cytotoxicity.115–118 This may be due to
upregulation of inhibitory receptors such as
CD161117 and NKG2A,119 or downregulation of
activating receptors such as CD16.116 Deficient
cytotoxic function of peripheral NK cells is
thought to contribute to the early phase of
autoimmune arthritis. Robust CIA induction was
observed following adoptive transfer of collagen
type II-specific CD4+ T cells and B cells into Rag2–/–

Prf1–/– hosts (lacking T and B cells, and perforin-
deficient NK cells), but not into Rag2–/– hosts
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(lacking T and B cells, but with perforin-sufficient
NK cells).119 Although ex vivo experiments
demonstrated NK-mediated lysis of arthritogenic
Th17 and Tfh cells,119 this may not reflect a
physiological scenario because other immune
checkpoints (i.e. T regulatory cells) are absent.
IFN-c produced by NK cells is also thought to
inhibit arthritis, both in the passive transfer
autoantibody-induced arthritis120 and the
autoimmune CIA100 models. However, NK-
mediated inhibition of passive transfer
autoantibody-induced arthritis is only apparent
following CpG-oligonucleotide stimulation.120 In
the CIA model, NK-derived IFN-c is thought to
limit Th17 differentiation as NK cells depletion
with anti-asialoGM1 at priming phase led to the
expansion of Th17 cells and mild exacerbation of
CIA at disease onset.100 A more sustained
exacerbation of CIA was similarly observed
following anti-NK1.1-mediated depletion, but this
appears to be due to NK T cell depletion as
CD1d–/– (NK T-deficient) mice also develop worse
CIA.121

Abundant NK cells are present in RA synovium
and most harbour a unique CD56bright

phenotype.25,26,115,122 RA synovial NK cells are
CD69+ NKp44+, indicative of their activated state,
but are perforinlow.25,26,115,122 They also
upregulate surface expression of inhibitory CD94-
NKG2A,123 which strongly inhibits NK cell
production of IFN-c and TNF and also restrains
cytotoxicity upon binding to its ligand, HLA-
E.25,119,122 Unlike circulating NK cells, synovial NK
cells have low KIR expression,25,26,81 but express
chemokine receptors, such as CCR5, CXCR3 and
CCR1, which may facilitate their preferential
recruitment into RA synovium.26,81 Given the low
cytotoxicity and IFN-c production of synovial NK
cells,115 these NK cells likely contribute to local
joint inflammation by producing other pro-
inflammatory mediators. Reciprocal activation of
joint-infiltrating CD56bright NK cells and CD14+

inflammatory monocytes has also been suggested
in RA.25,124 Murine studies identify joint NK cells
as sources of M-CSF and RANKL that promote the
differentiation of bone-resorbing osteoclasts89

(Figure 1a). In contrast to earlier studies,100 the
depletion of NK cells using anti-asialoGM1
attenuated both joint inflammation and bone
erosion in the CIA model.89 These studies
demonstrate the limitations of antibody depletion
of NK,125,126 which can be further confounded by
the dynamics of autoimmune responses.

Others suggest additional mechanisms by which
NK cells can regulate local joint inflammation. For
example, IL-15-activated NK cells trigger apoptosis
of mature bone-resorbing osteoclasts via LFA-1,
DNAM-1 and TRAIL.127 Another study
demonstrates the degranulation of an NK cell line
in response to RA fibroblast-like synoviocytes,
upon stimulation via NKG2D, DNAM-1, NKp46 and
NKp44 receptors.123 These studies, however, were
limited to in vitro observations using blood NK
cells and monocyte-derived osteoclasts127 or an
NK cell line123 and contradict reports showing low
cytotoxicity of synovial NK cells.115–118 Synovial
NK-derived IFN-c has also been thought to limit
arthritis by inhibiting Th17 polarisation in the CIA
model,100 but this seems questionable given the
low IFN-c production by RA synovial NK cells.115

