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Abstract 

Background Over the past three decades, there has been a significant increase in the prevalence and incidence 
of overweight and obesity worldwide. The obesogen hypothesis suggests that certain external agents may affect 
pathways related to fat accumulation and energy balance by stimulating fat cell differentiation and proliferation. 
Previous research has indicated that exposure to bisphenol A (BPA) and some of its analogues may influence fat accu-
mulation by promoting the transformation of preadipocytes into adipocytes. This study aimed to assess the possible 
contribution of dietary bisphenol exposure to the odds of developing overweight and obesity in a sample of Spanish 
children according to sex.

Methods Dietary and anthropometric data were collected from 179 controls and 124 cases schoolchildren aged 
3–12 years. Dietary exposure to BPA and bisphenol S (BPS) was assessed using a food consumption frequency ques-
tionnaire. Logistic regression models were used to assess the influence of dietary exposure to bisphenols on over-
weight and obesity stratified by sex.

Results For females, cases had significantly higher exposure to BPA from meat and eggs compared to controls 
(median = 319.55, interquartile range (IQR) = 176.39–381.01 vs 231.79 (IQR) = 162.11–350.19, p-value = 0.046). Diet qual-
ity was higher for controls (6.21 (2.14) vs 4.80 (2.24) p < 0.001) among males independently of a high or low exposure 
to bisphenols. However, higher diet quality was observed for female controls with an high exposure of total bisphe-
nols (6.79 (2.04) vs 5.33 (2.02) p = 0.031). Females exposed to high levels of BPA from meat and eggs had higher likeli-
hood of being overweight and obese (adjusted Odds Ratio = 2.70, 95% confidence interval = 1.00 – 7.32). However, 
no consistent associations were found in males.

Conclusions High BPA levels from meat and eggs were positively associated with overweight and obesity in females. 
The dietary intake of BPA in the schoolchildren in the present study was much higher than the acceptable daily intake 
established by EFSA for the last year.
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Background
The prevalence and incidence of overweight and obesity 
worldwide have increased significantly in the last three 
decades [1]. Diverse studies indicate that the etiology of 
this chronic disease is multifactorial and complex. The 
predisposing biological factors including genetic char-
acteristics, prenatal determinants, pregnancy, intestinal 
microbiota and viruses [2]. In 2006, Grün and Blumberg 
postulated the obesogens hypothesis for the first time, 
where certain exogenous agents could alter adipogenic 
pathways and energy balance, promoting an increase 
in adipocyte differentiation and proliferation rates [3]. 
Some of the most known obesogens are endocrine-dis-
rupting chemicals (EDCs), exogenous agents that may 
interfere with the hormonal system function in differ-
ent ways, by influencing hormone synthesis, metabolism 
and/or cellular actions [4]. EDCs include compounds 
to which the human population is exposed in daily life 
through their use in pesticides/herbicides, a large vari-
ety of household and medical products (food, containers 
foodstuffs, clothes, drugs, sanitizers, cosmetics, personal 
care products, toys, construction materials, furniture), 
and in plant-based products [5, 6], becoming ubiquitous 
in our environment. They are considered as obesogenic 
compounds due to their capacity to alter lipid metabo-
lism and inappropriately promote adipogenesis and fat 
accumulation [7, 8]. The prenatal period, infancy, and 
childhood are most vulnerable periods for the influence 
of these environmental contaminants due to the immatu-
rity in metabolic enzymes and lower capacity to eliminate 
toxic compounds. This fact suggest that metabolism and 
detoxification are not as efficient as they are in adults [9].

Bisphenol A (BPA) is among the highest production 
volume chemicals detected in ecosystems, human fluids, 
and tissues [10]. To protect against BPA exposure, the 
European Commission has taken actions by banning the 
use of BPA in infant feeding bottles and restricting the 
use of BPA in certain food-contact materials [11]. Com-
mon exposure pathways include epoxy resins in canned 
foods/beverages, polycarbonate plastics, thermal paper, 
dental materials and consumer goods [6, 7, 12] being 
their main exposure oral ingestion through diet [13, 14]. 
As the use of BPA is decreasing, substitutes such as bis-
phenol S (BPS) is becoming more widely used. However, 
the current evidence shows that most alternative bis-
phenols are as hormonally active as BPA. Perinatal and 
chronic exposure to BPS induced obesogenic effects, 
even at low doses, and the obesogenic capacity of BPS 
was even higher than that of BPA in preadipocytes [15].

In vitro studies have shown also that exposure to BPA 
has a direct association with adipogenesis, promoting the 
conversion of preadipocytes into adipocytes and increas-
ing lipid accumulation [16–18]. In  vivo studies suggest 

the influence of bisphenols on fatty mass development, 
mainly when exposure occurred in the prenatal phase 
[11, 19, 20]. In spite of epidemiological studies have 
shown a positive association between childhood obe-
sity and bisphenol exposure [21–23], the cross-sectional 
nature of most of them makes that causal links may be 
complex and consequently difficult to interpret. Thus, 
despite the significance of environmental obesogens in 
the pathogenesis of metabolic diseases, the contribu-
tion of synthetic chemical exposure to obesity epidemic 
remains largely unrecognised. Hence, the aim of the 
present study was to evaluate a possible contribution of 
dietary bisphenols exposure on likehood of developing 
overweight and obesity in a sample of Spanish children.

