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Abstract: Ticks (Acari: Ixodidae) are blood-feeding parasites capable of transmitting diseases to
animals (Piroplasmosis) and humans (Congo fever, Lyme disease). The non-judicious use of chemical
acaricides has led to the development of acaricide-resistant ticks, making the control of ticks and
tick-borne diseases difficult. This study reports the efficacy of magnesium oxide (MgO), iron oxide
(Fe2O3), and zinc oxide (ZnO) nanoparticles (NPs) as alternatives to traditional acaricides/pesticides
using in vitro tests against major representative stages of Hyalomma ticks. Nanopesticides were
chemically synthesized as rods (Fe2O3), stars (ZnO), and spheres (MgO) and were characterized by
XRD and SEM analysis. The in vitro bioassays included adult immersion, larval immersion, and larval
packet tests. Non-target effects of the nanopesticides were evaluated using snails. The LC90 values of
Fe2O3 NPs (4.21, 2.83, 0.89 mg/L) were lowest followed by MgO (4.27, 2.91, 0.93 mg/L) and ZnO
(4.49, 3.05, 0.69 mg/L), for the tick adult, larval and egg stages, respectively. Fe2O3 NPs were capable
of arresting oviposition and larval hatching in the study ticks in vitro. The snail toxicity experiments
revealed minimum to mild off-target effects for all nanopesticides tested. This study is the first to
report the comparative efficacy of magnesium, iron, and zinc nanomaterials for toxicity in egg, adult
and larval stages of Hyalomma ticks. Further studies of NPs on establishing the efficacy against ticks
and safety at host-human-environment interface could lead to promising nanopesticde applications.

Keywords: Hyalomma; ZnO; MgO; Fe2O3; nanoparticles; tick bioassay; ecotoxicity; snails

1. Introduction

Ticks are blood-feeding arthropods known to transmit lumpy skin disease, Q fever,
rickettsiosis, ehrlichiosis, Boutonneuse fever and Lyme disease [1,2]. Livestock species in
developing countries such as Pakistan face threats from multiple tick-related diseases [3,4],
and estimated economic losses in Brazil and Mexico due to tick epidemics, prevention and
treatment range from $573.61 million to $3.24 billion annually [5]. Although the transmis-
sion of these diseases affects livestock and threatens caretakers and pet animals [6,7], the
widespread use of conventional therapies has led to drug resistance.

Hyalomma ticks are one of the most significant disease-transmitting genera of Ixodidae
due to their vector potential for livestock and impact on public health [8]. A growing tide
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of acaricidal resistance in ticks, combined with the slow development of chemical acaricide
design and implementation, reveals the need for alternative options. Alternative control
measures, alone or in combination with chemical acaricides, constitute an integrated vector
management approach shown to be effective in controlling ticks and tick-borne diseases [9].
To this end, the use of management strategies including rotational grazing, spelt pastures,
alternative grazing, improved floor design, and the use of footbaths have been applied in
combination with other methods for moderately effective tick control [10].

Metallic and non-metallic nanoparticles (NPs) have shown great promise for rapidly
inducing toxicity and reducing lethal concentrations at various stages of the parasite’s
life cycle [11]. NPs have been found to induce toxicity against some endoparasites and
ectoparasites [12–14]. Magnesium, zinc, and iron, among other metals, are known to
regulate cellular mechanisms in arthropods. MgO NPs have shown promising lethality
via cell membrane permeability, nervous conduction and excitability, and intermediary
metabolism. Similarly, zinc is crucial to DNA synthesis, mitosis, cell proliferation and as an
intracellular antioxidant in arthropods [15]. Iron is crucial in preventing oxidative stress
within arthropods [16]. Given the pivotal roles of these metals in arthropod physiology, the
current study evaluates the comparative acaricidal activity of ZnO, MgO, and Fe2O3 NPs
against the major stages of Hyalomma ticks and determines their toxicity in snails (being
one of suitable candidates for pesticide and ecotoxicology testing).