More recently, we reported that synovial joint NK
cells propagate joint inflammation by secreting
the pro-inflammatory cytokine GM-CSF91

(Figure 1b). This occurs in an IL-18-dependent
manner, and independently of their cytotoxic
function or IFN-c production.91 GM-CSF, in turn,
signals to joint-infiltrating myeloid cells such as
neutrophils to upregulate pro-inflammatory
CXCL2, CCL3 and LTb4, thereby sustaining immune
cell recruitment into inflamed joints.91 To our
knowledge, this was the first study to define how
joint NK cells participate in local inflammatory
cascades in the effector phase of autoantibody-
induced arthritis.

In summary, synovial NK cells and peripheral NK
cells may perform distinct immune functions in
RA. Current evidence shows that synovial NK cells
aggravate arthritis through the production
inflammatory mediators such as GM-CSF, M-CSF
and RANKL, thereby priming effector myeloid
cells. In contrast, peripheral NK cells in secondary
lymphoid tissues may exert a protective role in RA
by virtue of IFN-c production and cytotoxicity
against arthritogenic immune cells. Future studies
should carefully consider the possibility of
inherent differences in NK cells at anatomical
locations. Better understanding of the NK-
activating and -inhibitory repertoire in RA could
inform NK-based therapies.

NK CELLS IN MULTIPLE SCLEROSIS

Multiple sclerosis (MS) is an inflammatory
neurodegenerative disease characterised by
autoreactive T cell-induced demyelination of the
CNS, leading to progressive neurological
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deficits.128 Experimental autoimmune
encephalomyelitis (EAE) is a widely used model
for MS and is induced by active immunisation or
passive transfer of myelin oligodendrocyte
glycoprotein antigen-specific T cells.129 Disease
induction in both MS patients and EAE model is
driven by Th17 cells, particularly the GM-CSF-
producing subset,130–132 and to some extent by
autoantibodies.133

In relapsing-remitting MS, a reduction in
peripheral NK cell activity was found to coincide
with clinical relapse.134 Ex vivo cytokine-activated
NK cells demonstrate potent lytic capacity towards
autologous CD4+ T cells following the
engagement of surface receptors including

NKp30, NKp46, DNAM-1, NKG2D, LFA-1 and
TRAIL.28,29,61,83 Peripheral NK cells from untreated
MS patients, however, were less efficient in
suppressing autologous CD4+ T cells compared
with healthy controls.29,83 Compromised
cytotoxicity in MS NK cells may result from
upregulated T cell expression of HLA-E, the ligand
for the inhibitory receptor NKG2A,29 or
downregulated DNAM-1/CD155-mediated NK cell
priming.83 Elevated levels of HLA-E have also been
detected in the cerebrospinal fluid and CNS
plaques of MS patients, which correlated with
reduced NK cytotoxicity and higher disease
activity.135 Collectively, these studies suggest
compromised NK-mediated removal of myelin-

Figure 1. NK cell involvement in autoimmune inflammatory diseases. NK cells exacerbate RA by secreting soluble mediators such as (a) M-CSF

and RANKL that drive the differentiation of bone-eroding osteoclasts and (b) GM-CSF that promotes the production of pro-inflammatory

mediators by joint-infiltrating neutrophils. (c) NK cells do not appear to play a dominant role in MS but boosting their cytotoxic function with

anti-NKG2A may eliminate encephalitogenic Th17 cells and alleviate disease in the EAE model. (d) NK cells may promote SLE through their

interaction with pDCs via LFA-1 and DNAM-1 that enhances the production of cytokines and chemokines such as IFN-a, IFN-c, TNF-a, IL-6, IL-8,