Materials and methods
Study design and population
The present research is a case–control study carried out 
to investigate the influence of environmental factors in 
the development of overweight and obesity in Spanish 
children. Both cases and controls were recruited from 
different primary care centers and schools randomly 
selected from the province of Granada, located in areas 
with different socioeconomic level. Participants were 
recruited from January 2020 to January 2022. Cases and 
controls must meet the following inclusion criteria: (1) 
prepuberal children aged between 3—12  years-old; (2) 
having resided continuously in the study areas for at 
least 6 months; (3) overweight or obesity diagnosis (only 
cases). The exclusion criteria were: obesity as a symptom 
of other pathologies, or as a side effect of pharmacologi-
cal treatment. A total of 124 cases and 179 controls were 
recruited in this study.

Data collection
Face-to-face interviews were performed at baseline by 
trained interviewers to the participant’s parents or legal 
tutors. In this way, sociodemographic information such 
as sex and age of children, and lifestyle data (smoking 
habits of family members, physical activity out-of-school 
and diet) were collected. In addition, anthropometric 
measurements such as height (in cm) and weight (in Kg) 
were obtained by qualified personnel. Concretely, partici-
pants with light clothing and without shoes were weighed 
using a portable Tanita scale (model MC 780-S MA). A 
stadiometer (model SECA 214 (20–107  cm) was used 
to measure the height in the sanding position. During 
height measurements, the participants’ backs, buttocks, 
and heels should be in contact with the wall. Weight 
and height were used to obtain the body mass index 
(BMI) which was calculated as weight divided by height 
squared. Thus, subjects were classified as underweight, 
normal weight, overweight and obese as described by 
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Cole et al., 2000, 2007 [24, 25]. Also, we compare the pro-
portion of cases according to methodology previously 
mentioned and using cut-off points given by WHO, using 
z-score (weight-to-age values from 3 to 5  years old and 
BMI-to-age values for children higher to 5 years old). We 
obtained a high agreement (kappa coefficient = 0.831; 
p < 0.001) between both methods.

Dietary information for the last 12 months prior to the 
interview was obtained through parents or legal tutors 
of participants using a semi-quantitative food frequency 
questionnaire (FFQ) state supervised by trained nutri-
tionists. It collected information on the following 112 
food items categorized in 13 groups: dairy products (11), 
eggs, meat and meat derivatives (9), fish and fish deriva-
tives (7), vegetables (17), tubers (2), fruits and nuts (18), 
legumes (4), cereals (12), precooked or ultra-processed 
food (2), bakery products, pastries and sweets (13), fats 
and oils (5), non-alcoholic beverages (5) and miscellane-
ous (7). It was specified portion sized for each item and 
8 consumption frequency options: never, 1–3 times for 
month, 2–4 times per week, 5–6 times per week, once a 
day, 2–3 times per day, 4–6 times per day and more than 
6 times per day.

The Spanish version of KIDMED used in the study 
was taken from a previously performed research [26]. 
It is a self-administered instrument aimed at estimating 
adherence to the Mediterranean diet. This questionnaire 
consists of 16 questions, of which 4 questions reflected 
negative connotations associated with an adequate Medi-
terranean diet and scored negatively (-1 point), and 12 
affirmative questions reflecting positive aspects related 
to the Mediterranean diet and scored positively (+ 1 
point). Individuals are divided into three categories to 
follow: low adherence or low diet quality (score less than 
or equal to 3), medium adherence or medium diet qual-
ity (score 4–7) and high adherence or high diet quality 
(score greater than or equal to 8).

Estimation of bisphenols dietary exposure
Bisphenol concentrations in the selected foodstuffs were 
described previously [27, 28]. Bisphenol levels were 
quantified using ultra-high-performance liquid chroma-
tography-tandem mass spectrometry. From total of food 
samples analyzed, a 52% of them had bisphenol concen-
trations above quantification level.

The method used for the selection and analysis of food 
items has been described elsewhere [29]. Daily dietary 
exposure to BPA, BPS and total bisphenol (ng/day) for 
each participant was calculated by multiplying their daily 
food consumption (g/day) by the corresponding bisphe-
nol content in each food (ng/g food). Mean intake (g/day) 
of foodstuffs was calculated multypliying the consump-
tion frequency (servings/day) with portion size using the 

standard servings (g/serving) establish for the Spanish 
population [30].

Statistical analysis
The characteristics of cases and controls were summa-
rized using median and interquartile range (IQR, per-
centil 25-percentil 75) for the continuous variables and 
percentages for categorical variables. To assess the level 
of significance of the differences observed among cat-
egorical variables used Chi-squared and Mann–Whitney 
U test or Kruskal–Wallis for continuous variables.