2. Materials and Methods
2.1. NP Synthesis and Characterization

Magnesium chloride (MgCl2·6H2O), sodium dodecyl sulfate (SDS), sodium hydroxide
(NaOH), zinc acetate dihydrate (Zn(CH3COO)2·2H2O), polyethylene glycol (PEG), urea
(NH2CONH2), iron chloride tetrahydrate (FeCl2·4H2O) and ammonia were purchased
from Sigma-Aldrich USA.

Synthesis of MgO NPs: MgO NPs were prepared hydrothermally in the presence of
surfactant [17]. The MgCl2·6H2O solution was prepared by dissolving 4 g MgCl2·6H2O in
40 mL distilled water. Four grams of SDS were added to the MgCl2 solution with constant
magnetic stirring for 4 h at room temperature. Twenty mL of 2.5 M NaOH was dropwise
added into the reaction mixture to maintain a pH of 12. The resulting white suspension was
transferred into a stainless-steel-lined solvothermal autoclave reactor and heated at 140 ◦C
for 6 h. The white precipitates obtained were washed with distilled water and collected
by centrifugation. The precipitates were dried at 60 ◦C for 24 h in a thermoelectric oven,
ground, then calcinated at 450 ◦C for 3 h.

Synthesis of ZnO NPs: Three grams Zn(CH3COO)2·2H2O and 1 g urea were dis-
solved in 65 mL distilled water to prepare solution A. One gram of urea and 3 g PEG were
dissolved in 65 mL distilled water to prepare solution B. Solutions A and B were mixed,
and 13 mL of concentrated ammonia was dropwise added to maintain a pH of 12. The
solution was poured into a Teflon vessel and heated in an autoclave reactor at 110 ◦C for
5 h. The product was washed, dried, ground to a fine powder, and calcinated at 550 ◦C
for 5 h.

Synthesis of Fe2O3 NPs: Two grams of FeCl2·4H2O were dissolved in 6 mL distilled
water, and 42 mL of concentrated ammonia was added. The reaction mixture was heated
in an autoclave at 140 ◦C for 3 h. The product was washed, dried, and ground to a fine
powder before application.

NP characterization: A Rigaku D/max Ultima III X-ray powder diffractometer oper-
ated at 40 kV and 0.130 A current and equipped with a Cu-Kα radiation source (wavelength
0.15406 nm) was used for the XRD analysis of NP products. An SEM Quanta 250 operated
at 30 kV was used to scan the NPs.

2.2. Tick Collection and Identification

Engorged ticks were collected from the ears, eyelids, lips, and tails of bovines (cat-
tle and buffalo) with no reported history of acaricidal exposure within the previous
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30 days [18]. Ticks were collected in untreated vials from the animals irrespective of animal
gender, age, or species and were identified using a stereomicroscope (IM-SZ-210, Irmeco,
Lütjensee, Germany) following an identification key developed by Walker et al. [19]. Tick
anatomical features of the mouth, basis capitulum, coxa, scutum, and other features were
assessed for identification at the genus level.

2.3. Tick Bioassays

We evaluated the efficacy of various concentrations of NPs against egg, larval and
adult stages of collected Hyalomma ticks using the following bioassays: egg immersion (EIT),
larval packet (LPT), larval immersion (LIT) and adult immersion (AIT). All tick rearing and
bioassays were performed within a biological oxygen demand incubator, at a temperature
of 28–30 ◦C and 80–90% relative humidity, for the required time [20,21]. Briefly, partially
fed and fully engorged female ticks were moved to separate tubes for incubation and
subsequent ovipositioning [22]. After 11–35 days, females had laid eggs, and the shriveled
and dead females were separated from the eggs to avoid microbial contamination. The
eggs were then incubated until larval hatching. Mortality data was subject to the formula
proposed by [23].