CCL3 and CCL4. NK cells are also found in kidney of lupus nephritis patients but it remains unclear if NK cells and their cytokine dysfunction

contribute to tissue pathology. (e) NK cells could contribute to the generation of autoantigens through excessive killing of CV-B4-infected

pancreatic b islets. However, other functions of NK cells such as IFN-c production remain unclear and future studies are required to capture

phenotypic and functional diversity of NK cells in both CV-B4-associated and sterile T1DM subtypes. (f) Alveolar NK cells are thought to give rise

to autoantigens such as histidyl tRNA synthetase following respiratory insults in anti-synthetase syndrome. Future studies are needed to evaluate

whether similar numerical and functional changes in NK cells occur in the discrete subtype of IIM.
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reactive T cells could contribute to MS. This
functional deficiency might reflect resistance of
autoreactive T cells to the cytolytic activity of NK
cells, rather than an intrinsic NK cell defect.

The involvement of NK cell in MS remains
contentious. NK cell depletion with anti-NK.1.1
antibody exacerbated murine EAE.65,72 Similarly,
mice deficient in the CX3CR1 chemokine receptor,
which directs NK cell recruitment to the CNS,
showed worse EAE, while inducible NK cell
expansion with IL-2 attenuated EAE.65 In these
settings, the protective role for NK cells in EAE
development is thought to be mediated by CNS-
recruited NK cells and to occur through indirect
suppression of Th17 responses via microglia65 or
killing of CNS-infiltrating CCR2+ Ly6C+

inflammatory monocytes.68 In support of the
notion of protective effects for NK cells in MS,
treatment with biological disease-modifying
agents,136–138 is associated with restoration of
circulating NK cell number. However, these
studies are limited to correlative observations and
may not reveal the true regulatory functions of
NK cells.

In an earlier study, NK cell depletion with either
anti-NK.1. or anti-asialoGM1 was shown to reduce
EAE severity.139 These discrepancies might be
explained by differences in immunisation and
antibody dose. In a more recent and
comprehensive report, passive transfer of
encephalitogenic 2D2 transgenic Th17 cells into
mice treated with anti-NK1.1 antibody, or into
mice with NKp46-lineage specific depletion of T-
bet (Tbx21fl/fl:NKp46Cre), resulted in significantly
reduced EAE. This finding underscores the
importance of NK1.1+ NKp46+ ILCs (i.e. NK cells,
ILC1 and/or ILC3 subsets).140 Further, passive
transfer of encephalitogenic 2D2 Th17 cells
induced EAE of comparable incidence and severity
in NK-sufficient and NK-deficient (Eomesfl/fl:
NKp46Cre) mice.140

Taken together, NK cells do not appear to have
a significant physiological role in Th17-induced
autoimmune neuroinflammation. Nevertheless,
manipulation of NK cell function through
inhibitory or activating receptors may still offer a
viable therapeutic strategy in MS. For example,
pharmacological blockade of the inhibitory
NKG2A or its ligands Qa-1, was shown to enhance
NK-mediated killing of autoreactive CD4+ T cells,
skew Th1/Th17 responses towards a non-
pathogenic Th2 response, and ameliorate
EAE73,141 (Figure 1c).

NK CELLS IN SYSTEMIC LUPUS
ERYTHEMATOSUS

Systemic Lupus Erythematosus (SLE) is a chronic,
systemic autoimmune disease and substantial
clinical heterogeneity makes it one of the most
therapeutically challenging autoimmune
disorder.142 Hallmarks of SLE include
hyperactivation of type I IFN responses, sustained
production of multiple autoantibodies against
nuclear autoantigens, and immune complex
formation in various organs (i.e. skin, kidney,
lung, blood, joint, and CNS), leading to tissue
inflammation and damage, such as lupus
nephritis. In addition to autoimmune T and B
cells, plasmacytoid dendritic cells (pDCs) play a
prominent role in lupus through type I IFN
production, namely IFN-a, downstream of innate
immune recognition of self-DNA and -RNA
through toll-like receptors (TLRs).143,144