Logistic regression models were used to estimate 
odds ratios (OR) and 95% confidence intervals (95% CI) 
to assess the influence of BPA, BPS, and total bisphe-
nol (BPA + BPS) dietary exposure on overweight and 
obesity. Then, BMI dichotomized as normal weight and 
overweight/obesity was the dependent variable. Dietary 
bisphenols exposure (BPA, BPS and total bisphenols) cat-
egorized according to tertiles (T) and later dichotomized 
as low (first and second T) and high (third T) exposure 
were the influencing factors, considering T1 and T2 as 
the reference category. An additional sensitivity logis-
tic regression analysis was performed considering T1 as 
the reference category. Two models were used: (a) crude 
and (b) adjusted model for a priori potential confound-
ers according to previous studies (age, energy intake, 
diet quality and parental education level) [22, 31–33], 
and those variables which produced changes > 10% in 
OR crude (smoking among members of the family unit, 
physical activity and body fat percentage). Moreover, we 
also performed sex-stratified due to biological, social and 
behavioural differences between men and women that 
may influence the prevalence of overweight and obesity 
[34]. Besides, it has been reported that sex may have an 
influence on the burden of overweight and/or obesity [22, 
35]. The rationale for these approach is based on previ-
ously published literature where sex could modify the 
effect of bisphenol exposure on BMI [22]. Statistical anal-
yses were performed with IBM SPSS (version 26.0, IBM® 
SPSS® Statistics, Armonik, NY, USA). The statistical sig-
nificance set to p ≤ 0.05.

Results
Table  1 shows the main characteristics of cases and 
controls stratified by sex. An additional description 
of the overall population is provided in Supplemen-
tary Table  S1. Statistically significant differences were 
observed for most of the study variables, with the excep-
tion of energy intake for both, males and females. Cases 
were older, less physically active, family members smoked 
more frequently and parents’ education level was lower. 
Body fat percentage was significantly higher for cases, 
both in males as females.
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Tables  2 and 3 show the daily food intake by food 
groups and mean exposure to bisphenols for case and 
controls, according to the sex. Among males, exposure 
to BPA from foods processed and to BPA, BPS and total 
bisphenols from legumes were significantly higher for 
cases (Table 2). However, male controls had significantly 
higher exposure to BPS from fruits (Table 3). For females 
and the overall population, cases had significantly higher 
exposure to BPA from meat and eggs and foods processed 
and BPA, BPS and total bisphenols for legumes, while 
BPS and total bisphenols exposure from dairy products 
was significantly higher among controls only in females 
(Table  3 and Supplementary Table  S2). Non-significant 
differences among cases and controls were observed for 
total BPA, BPS and total bisphenols.

According to Table 4 and Supplementary Table S3, diet 
quality was significantly higher for controls for males 
(6.21 (2.14) vs 4.80 (2.24) p < 0.001) and overall popula-
tion (6.16 (2.37) vs 5.18 (2.18) p < 0.001). Overall popula-
tion and males with a BMI higher than 25  kg/m2 had a 
significantly lower diet quality independently of a high 
or low exposure to BPA, BPS or total bisphenols. How-
ever, among females, significantly higher diet quality was 
observed for controls with a high exposure of total bis-
phenols (6.79 (2.04) vs 5.33 (2.02) p = 0.031).

Table  5 and Supplementary Table  S4 showed the 
influence of the highest (defined as T3) BPA, BPS and 
total bisphenols dietary exposure by food groups on 

overweight and obesity by sex and in the overall popu-
lation. High exposure to BPA from processed foods and 
cereals and to BPA and BPS (separately and together) 
from legumes was positively associated to overweight 
and obesity, according to the results shown for crude 
model. Non-significant values were found for the 
adjusted model for males and overall population. On the 
other hand, a positive association between high exposure 
to BPA from meat and eggs and to BPA and BPS (sepa-
rately and together) from legumes and weight excess 
(overweight and obesity) was observed in females and 
the overall population, according to crude model. Signifi-
cance was only kept for BPA from meat and eggs in the 
adjusted model (OR adjusted by age, energy intake, diet 
quality, smoking among members of the family unit and 
body fat percentage) in females. When low exposure was 
used as the first tertile and medium and high exposure 
as separate categories, the direction of the associations 
remained similar although the statistical significance was 
lost (Supplementary Material, Table S5).

Discussion
The present study aimed to assess the association 
between dietary exposure to bisphenols and the likeli-
hood of developing overweight and obesity in school 
children. The association between bisphenols and BMI 
depends on the food group and its consumption, inde-
pendent of sex and age, among other factors. The results 

Table 1 General characteristics of cases and controls according to sex

IQR interquartile range (percentile 25th – percentile 75th)
a U Mann–Whitney test
b Chi‑square test

p‑values ≤ 0.05 are highlighted in bold

Males (n = 159) Females (n = 144)

Controls
(n = 93)

Cases
(n = 66)

p-value Controls
(n = 86)

Cases
(n = 58)

p-value

Age, years Median 7.00 9.07  < 0.001a 7.08 9.04 0.002a

IQR 5.05 – 8.55 7.06 – 11–01 5.12 – 9.04 7.08 – 11.01

Parental education level (%)  < 0.001b  < 0.001b

Up to primary 5.4 21.5 3.6 12.7

Secondary 19.6 35.4 17.9 41.8

University 75.0 43.1 78.6 45.5

Energy intake, Kcal/day Median 2070.49 2218.53 0.383a 2101.89 1889.10 0.120a

IQR 1765.52 – 2335.86 1740.13 – 2558.93 1760.74 – 2451.22 1547.26 – 2277.57

Physical activity (out-of-school) (%) No 21.5 53  < 0.001b 32.6 62.1 0.090b

Yes 78.5 47 67.4 37.9

Smoking among members 
of the family unit (%)

No 92.5 53  < 0.001b 83.7 62.1 0.003b

Yes 7.5 47 16.3 37.9

Body fat percentage Median 18.20 33.55  < 0.001a 21.70 33.65  < 0.001a

IQR 15.65 – 20.70 28.63 – 38.08 19.70 – 23.50 30.18 – 39.10
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showed an increased likelihood of being overweight and 
obese in school children exposed to high levels of BPA 
from meat and eggs. This finding was observed only in 

females and no consistent associations were found in 
males.