2.4. Contact Toxicity in Garden Snails

For the toxicity evaluation, 120 apparently healthy and active land snails were col-
lected regardless of gender from the organic garden at the University of Agriculture,
Faisalabad, Pakistan, where chemicals and pesticides had not been used in the previous
30 days. There were seven groups of snails, including two control (negative and positive)
and five treatment groups. The seven groups were designated as follows: Group 1 (negative
control, distilled water), Group 2 (cypermethrin), Group 3 (deltamethrin), Group 4 (MgO
NPs), Group 5 (ZnO NPs), Group 6 (Fe2O3 NPs), and Group 7 (positive control, DMSO).
The five treatment groups (all groups except 1 and 7) were further divided into four sub-
groups receiving the following NP concentrations: 0.01 mg/mL, 0.1 mg/mL, 1 mg/mL,
and 10 mg/mL, with n = 5 snails randomly assigned to each subgroup. A 50µL of solu-
tion from each of 0.01 mg/mL, 0.1 mg/mL, 1 mg/mL, and 10 mg/mL NPs solution was
poured onto the anterior mouth portion side of each snail, using the method described
by Radwan et al. [24] with some modifications. The snails were transferred to Petri plates
instead of plastic bottles to improve aeration. The top of each plate was covered with
organza netting secured with rubber bands. The final dose received by each snail was
0.5 µg, 5 µg, 50 µg, and 500 µg for the four NP concentration subgroups within each
treatment group. Snails were kept off-feed for 5 days, and dead snails were analyzed by
histopathology. Percentage mortality on the 1st, 3rd, and 5th days was calculated based on
the number of dead snails divided by the total number of snails tested.

Formulae applied:

Corrected Mortality =
% treated mortality − % control mortality

100 − % control mortality
× 100

%Mortality o f snails at “x” time interval =
Number o f snails died at “x”time interval

Total number o f snails used in the trial
× 100

x = 1st day (24 h); 3rd day (48 h); and 5th day (120 h)

Histopathology: The digestive glands of the snails were processed for dissection and fixa-
tion using Bouin’s fluid. Fixed sections were deparaffinized in 5 µm-thick sections, then hydrated
and stained in hematoxylin for fifteen minutes. After washing with water, sections were stained
with 1% eosin solution for two minutes. The samples were dehydrated with alcohol, cleared in
xylene, mounted on clean slides using Canada balsam and covered with thin coverslips [25]. Salient
pathological indicators included call disintegration, bizarre nuclei ranging from karyolysis to se-
vere karyorrhexis, complete pyknosis, numerous vacuolations, frequent dark granulation, and
hemocyte infiltration.
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2.5. Statistical Analysis
The LC50 and LC99 values and their associated confidence intervals were estimated from

24 h mortality/survivability data using Probit analysis by SPSS (SPSS for Windows, version 22;
IBM, Armonk, NY, USA) with probability ≤0.05 considered as significant.

3. Results
3.1. XRD Analyses of MgO, ZnO, and Fe2O3 NPs

XRD patterns of the synthesized products were plotted as 2 theta (θ) values vs. intensity
(Figure 1). Miller indices of Fe2O3 for diffraction peaks at 2 theta (θ) 22◦, 33◦, 35◦, 46◦, and 56◦ were
(012), (104), (110), (124), and (116), respectively (JCPDS # 33-0664) [26]. The set of 2 theta (θ) values
and corresponding indices indicate that the synthesized product was Fe2O3 NPs. The XRD pattern
showed that the peaks were not sharp, indicating that the product was not completely crystalline.
Figure 1b shows the diffraction peaks at 2 theta (θ) 32◦, 34◦, 36◦, 45◦, 56◦, 62◦, and 68◦ with Miller
indices of (100), (012), (101), (102), (110), (103), and (200), respectively, confirming that the synthesized
product was ZnO NPs (JCPDS # 36-1451) [27]. For ZnO, the peaks were sharp, indicating a crystalline
ZnO product. Figure 1c shows diffraction peaks at 2 theta (θ) 42◦, 62◦, and 66◦, corresponding to
(200), (220), and (311) Miller indices, respectively (MgO, JCPDS # 75-1525) [28]. All peaks were
sharp, indicating that the synthesized product was crystalline. Overall, the ZnO NPs were purer and
provided the sharpest peaks among all the synthesized products.
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Figure 1. XRD pattern of synthesized (a) Fe2O3, (b) ZnO and (c) MgO nanoparticles.