In SLE, both the absolute number and
frequency of NK cells are diminished in the
peripheral blood of patients, especially in those
with active disease or with severe clinical
manifestations such as lupus nephritis and
thrombocytopenia.95,145–147 Some studies found
no difference in the proportions of NK cell
subsets,78,145 while others observed an increased
frequency of CD56bright NK cells.148 These
discrepancies might be explained by
immunosuppressive therapies the patients were
receiving. Phenotypic alterations in SLE NK cells
include increased expression of CD69, NKp46,
CD86, and OX40/CD134,78,146,148,149 suggesting a
dysfunctional state. CD69 expression on NK cells
appears to correlate with disease activity.149 Other
changes include upregulation of inhibitory CD94-
NKG2A and reduced CD16.78 However, the
expression of other NK receptors, including
NKG2C, NKG2D and KIR family members, is less
definitive, likely reflecting clinical heterogeneity
of SLE.78,149,150

NK cells might contribute to protection against
SLE by eliminating DCs,146,150 but peripheral NK
cell cytotoxicity is impaired in SLE patients
irrespective of disease activity.95,145,146,148,149,151

This impaired cytotoxicity might, at least partially,
result from an intrinsic NK cell defect, because
first-degree relatives of SLE patients showed
similar impairment of NK-mediated killing
compared with healthy donors.151 Alternative
explanations include inhibition by anti-
lymphocyte antibodies,95,152 reduced IL-2Rb
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expression on NK cells,95 and/or a defective NK
response to IL-15.149,153 Autoantibodies to CD94
and KIRs have been described in SLE and may
contribute to the reduced cytotoxic function of
NK cells and increase the risk of lupus
nephritis.154,155

Natural killer cells have been implicated in the
pathogenesis of SLE through their interactions
with pDCs.150,156,157 NK cells augment IFN-a
production by immune complex-activated pDCs
through the secretion of CCL4 and cell–cell
interaction in an LFA-1- and DNAM-1-dependent
manner156 (Figure 1d). In turn, pDC-derived IFN-a
is essential for NK cell development, maturation
and IFN-c production.150,158 Bidirectional
activation of these two cell types establishes a
highly inflammatory milieu containing abundant
cytokines and chemokines, including IFN-a, IFN-c,
TNF-a, IL-6, IL-8, CCL3 and CCL4157,159 (Figure 1d).
Other murine studies support a pathogenic role
for NK cells in lupus. In the TLR7 transgenic and
FccRIIB–/– murine models of SLE, chronic TLR7
signalling has been associated with extended
survival of NK cells and proliferation of immature
NK cells.146,160 An atypical NK cell subset that
possesses both NK- and DC-like functions has also
been reported.160 These unique NK/DC co-express
NK1.1, CD11c, CD122 and MHC-II, respond to IL-
15 stimulation, produce type I and II IFNs, are
highly proliferative, and demonstrate both
cytotoxic and antigen-presenting functions.
Remarkably, adoptive transfer of these atypical
NK/DC cells to wildtype mice induces lupus-like
autoimmunity.160 Consistent with this finding, a
similar subset of CD3– CD56+ HLA-DR+ CD11c+ NK
cells have been identified in SLE patients,
although their precise role remains to be
defined.146 In another study,147 a subset of
proliferating Ki67+ NK cells were identified in SLE
patients and was associated with more severe
disease, active nephritis and a lowered total NK
cell number. Whether these HLA-DR+ CD11c+ or
Ki67+ NK cells truly represent the human
counterpart of pathogenic murine NK:DCs in SLE
remains to be determined.147,160 More recently,
inducible expansion of cytotoxic lymphocytes
with an IL-15 superagonist led to the
exacerbation of lupus parameters in mice.
However, this was shown to be driven primarily
by CD8+ T cell expansion and not NK cells,161

arguing against a direct pathogenic role of NK
cells in lupus, at least in the MRL/lpr lupus
model.