To the best of our knowledge, no previous studies have 
supported the claim that females are at higher likelihood 

Table 2 Dietary intake of bisphenols (ng/day) by foods groups according to cases and controls for males

IQR interquartile range (percentile 25th – percentile 75th); bp‑Values show bisphenols intake significant differences between cases and controls, by U de Mann–
Whitney test; p‑values ≤ 0.05 are highlighted in bold; BPA bisphenol A, BPS bisphenol S
* n for consumers

Controls (n = 93) Cases (n = 66)

Food Group n* Food Intake (g/day), 
median (IQR)

Bisphenol Intake (ng/
day), median (IQR)

n* Food Intake (g/day), 
median (IQR)

Bisphenol Intake (ng/
day), median (IQR)

p-valueb

BPA
 Dairy products 66 452.22 (207.12 – 635.55) 3269.61 (1578.70 – 

5727.51)
55 306.54 (145.39 – 603.63) 1945.89 (637.83 – 

4434.08)
0.226

 Meat and eggs 87 109.40 (90.29 – 140.87) 302.96 (166.16 – 369.05) 63 128.70 (105.44 – 156.05) 324.81 (173.75 – 410.31) 0.174

 Fish 79 21.45 (7.15 – 31.95) 1530.30 (4.52 – 6510.93) 60 7.15 (0.00 – 21.45) 1529.45 (0.00 – 3255.71) 0.440

 Vegetables 81 167.95 (108.73 – 227.25) 143.05 (21.19 -347.66) 48 158.98 (121.18 – 242.58) 37.71 (19.35 – 329.93) 0.355

 Fruits 86 198.06 (131.78 – 279.89) 428.27 (224.87 – 685.37) 55 132.99 (88.48 – 209.53) 392.31 (136.90 – 678.83) 0.250

 Legumes 93 7.15 (4.02- 8.58) 3.22 (1.81 – 3.86) 66 8.58 (7.15 – 10.01) 3.86 (3.22 – 4.50) 0.029
 Cereals 90 38.97 (25.47 – 60.64) 8.79 (5.37 – 12.66) 57 41.47 (17.16 – 58.58) 11.47 (3.12 – 15.32) 0.410

 Pastries 91 8.58 (4.02 – 22.66) 48.94 (0.91 – 104.46) 65 10.72 (4.02 – 25.74) 50.16 (4.80 – 105.78) 0.151

 Processed 91 49.22 (28.03 – 70.03) 83.09 (42.11 – 126.88) 58 69.97 (42.72 – 95.97) 127.76 (84.64 – 282.82)  < 0.001
Total BPA (ng/day), 
median (IQR)

93 6923.59 (4350.94 – 12,926.03) 66 6141.03 (3889.25 – 11,877.11) 0.499

BPS
 Dairy products 66 452.22 (207.12 – 635.55) 133.54 (73.87 – 217.54) 55 306.54 (145.39 – 603.63) 143.80 (72.50 – 208.90) 0.889

 Meat and eggs 87 109.40 (90.29 – 140.87) 527.34 (131.33 – 557.47) 63 128.70 (105.44 – 156.05) 528.82 (183.32 – 573.08) 0.470

 Fish 79 21.45 (7.15 – 31.95) 317.39 (1.51 – 1347.70) 60 7.15 (0.00 – 21.45) 317.11 (0.00 – 673.93) 0.440

 Vegetables 81 167.95 (108.73 – 227.25) 3733.90 (1865.51 – 
14,671.38)

48 158.98 (121.18 – 242.58) 3820.37 (1937.46 – 
16,202.09)

0.727

 Fruits 86 198.06 (131.78 – 279.89) 625.95 (407.69 – 844.57) 55 132.99 (88.48 – 209.53) 501.67 (239.05 – 744.04) 0.047
 Legumes 93 7.15 (4.02- 8.58) 1.07 (0.60 – 1.29) 66 8.58 (7.15 – 10.01) 1.29 (1.07 – 1.50) 0.029
 Cereals 90 38.97 (25.47 – 60.64) 6.00 (3.82 – 9.52) 57 41.47 (17.16 – 58.58) 5.80 (1.79 – 9.03) 0.296

 Pastries 91 8.58 (4.02 – 22.66) 6.30 (5.70 – 11.98) 65 10.72 (4.02 – 25.74) 5.58 (1.29 – 9.74) 0.061

 Processed 91 49.22 (28.03 – 70.03) 208.74 (98.65 – 1724.47) 58 69.97 (42.72 – 95.97) 215.18 (206.12 – 630.24) 0.171

Total BPS (ng/day), 
median (IQR)