3.2. SEM Analyses of MgO, ZnO, and Fe2O3 NPs
An SEM image of MgO NPs synthesized hydrothermally is provided in Figure 2. The product

is comprised of fully dispersed spherical/oval-shaped NPs. Aggregation was not observed in this
image. MgO NPs were 30–80 nm in size. A contrast was not observed, indicating that the particles
were compact and not hollow. An SEM image of the ZnO NPs is shown in Figure 2. Polygonal,
randomly oriented, unfused star-like particles were observed. The boundaries of particles were clear,
and every particle consisted of many spikes joined at the center. The spike lengths were not equal.
The size of every star-like particle was approximately 4–8 µm, and the terminal ends of spikes were
blunt rather than pointed. Urea acted as the directing morphology template; primary particles were
formed initially and stabilized by urea molecules. Due to calcination, urea molecules decomposed
into carbon dioxide and ammonia, forming star-like particles. The rod-shaped NPs of Fe2O3 are
shown in Figure 2. These rod-shaped particles were randomly aligned, approximately 2 µm long and
100 nm wide. The terminal ends of rods were not pointed. The rods appeared to have emerged from
spherical NPs because few spherical-shaped minute particles adhered to the surface of the rods. As
the rods were not aggregated, their surface was available for many interactions with the environment.
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3.3. Tick Bioassays
The preliminary stereomicrographs showing adult, larval and egg stages of Hyalomma ticks are

shown in Figure 3. Iron oxide NPs demonstrated superior acaricidal activity against ovipositioning,
larval emergence, and egg hatching than MgO and ZnO NPs, and ZnO NPs showed the least
activity. Similarly, adult and larval mortality, regardless of NP concentration, was higher in ticks
exposed to Fe2O3 NPs (Table 1). The mortality results of the packet and immersion tests were not
significantly different. Adult female ovipositioning is expressed in percentages, divided into three
major categories: egg-laying within 20 days, egg-laying from 21–28 days and egg-laying after 28 days
(Figure 4). The egg mass from which no larvae emerged even after 35 days post-treatment was
considered dead due to the NP treatment. The color of egg masses that desiccated without larval
emergence changed to dark brown/black (Figure 5a). The egg-laying of Fe2O3 NP treatment groups
was approximately 80%, and the lowest lethal Fe2O3 NP concentration required to arrest larval
hatching was LC90 = 1.68 mg/L. Mortality data in terms of LC50 and LC90 along with associated
confidence intervals have been mentioned in Table 1.
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Figure 3. Stereomicrographs of Hyalomma (A) male adult (B) Partially fed female (C) Un fed female
(D) Eggs.

Table 1. Lethal concentrations owing to application of Fe2O3, MgO and ZnO nano-pesticides against
Hyalomma ticks.

Acaricide Tick Stage LC50 CI LC90 CI

Iron Oxide
Egg 0.89 0.04–0.92 1.69 0.7–1.9

Larva 2.83 1.9–3.5 5.58 2.2–5.9
Adult 4.21 2.7–4.6 8.34 5.3–9.4

Magnesium Oxide
Egg 0.93 0.1–0.93 1.74 1.2–1.9

Larva 2.91 1.7–3.2 5.77 3.7–6.2
Adult 4.27 3.6–5.1 8.49 6.4–9.3

Zinc Oxide
Egg 0.96 0.05–0.19 1.80 2.7–3.4

Larva 3.05 1.1–4.7 5.93 5.1–7.7
Adult 4.49 3.2–6.2 8.88 6.3–10.1
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3.4. Ecotoxicity Analysis
As a preliminary investigation, all three NPs demonstrated minimum to mild off-target effects