Lupus nephritis is a serious manifestation of SLE
and is often studied as a model for organ
involvement. Single-cell RNA sequencing revealed
an abundance of both CD56dim CD16+ and
CD56bright CD16– NK subsets in kidney biopsies of
patients with lupus nephritis,103 but what role
these NK cells play has not been characterised
(Figure 1d). Similarly, in murine MRL/lpr and MRL/
MpJ models of SLE, NK cells are actively recruited
into kidneys during the early phases of
disease.79,150 These observational studies await
functional evidence to confirm the involvement of
NK cells in the pathogenesis of SLE.

In summary, interaction of peripheral NK cells
with pDCs in a reciprocal manner could
contribute to an exaggerated systemic
inflammatory response in SLE, that is
characterised by type I and type II IFN responses.
Further investigations are needed to determine if
interfering such NK-pDC crosstalk is
therapeutically beneficial and to define if organ-
infiltrating NK cells play an immune regulatory
function in lupus nephritis.

NK CELLS IN TYPE 1 DIABETES
MELLITUS

Type 1 diabetes mellitus (T1DM) is probably
mediated by CD8+ T cells, which selectively destroy
pancreatic b cells, causing insulin deficiency and
hyperglycaemia.162 Inflamed islets are infiltrated
by cytotoxic CD8+ T cells. CD4+ T cells, B cells, and
NK cells have also been found.163–165

Studies characterising NK cell numbers and
activity in human T1DM demonstrate that NK cell
deficiency is universal. A decrease in peripheral
blood NK cell number was observed both in
patients with newly onset T1DM94 and those with
long-standing disease.166 Furthermore, functional
deficiencies of NK cells in long-standing diabetic
patients have been reported. Although blood NK
cells displayed a hyperactivated state (IFN-c-
producing) at disease onset, these cells expressed
lower levels of activating receptors (i.e. NKG2D,
NKp30 and NKp46) and had decreased IFN-c
expression and NKG2D-dependent cytolytic
activity in the chronic phase of disease, compared
with control subjects.94,166

A disease-promoting effect of NK cells in diabetes
is proposed based on studies in the NOD mice. NK
cells infiltrate into the pancreas prior to T cells and
have an activated phenotype, with enhanced
proliferation and spontaneous IFN-c production
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and degranulation101,102,167 (Figure 1e). The
proportion and numbers of NK cell infiltrating the
pancreas positively correlated with autoimmune
responses in NOD mice, and depletion of NK cells
significantly inhibited anti-CTLA-4-induced
exacerbation of diabetes.168 In this study, early islet
destruction was proposed to be due to NK cell-
derived IFN-c.168 However, transgenic NOD mice
expressing a dominant negative IFN-c receptor on b
cells had a similar incidence of diabetes compared
to non-transgenic mice,169 indicating that any direct
effect of IFN-c on b cells is dispensable for diabetes,
at least in the NODmodel.

Abundant NK cell infiltration and degranulation
were reported during the evolution of destructive
insulitis in low-dose streptozotocin-induced
diabetes model.167 Genetic deletion or blockade
of NKp46 abrogated the development of diabetes
in NOD mice. A subsequent study, however,
queried the role of NK cells in spontaneous
diabetes in NOD mice because anti-NK1.1-induced
NK cell depletion caused only a slight delay in the
onset of full-blown disease.102

Interestingly, destruction of pancreatic b cells by
NK cells and the subsequent development of
T1DM can occur following enterovirus infection.
Animal and human studies have highlighted the
role of NK cells in mediating group B4
coxsackieviruses (CV-B4)-induced autoimmunity
against islet cells.164,170 In chronic infection, CV-
B4-infected islet cells can downregulate the
surface expression of HLA class I molecules on b
cells and avoid recognition and killing by
cytotoxic T cells. These islets remain susceptible to
NK cell-mediated elimination170 but b cell
apoptosis could lead to the release of potential
autoantigens that may trigger autoreactivity and
cause further b cell destruction171 (Figure 1e).
Consistently, NK cell depletion using anti-asialo-
GM1 reduced early CVB4-induced insulitis and
islet destruction in SOCS1-Tg NOD mice.170 NK
cells may therefore contribute to CV-B4-associated
T1DM through excessive killing of infected
pancreatic b islet cells.