93 9900.40 (4377.91 – 17,097.21) 66 8200.62 (3710.95 – 19,262.03) 0.912

Total Bisphenols
 Dairy products 66 452.22 (207.12 – 635.55) 3462.56 (1938.17 – 

5788.65)
55 306.54 (145.39 – 603.63) 2140.08 (691.06 – 

4849.06)
0.215

 Meat and eggs 87 109.40 (90.29 – 140.87) 849.59 (291.53 – 918.30) 63 128.70 (105.44 – 156.05) 849.10 (351.28 – 985.52) 0.263

 Fish 79 21.45 (7.15 – 31.95) 1847.69 (6.03 – 7858.64) 60 7.15 (0.00 – 21.45) 1846.56 (0.00 – 3929.64) 0.440

 Vegetables 81 167.95 (108.73 – 227.25) 4466.05 (1983.23 – 
14,857.90)

48 158.98 (121.18 – 242.58) 4388.35 (1986.72 – 
16,268.10)

0.831

 Fruits 86 198.06 (131.78 – 279.89) 1037.94 (657.29 – 
1664.25)

55 132.99 (88.48 – 209.53) 974.71 (415.52 – 1541.65) 0.181

 Legumes 93 7.15 (4.02- 8.58) 4.29 (2.41 – 5.15) 66 8.58 (7.15 – 10.01) 5.15 (4.29 – 6.01) 0.029
 Cereals 90 38.97 (25.47 – 60.64) 15.29 (9.17 – 22.18) 57 41.47 (17.16 – 58.58) 17.57 (5.25 – 26.11) 0.748

 Pastries 91 8.58 (4.02 – 22.66) 55.24 (6.20 – 114.09) 65 10.72 (4.02 – 25.74) 62.27 (33.87 – 117.90) 0.230

 Processed 91 49.22 (28.03 – 70.03) 318.04 (141.60 – 
1755.18)

58 69.97 (42.72 – 95.97) 347.36 (290.71 – 1010.10) 0.105

Total Bisphenols (ng/
day), median (IQR)

93 20,499.84 (10,410.41 – 29,284.01) 66 17,378.90 (9112.18 – 28,427.09) 0.912
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of developing overweight or obesity due to exposure to 
BPA from meat and eggs. BPA is a chemical compound 
used in the production of plastics and resins, and its 

presence in food may occur due to certain packaging and 
storage processes [27, 36]. It is important to note that 
research on the association between BPA and health is 

Table 3 Dietary intake of bisphenols (ng/day) by foods groups according to cases and controls for females

IQR interquartile range (percentile 25th – percentile 75th); bp‑Values show bisphenols intake significant differences between cases and controls, by U de Mann–
Whitney test; p‑values ≤ 0.05 are highlighted in bold; BPA bisphenol A, BPS bisphenol S
* n for consumers

Controls (n = 86) Cases (n= 58)

Food Group n* Food Intake (g/day), 
median (IQR)

Bisphenol Intake (ng/
day), median (IQR)

n* Food Intake (g/day), 
median (IQR)

Bisphenol Intake (ng/
day), median (IQR)

p-valueb

BPA
 Dairy products 67 350.48 (188.51 – 645.51) 2894.15 (1435.76 – 

4418.16)
43 169.12 (88.66 – 393.05) 1878.41 (105.65 – 

4310.55)
0.037

 Meat and eggs 80 113.69 (88.85 – 136.65) 231.79 (162.11 – 350.19) 46 130.14 (99.66 – 154.37) 319.55 (176.59 – 381.01) 0.046
 Fish 77 20.51 (7.15 – 31.50) 1540.59 (7.72 – 3283.92) 51 21.45 (7.15 – 31.95) 3249.68 (1527.10 – 

9749.03)
0.139

 Vegetables 66 190.99 (114.40 – 271.98) 161.28 (24.50 – 345.31) 42 187.20 (114.91 – 261.85) 53.49 (21.74 – 331.14) 0.277

 Fruits 77 188.65 (118.73 – 273.13) 499.77 (227.94 – 684.51) 49 155.72 (88.34 – 265.89) 665.86 (110.34 – 829.26) 0.729

 Legumes 85 7.15 (4.02 – 8.58) 3.22 (1.81 – 3.86) 58 8.58 (4.69 – 10.01) 3.86 (2.11 – 4.50) 0.040
 Cereals 82 33.43 (19.37 – 49.57) 7.47 (4.93 – 11–54) 56 29.90 (16.25 – 54.80) 8.69 (4.78 – 14.98) 0.270

 Pastries 82 11.55 (4.02 – 21.56) 48.94 (0.75 – 103.89) 56 8.48 (3.35 – 17.81) 48.94 (0.50 – 103.95) 0.901

 Processed 84 44.33 (27.58 – 63.09) 83.16 (44.25 – 125.40) 55 58.18 (38.62 – 81.77) 103.30 (80.94 – 163.40) 0.016
Total BPA (ng/day), 
median (IQR)

86 7145.99 (4897.58 – 11,475.55) 58 7753.50 (4199.40 – 11,572.26) 0.883

BPS
 Dairy products 67 350.48 (188.51 – 645.51) 128.67 (84.52 – 199.70) 43 169.12 (88.66 – 393.05) 110.40 (60.54 – 170.98) 0.333

 Meat and eggs 80 113.69 (88.85 – 136.65) 228.94 (118.39 – 550.87) 46 130.14 (99.66 – 154.37) 530.23 (126.10 – 570.77) 0.211