on the snails (Table 2). The highest mortality in the starved snails was detected in the cypermethrin
treatment group, followed by deltamethrin, Fe2O3 NPs, MgO NPs, and ZnO NPs. Mortality was
directly proportional to NPs concentrations. All the snails exposed to ZnO NPs survived for 24 h
against all four concentrations. In the control group, only one of the snails was dead on the fifth day
of the trial. Most snails died on day 3 of the trial.

Table 2. Topical application induced toxicity (Mortality%) in snails at 24-, 72-, and 120-h post exposure.

Preparation Name Concentration
(Stock)

Dose per
Snail

(50 µL)
No. of
Snails

Mortality until Day 1
(24 h)

Mortality until Day 3
(72 h)

Mortality until Day 5
(120 h)

Ratio % Ratio % Ratio %

Cypermethrin
(Group 1)

10 mg/mL 500 µg 5 2/5 40 4/5 80 5/5 100
1 mg/mL 50 µg 5 2/5 40 2/5 40 3/5 60

0.1 mg/mL 5 µg 5 1/5 20 2/5 40 3/5 60
0.01 mg/mL 0.5 µg 5 1/5 20 1/5 20 3/5 60

Deltamethrin
(Group 2)

10 mg/mL 500 µg 5 1/5 20 3/5 60 4/5 80
1 mg/mL 50 µg 5 1/5 20 2/5 20 3/5 60

0.1 mg/mL 5 µg 5 0/5 0 1/5 20 3/5 60
0.01 mg/mL 0.5 µg 5 0/5 0 1/5 20 2/5 40

MgO
(Group 3)

10 mg/mL 500 µg 5 1/5 20 2/5 40 3/5 60
1 mg/mL 50 µg 5 0/5 0 0/5 0 2/5 40

0.1 mg/mL 5 µg 5 0/5 0 0/5 0 1/5 20
0.01 mg/mL 0.5 µg 5 0/5 0 0/5 0 1/5 20

ZnO
(Group 4)

10 mg/mL 500 µg 5 0/5 0 1/5 20 3/5 60
1 mg/mL 50 µg 5 0/5 0 1/5 20 1/5 20

0.1 mg/mL 5 µg 5 0/5 0 0/5 0 1/5 20
0.01 mg/mL 0.5 µg 5 0/5 0 0/5 0 0/5 0

Fe2O3
(Group 5)

10 mg/mL 500 µg 5 1/5 20 2/5 40 4/5 80
1 mg/mL 50 µg 5 1/5 20 1/5 20 2/5 40

0.1 mg/mL 5 µg 5 0/5 0 0/5 0 1/5 20
0.01 mg/mL 0.5 µg 5 0/5 0 0/5 0 0/5 0

Control DMSO
(Group 6) - 50 µL 10 0 0 0 0 1/10 10

Control Distilled
water (Group 7) - 50 µL 10 0 0 0 0 0/10 0

NB: 50 µL was given once directly to the mouth end of snails in that 500, 50, 5, and 0.5 µg per snail was applied
from stock concentrations of 10, 1, 0.1, and 0.01 mg/mL. Percentage mortality at 1st, 3rd, and 5th day was
calculated based on number of snails died divided by total number of snails tested at each of time.