In sum, current studies suggest that NK cells
could contribute to the generation of
autoantigens in enterovirus-associated T1DM
through pancreatic b islet killing. However, the
role of NK cells in sterile T1DM is unknown.
Future studies are required to capture phenotypic
and functional diversity of NK cells in both CV-B4-
associated and sterile T1DM subtypes.

NK CELLS IN IDIOPATHIC
INFLAMMATORY MYOPATHIES

Idiopathic inflammatory myopathies (IIMs)
comprise a group of uncommon chronic
inflammatory autoimmune diseases affecting
skeletal muscles. IIMs have been further
classified into several subtypes based on
differences in immunopathology, including
polymyositis, dermatomyositis, anti-synthetase
syndrome, immune-mediated necrotising
myopathy, sporadic inclusion body myositis and
nonspecific myositis.172 IIMs are characterised by
chronic muscle inflammation and destruction,
leading to muscle fibre degeneration and
weakness. The causes of IIMs are unclear but
autoreactive CD8+ T cells, CD4+ T cells and/or
autoantibodies have all been identified in
muscle biopsies.173

As in other autoimmune disorders, reductions in
the number and frequency of circulating NK cells
have been observed in active dermatomyositis,174

and levels normalise with disease remission.99,175

An increased number of NK cells have been
reported in affected muscles of juvenile
dermatomyositis patients early in the disease
course,176 but not in adult dermatomyositis
patients.177 Impaired cytotoxicity of NK cells has
been reported in dermatomyositis, which may be
related to compromised PLCc2 signalling and a
defect in calcium flux.99 Whether and how NK
cells contribute to dermatomyositis remains
unclear.

A role for NK cells in the pathogenesis of anti-
synthetase syndrome has been hypothesised,
specifically in the generation of autoantigens
(Figure 1f). Anti-synthetase syndrome is defined
by the presence of autoantibodies against tRNA
synthetases, most commonly histidyl tRNA
synthetase, and characteristic clinical features
include myositis and extramuscular manifestations
(i.e. interstitial lung disease and arthritis).178

Although anti-synthetase syndrome is
conceptualised as a myopathy, mounting evidence
suggests disease induction likely occurs in the
lungs. Epidemiologically, anti-synthetase
syndrome is strongly associated with prior
respiratory insults,179,180 and an immunogenic,
granzyme B-cleavable of histidyl tRNA synthetase
has been identified in alveolar epithelium.181

While NK cells are scarce in the inflamed muscles
of patients with anti-synthetase syndrome, they
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are greatly expanded in affected lungs and
express granzyme B.98 The number of circulating
NK cells in active anti-synthetase syndrome
patients is comparable to healthy controls, but
there is a higher frequency of NK cells expressing
granzyme B. These NK cells display a mature
CD57hi phenotype but low levels of NKp30
activating receptor.98 This pattern appears to be
specific to anti-synthetase syndrome, as the
percentage of differentiated CD57+ NK cells in the
circulation of sporadic inclusion body myositis and
immune-mediated necrotising myopathy patients
is comparable to healthy controls.182 Whether
alveolar NK cells contribute to the initiation of
autoimmunity through the generation of
immunogenic peptides of histidyl tRNA synthetase
in the anti-synthetase syndrome warrants further
investigation (Figure 1f).

Compared to other autoimmune disorders
described above, NK cells remain less well defined
in IIMs. At least in anti-synthetase syndrome,
alveolar NK cells are thought to give rise to
autoantigens such as histidyl tRNA synthetase
following respiratory insults. However, it is
unknown whether this occurs through excessive
cytolysis of alveolar epithelial cells and/or

granzyme B-mediated cleavage of histidyl tRNA
synthetase. Future studies are needed to evaluate
whether similar numerical and functional changes
in NK cells occur in the discrete subtype of IIM.