 Fish 77 20.51 (7.15 – 31.50) 320.82 (2.57 – 683.34) 51 21.45 (7.15 – 31.95) 671.92 (316.32 – 2015.76) 0.139

 Vegetables 66 190.99 (114.40 – 271.98) 4499.82 (2043.49 – 
15,006.69)

42 187.20 (114.91 – 261.85) 4153.59 (1878.64 – 
14,942.34)

0.529

 Fruits 77 188.65 (118.73 – 273.13) 634.01 (339.35 – 815.61) 49 155.72 (88.34 – 265.89) 622.20 (223.47 – 832.98) 0.447

 Legumes 85 7.15 (4.02 – 8.58) 1.07 (0.60 – 1.29) 58 8.58 (4.69 – 10.01) 1.29 (0.70 – 1.50) 0.040
 Cereals 82 33.43 (19.37 – 49.57) 5.01 (2.91 – 8.79) 56 29.90 (16.25 – 54.80) 4.46 (2.39 – 8.45) 0.419

 Pastries 82 11.55 (4.02 – 21.56) 6.21 (1.61 – 8.18) 56 8.48 (3.35 – 17.81) 5.70 (1.36 – 7.78) 0.286

 Processed 84 44.33 (27.58 – 63.09) 209.02 (101.62 – 620.04) 55 58.18 (38.62 – 81.77) 211.10 (102.56 – 1678.06) 0.339

Total BPS (ng/day), 
median (IQR)

86 8327.37 (4871.06 – 17,848.19) 58 8018.65 (4006.48 – 18,378.72) 0.896

Total Bisphenols
 Dairy products 67 350.48 (188.51 – 645.51) 3077.55 (1542.62 – 

4648.94)
43 169.12 (88.66 – 393.05) 2007.60 (439.50 – 

4385.58)
0.047

 Meat and eggs 80 113.69 (88.85 – 136.65) 451.44 (287.68 – 889.87) 46 130.14 (99.66 – 154.37) 860.06 (329.93 – 954.74) 0.120

 Fish 77 20.51 (7.15 – 31.50) 1861.42 (10.30 – 
3967.26)

51 21.45 (7.15 – 31.95) 3921.60 (1843.42 – 
11,764.79)

0.139

 Vegetables 66 190.99 (114.40 – 271.98) 5041.14 (2175.03 – 
15,615.46)

42 187.20 (114.91 – 261.85) 4455.23 (1962.18 – 
14,997.39)

0.508

 Fruits 77 188.65 (118.73 – 273.13) 1085.86 (521.59 – 
1504.45)

49 155.72 (88.34 – 265.89) 1255.11 (412.61 – 
1691.00)

0.653

 Legumes 85 7.15 (4.02 – 8.58) 4.29 (2.41 – 5.15) 58 8.58 (4.69 – 10.01) 5.15 (2.81 – 6.01) 0.040
 Cereals 82 33.43 (19.37 – 49.57) 14.16 (9.01 – 22.07) 56 29.90 (16.25 – 54.80) 13.65 (8.03 – 23.48) 0.916

 Pastries 82 11.55 (4.02 – 21.56) 52.90 (6.20 – 110.87) 56 8.48 (3.35 – 17.81) 50.55 (6.20 – 108.64) 0.911

 Processed 84 44.33 (27.58 – 63.09) 321.90 (182.62 – 910.17) 55 58.18 (38.62 – 81.77) 337.45 (187.10 – 1709.38) 0.240

Total Bisphenols (ng/
day), median (IQR)

86 18,734.76 (12,035.54 – 27,467.75) 58 17,738.61 (11,309.29 – 28,467.20) 0.971
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ongoing, and there are conflicting debates and findings in 
the scientific literature.

That the present research only found a consistent asso-
ciation in the females may be due to the sexual dysmor-
phic effect where females may be more susceptible to 
BPA due to differences in hormonal response or greater 
sensitivity to hormonal changes that may be influenced 
by BPA exposure [22, 37]. Previous epidemiological stud-
ies also found a positive association between dietary 
exposure to BPA and overweight and obesity in females, 
but not in males [22]. A research [22] found that over-
weight/obese females were 3.38 times more likely to 
have high BPA exposure compared to normal-weight 
females. Other epidemiological studies also observed 
sex differences [38, 39]. Li et  al. (2013) [38] observed a 
positive association between high urinary BPA levels and 
overweight in females; but they found no association in 
males. However, a work [39] found a negative association 
between urinary BPA and lower BMI and adiposity meas-
ures in females.