Histopathology: Snails exposed to metallic NPs were found to be illustrating pathologies at
various sites of digestive glands (Figure 6). The glands were denatured, calcium and excretory cells
were developing slight vacuolation, and granules were released upon the denaturation of digestive
cells. Moreover, basophilic infiltration was evident. Some connective tissue was denatured, and
the lumen was widened and later disfigured. Pyknotic nuclei were observed due to the packing of
calcium cells with larger calcium spherules. Excretory cells were evident at some sites with debris.
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gland (400×): Pyknotic nuclei (red arrows) and vacuolar degeneration (black arrows).
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4. Discussion
ZnO NPs are one of the safest nanomaterials and have been successfully applied in the areas of

food, textiles, medicine and healthcare, agriculture, and engineering [29,30]. In one previous study
of Fe2O3 NPs, researchers determined that the LC50 was 50 µg/mL at 60 min and the LC99 was
150 µg/mL at 30 min against Hyalomma spp. The authors also showed 85.7% Hyalomma mortality in
0 min exposure to 250 µg/mL of Fe2O3 NPs [31]. In our previous study, neem plant-based ZnO NPs
and lemongrass-based ZnO NPs demonstrated LC50 values of 4.76 mg/L and 4.92 mg/L and LC90
values of 8.87 mg/L and 9.1 mg/L, respectively, against Hyalomma ticks [32]. Mortality data from
these tests are consistent with other studies of NP-induced toxicity in ticks [33,34]. Previous research
has shown that Fe2O3 NPs and ZnO NPs are safer and more effective NPs nickel NPs than titanium
NPs [33,35] against the larvae of the Hyalomma tick. Similarly, the LC50 for plant-derived ZnO NPs
tested in Rhichichephalus ticks was 6.87 mg/L.

It has been proposed that NPs induce toxicity by accelerating or slowing certain cellular mecha-
nisms within host cells [36]. The unique physicochemical surface properties of nanomaterials make
them more suitable for downstream functionalization applications [9]. Moreover, ZnO NPs are listed
as “generally recognized as safe” by the U.S. Food and Drug Administration (FDA), making them
one of the safest NPs in biomedical applications [37]. The safety of ZnO NPs during in vivo testing
was demonstrated via the biochemical analysis of subject animal sera [18]. Similarly, in humans, ZnO
NPs failed to induce toxicity or bypass the dermal layers 5 days after exposure [30].

MgO NPs have been declared relatively safe materials by the FDA. They are also easier to
procure and versatile [38]. Although the exact mechanism by which MgO NPs cause toxicity in
insects is still unknown, their anti-pathogenic action has been attributed to the liberation of reactive
oxygen species, leading to DNA and (eventual) cell wall damage due to increased alkalinity [39].

Snails are considered model animals for ecotoxicity assessment of nanomaterials due to their
propensity to bioaccumulate and their importance in land and aquatic ecosystems [40]. Snail digestive
glands consist of several tubules lined by epithelial cells, digestive cells, calcium cells, excretory cells,
thin cells, and digestive tubules. One previous study revealed that exposing snails to ultraviolet-A
for 3 h per day for 2 days resulted in digestive lumen widening and disintegration of all cells except
calcium cells, while the same exposure over 3 days disintegrated all cells lining the tubules and
dramatically increased the number of vacuoles and stained granules [25]. Excessive fluid excretion
from the snail’s body may lead to death [41]. Metals have been shown to provoke excretory activity
that leads to changes in cell-type composition, expressed as an increase in the relative number or
density of basophilic cells. Moreover, cell hypertrophy has also been reported after metal exposure.
Therefore, an increase in basophilic cells indirectly indicates digestive cell loss, as these cells are
otherwise (under normal conditions) the most abundant. Digestive cells in snails are thus considered
general responders to metal exposure.

5. Conclusions
Zinc oxide, magnesium oxide, and iron oxide nanopesticides demonstrated significant anti-tick

activity in vitro against Hyalomma ticks. Iron oxide demonstrated the lowest lethal concentrations, fol-
lowed by magnesium oxide and then zinc oxide nanopesticides. The results of toxicity assays in snails
indicate minimal ecotoxicity compared to commonly used acaricides. Further study is recommended
for exploring in vivo effects of applying nanopesticides on the tick hosts and environment.
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