NK CELL THERAPY IN AUTOIMMUNITY

Natural killer cells may hold significant
therapeutic potential in autoimmune diseases.
First, blocking or agonistic antibodies that target
activating, inhibitory and/or cytokine receptors
could be used to potentiate cytotoxic activity
against autoreactive immune cells, or to suppress
the production of pathogenic cytokines such as
GM-CSF, IFN-g and TNF-a (Figure 2a). For example,
anti-NKG2A blocks an NK inhibitory receptor and
potentiates NK cells cytotoxicity towards
pathogenic Th17 and Tfh, alleviating EAE,73,141 as
well as CIA.119 Second, engineering of chimeric
antigen receptor (CAR) NK cells could eliminate
autoreactive immune cells in a ‘targeted’ manner
(Figure 2b). This approach follows the use of
CD19-targeted CAR T cell therapy to deplete
autoreactive B cells in murine lupus.183

Subsequently, CAR NK cells expressing PD-L1 were
shown to eliminate PD-1hi Tfh cells ex vivo and in

Figure 2. Therapeutic potential of NK-based therapy in autoimmune disorders. (a) Blocking or agonistic antibodies target cell-surface receptors

of NK cells to potentiate their cytotoxicity against autoreactive immune cells, or suppress the production of pathogenic cytokines. (b) Engineering

of chimeric antigen receptor (CAR) could direct NK cells to eliminate autoreactive immune cells. (c) A multifunctional engager combining

antibodies that target antigens expressed by autoreactive cells and activating/inhibitory receptors on NK cells could facilitate NK cell interaction

and cytolytic activity towards target autoimmune lymphocytes.
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a humanised mouse model of lupus-like
disease.184 Alternatively, engineering of a
multifunctional engager that incorporates
combination of antibodies targeting antigens
expressed by autoreactive immune cells and
activating/inhibitory receptors could facilitate NK
cell interaction and cytolytic activity (Figure 2c).
Multifunctional NK cell engagers have recently
demonstrated for cancer immunotherapy.48

CONCLUSIONS AND PERSPECTIVES

Considerable evidence suggests that numerical
and/or functional deficits in NK cells are common
in a variety of inflammatory autoimmune diseases.
However, the mechanisms underpinning this
abnormality may differ between diseases. It
remains contentious whether NK cell cytotoxic
function constitutes an immune checkpoint by
direct elimination of autoreactive immune cells or
is merely a consequence of disease. Recent
appreciation of NK cells’ heterogeneity in cancer
studies calls for a more careful interpretation of
past studies in autoimmune disease settings. The
integration of new technical advances such as
single-cell transcriptomic and mass cytometry may
similarly reveal an underappreciated phenotypic
diversity of NK cells in autoimmune diseases.

Studies defining the role of NK cells in cancer
have paved the way for NK cell-based cancer
immunotherapies. We believe detailed
understanding of the temporal and spatial
functions of NK cells in autoimmune inflammatory
diseases could similarly offer opportunities to
target NK cells in concert with other immune-
modifying therapies. While several KIR-HLA
haplotypes have been genetically associated with
discrete autoimmune disorders, caution should be
exercised when drawing conclusions from
observational and ex vivo studies using patient
samples. These novel hypotheses must be
accompanied by proof-of-principle experiments at
functional protein level with genetic and
pharmacologic in vivo models, such as NK-specific
conditional knockout mice or KIR isoform-specific
antibodies. Such information may also be relevant
in understanding immunotherapy-associated
rheumatic adverse events, particularly with the
increasing use of immune checkpoint inhibitors
and introduction of NK-based cancer
immunotherapies. Whether NK cell dysfunction
contributes to the development of these complex

autoimmune-like conditions merits further
investigation.
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