Some studies have examined how exposure to BPA 
and some analogues may be associated with changes in 
metabolism, body fat distribution, adipose tissue func-
tion and other metabolic processes that could contribute 
to the development of obesity. In vitro studies show that 
BPA, bisphenol F (BPF), BPS and bisphenol AF (BPAF) 
promote preadipocyte to adipocyte proliferation, due to 
their ability to bind to nuclear receptor in the murine 
cell line 3T3-L1 and in human preadipocytes [17, 18, 40]. 
BPA is also associated with the induction of inflammatory 
responses, lipogenesis and decreased insulin sensitivity 
in adipose tissue cells, leading to a dysfunctional adipo-
cyte [41, 42]. In a recent in vitro study, we observed the 
association between combined exposure to BPA, BPF and 
BPS on the differentiation of preadipocytes to adipocytes 

in human adipose tissue. Concretely, in cells exposed to 
a bisphenol mix (10  nM to 10  mM BPA, BPF and BPS) 
for 14  days, it was observed a promotion of intracellu-
lar lipid accumulation in a dose-independent manner 
that resulted in significant changes in gene expression 
of adipogenic markers, such as peroxisome proliferator-
activated receptor-γ (PPARγ), CCAAT/enhancer-binding 
protein (C/EBPα), lipoprotein lipase and fatty acid-bind-
ing protein 4 (FABP4) [43]. In animal models, exposure 
to bisphenols has also been shown to induce alterations 
in lipid metabolism. Several studies in zebrafish (Danio 
rerio) showed that chronic exposure to BPA and BPS 
induced dysregulation of genes involved in lipid metab-
olism, triggering hepatic steatosis [44–46]. In addition, 
exposure to environmental doses of BPA in zebrafish was 
found to be associated with the development of obesity 
[47]. Studies in rodents show that exposure to BPA dur-
ing developmental stages was associated with alterations 
in hormones involved in satiety and appetite, increased 
food intake, altered adipocyte numbers, glucose and 
insulin, leading to weight gain [48–50].

To our knowledge, we have not found any studies that 
have assessed the association between dietary factors of 
BPA and BPS exposure (by food source) and childhood 
overweight/obesity. A limited number of  epidemiologi-
cal studies have studied the relationship between dietary 
bisphenol and obesity in childhood with not conclusive 
results. Thus Heinsberg et  al. didn’t found association 
between dietary BPA levels and adiposity in Samoan chil-
dren [51] whereas in other study observed that Spanish 
adolescent females with overweight and obesity had a 
more dietary BPA exposure compared to normal weight 
[22].

Biomonitoring studies have addressed the association 
between bisphenol levels and overweight/obesity with 

Table 4 Diet quality (KIDMED) according to high and low BPA, BPS and total bisfenols exposure for controls and cases by gender

SD standard deviation, BPA bisphenol A, BPS bisphenol S. aStudent T‑test
a p‑Values show diet quality significant differences between cases and controls

p‑values ≤ 0.05 are highlighted in bold

Boys (n = 159) Girls (n = 144)

Controls (n = 93) Cases (n = 66) p-valuea Controls (n = 86) Cases (n = 58) p-valuea

Mean (SD) Mean (SD)

KIDMED 6.21 (2.14) 4.80 (2.24)  < 0.001 6.11 (2.60) 5.63 (2.03) 0.243

BPA High exposure (Tertil 3) 6.22 (2.04) 4.92 (2.47) 0.028 6.00 (2.50) 5.24 (1.94) 0.219

Low exposure (Tertil 1 + 2) 6.20 (2.22) 4.72 (2.13) 0.002 6.18 (2.67) 5.94 (2.08) 0.669

BPS High exposure (Tertil 3) 6.38 (1.74) 5.36 (2.15) 0.042 6.76 (2.25) 5.60 (2.25) 0.065

Low exposure (Tertil 1 + 2) 6.10 (2.37) 4.36 (2.26) 0.001 5.67 (2.74) 5.64 (2.07) 0.950

Total bisphenols High exposure (Tertil 3) 6.50 (1.88) 5.26 (2.24) 0.031 6.79 (2.04) 5.33 (2.02) 0.031
Low exposure (Tertil 1 + 2) 6.04 (2.27) 4.54 (2.24) 0.002 5.76 (2.79) 5.73 (2.05) 0.958
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contradictory findings. In this sense, a study derived from 
the National Health and Nutrition Examination Survey 
(NHANES) in the United States, involving 745 children 
and adolescents, showed a statistically significant posi-
tive association between urinary BPA and BPF levels with 
increased body fat. However, no significant association 
was found with BPS [52]. Another research performed in 
212 children from the Health Outcomes and Measures of 
the Environment (HOME) study showed no significant 
association between childhood urinary BPA and BPS 
concentrations with increased adiposity [53]. Another 
NHAMES-derived study in children and adolescents 
showed a modest positive association between urinary 
BPS levels and increased BMI and abdominal fat. How-
ever, urinary BPA concentrations were not significantly 
associated with any body mass findings [54]. A Korean 
study involving 2,351 children and adolescents who par-
ticipated in the Korean National Environmental Health 
Survey (KoNEHS) found no statistically significant posi-
tive association between urinary BPA and obesity in 
Korean children [55].

In relation to dietary exposure, our findings are con-
sistent with previous research that also highlights food 
intake as the main source of bisphenol exposure, with 
90% of exposure estimated to come from diet [13, 14, 
22, 56, 57]. Most of the fresh foods in the present study 
were found to contain BPA and BPS, the selected foods 
are packaged foods, although some foods are fresh (Sup-
plementary Material, Table  S6). Consumption of fresh 
food is considered a healthy dietary habit and is associ-
ated with lower exposure to bisphenols or other environ-
mental chemical contaminants compared to other foods. 
However, studies show that exposure to bisphenols from 
these foods comes mainly from packaged and ready-to-
eat foods [27, 58]. The presence of bisphenols in food 
may be due to the presence of bisphenols in the environ-
ment in which they originate (air, dust, water, etc.) or due 
to the presence of bisphenols in the composition of food 
packaging [36, 59, 60]. In relation to contamination by the 
environment in which they are ingested, the presence of 
BPA has been detected in fresh foods such as meat, fish, 
eggs, cereals, vegetables and fresh fruit, demonstrating 
the possibility of contamination prior to processing and 
packaging [27, 61]. The presence of these compounds in 
fresh foods points to the ubiquity of bisphenols through-
out the food production chain, beyond packaging.

In the present study, cases of both sexes showed slightly 
higher but significant exposure to BPA and BPS through 
intake of legumes and BPA from processed foods com-
pared to controls due to their higher daily intake. On 
the other hand, exposure to BPS from fruit and BPA 
from dairy products was found to be higher in the con-
trol group in males and females respectively. These 

differences may be related to assimilation behaviour dur-
ing childhood, as diet is a dietary pattern determined by 
direct food experience, imitation, food availability, eco-
nomic income, emotional symbols and cultural traditions 
[62, 63].

In our study, dietary exposure to BPA was below the 
limit of 4 µg/kg bw/day set by the European Food Safety 
Authority [64]; however, a new limit of 0.2 ng/kg bw/day 
has recently been set [65] which is lower than the dietary 
exposure of our study participants (average intake of 
BPA = 306.74 ± 263.64  ng/kg bw/day, data not shown). 
International organisations have not yet established a 
specific limit for BPS and the other analogues.

Dietary exposure to BPA and analogues is highest in 
early life. This is due to the unequal relationship between 
body weight and food consumption [66]. The effect of 
EDCs has been shown to be more intense, pronounced 
and at lower doses in early life. Since the detoxifying 
mechanisms present in adulthood are not fully functional 
in the developmental stages. The metabolic rate during 
early life is higher than during adulthood, leading to an 
increase in their effects on the organism, such as their 
obesogenic effect [67]. Due to these findings it is impor-
tant to protect the most vulnerable groups from exposure 
to bisphenols and to obtain more evidence on the pos-
sible on weight gain or other adverse results in these age 
groups.

Among our findings, diet quality (KIDMED) is not 
associated with exposure to BPA, BPS and total bisphe-
nols in both sexes. However, statistically significant dif-
ferences by weight and diet quality were observed for 
males, with the control group scoring higher on the 
KIDMED compared to the cases. On the other hand, the 
present study shows that exposure to total BPA and total 
BPS in both sexes is slightly higher in the control group, 
although these differences do not reach statistical sig-
nificance. A study published in 2022 by Melough et  al. 
observed that healthy diets commonly recommended for 
disease prevention do not appear to reduce exposure to 
many EDCs, including bisphenols [68]. This may be due 
to the dietary intake of bisphenols from fresh produce 
such as fruits, vegetables, meats and fish among others 
[2, 61].

The present study has two strengths. The first is that, 
to our knowledge it is the first study to evaluate the asso-
ciation between dietary factors of BPA and BPS exposure 
(according to food source) and childhood overweight/
obesity. And the second strength is that qualified person-
nel were available to take the anthropometric measure-
ments and to collect the data by means of questionnaires, 
thus achieving greater accuracy in obtaining the data. In 
relation to the limitations of the study, the main limita-
tion is a relatively small sample size, that could contribute 
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to the variability of the results, which is why most of the 
findings have not shown statistically significant asso-
ciations. In addition, the analyses were not adjusted for 
multiple comparisons by the exploratory nature of our 
study. Nevertheless, we are interested in detecting the 
greatest number of possible associations that need to be 
confirmed in further studies. Of note, the use of retro-
spective FFQs could introduce inaccuracies, leading to 
potential information biases, particularly recall bias and 
social desirability bias. In the latter case, where partici-
pants’ parents might report the frequency of their chil-
dren’s food intake based on what they believe that should 
children consume, rather than the actual frequency. 
Although the FFQs are not free from errors in estimating 
dietary intake, they are considered the reference dietary 
instrument in nutrition studies [69] and no ideal method 
without limitations exists.

The results obtained in this explorative study can serve 
as a basis to confirm hypotheses in further research. 
Despite the fact that BPA remains the main bisphenol 
detected in food samples and it has been found to be 
the most important [27, 70], the present study shows 
that the total daily dietary intake of BPS in schoolchil-
dren is higher than that of BPA. This result reflects that 
analogues are replacing BPA and exposure to BPA is 
expected to continue to increase. The current lack of legal 
regulation of analogues and the failure to set toxicologi-
cal limits are the reason why analogues are increasingly 
detected in both food and biological samples [27, 70–73]. 
Since BPA analogues have a similar chemical structure 
to BPA, they can be said to exhibit similar endocrine dis-
rupting and obesogenic activity [19, 42, 74, 75].

Conclusions
The present investigation shows a statistically signifi-
cant positive association between dietary exposure to 
BPA from meat and eggs and overweight and obesity in 
females. Furthermore, it has been observed that the die-
tary intake of BPA in the schoolchildren in the present 
study was much higher than the acceptable daily intake 
established by EFSA for the last year.

The ubiquity of bisphenols and the results found in the 
present study represent a public health concern. How-
ever, further epidemiological studies are needed to assess 
the obesogenic activity of bisphenols in the most vulner-
able age groups, to confirm the present findings.
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