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Our genomes encode a wealth of transcription initiation regions (TIRs) that can be identified by their distinctive patterns of

actively elongating RNA polymerase. We previously introduced dREG to identify TIRs using PRO-seq data. Here, we in-

troduce an efficient new implementation of dREG that uses PRO-seq data to identify both uni- and bidirectionally tran-

scribed TIRs with 70% improvement in accuracy, three- to fourfold higher resolution, and >100-fold increases in

computational efficiency. Using a novel strategy to identify TIRs based on their statistical confidence reveals extensive over-

lap with orthogonal assays, yet also reveals thousands of additional weakly transcribed TIRs that were not identified by

H3K27ac ChIP-seq or DNase-seq. Novel TIRs discovered by dREG were often associated with RNA polymerase III initiation,

bound by pioneer transcription factors, or located in broad domains marked by repressive chromatin modifications. Our

results suggest that transcription initiation can be a powerful tool for expanding the catalog of functional elements.

[Supplemental material is available for this article.]

Our genomes encode a wealth of distal and proximal control re-
gions that are collectively known as transcriptional regulatory ele-
ments. These regulatory DNA sequence elements regulate gene
expression by affecting the rates of a variety of necessary steps dur-
ing the RNA polymerase II (Pol II) transcription cycle (Fuda et al.
2009), including chromatin accessibility, transcription initiation,
and the release of Pol II from a paused state into productive
elongation.

Identifying regulatory elements at a genome scale has recent-
ly become a subject of intense interest. Regulatory elements are
generally identified using genome-wide molecular assays that
provide indirect evidence that a particular locus is associated
with regulatory activity. For example, nucleosomes tagged with
post-translational modifications can be identified by chromatin
immunoprecipitation and sequencing (ChIP-seq) (Barski et al.
2007; Heintzman et al. 2007). Likewise, nucleosome-free DNA
can be enriched using DNase I or Tn5 transposase (Boyle et al.
2008; Hesselberth et al. 2009; Buenrostro et al. 2013). However,
each of these strategies has important limitations. Histone modifi-
cation ChIP-seq has a poor resolution compared with the ∼110-bp
nucleosome-free region that serves as the regulatory element core
(Core et al. 2014; Scruggs et al. 2015; Chen et al. 2016). Likewise,
nuclease accessibility assays mark a variety of nuclease-accessible
regions in our genomes, such as binding sites for the insulator pro-
tein CTCF or inactive regulatory elements, without the capacity to
distinguish between these types of functional elements (Xi et al.
2007; Danko et al. 2015). Each of these tools is also limited by a
high background, which prevents the detection of weakly active
regulatory elements whichmaynevertheless have important func-
tional roles.

Transcription initiationhas recentlyemergedas analternative
mark for the locationof active regulatoryelements (Anderssonet al.
2014a; Core et al. 2014; Danko et al. 2015). Both proximal and dis-
tal regulatory elements are associated with RNA polymerase initia-

tion (Kim et al. 2010; Core et al. 2014; Andersson et al. 2015;
Henriques et al. 2018;Mikhaylichenko et al. 2018). RNAs produced
at these elements are often degraded rapidly by the nuclear exo-
some complex (Andersson et al. 2014b; Core et al. 2014), and as a
result, these patterns aremost reliably detected by nascent RNA se-
quencing techniques that map the genome-wide location of RNA
polymerase itself (Core et al. 2008; Churchman and Weissman
2011; Kwak et al. 2013; Scruggs et al. 2015). Transcription leaves
a characteristic signature at these sites that can be extracted from
nascent RNA sequencing data using appropriate computational
tools (Melgar et al. 2011; Hah et al. 2013; Danko et al. 2015;
Azofeifa and Dowell 2016).

We recently introduced dREG (Danko et al. 2015), a sensitive
machine learning tool for the detection of regulatory elements
using maps of RNA polymerase derived from run-on and sequenc-
ing assays, including GRO-seq (Core et al. 2008), PRO-seq (Kwak
et al. 2013), and ChRO-seq (Chu et al. 2018). dREG was trained
to recognize characteristic signatures of nascent RNAs to accurately
discover the coordinates of regulatory elements genome-wide.
However, our preliminary version of dREG was limited by a slow
and cumbersome implementation that made it challenging to
use in practice. Here, we present an efficient new implementation
of dREG that leverages a general purpose graphical processing
unit to accelerate computation. Our new version of dREG is avail-
able to the community by a public web server at https://dreg.
dnasequence.org/.

Results

A new machine learning tool for the discovery of TIRs

We recently introduced a machine learning tool for the detection
of regulatory elements using GRO-seq and other run-on and
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sequencing assays (dREG) (Danko et al. 2015). Here, we introduce a
new implementation of dREG which makes several important
optimizations to identify regulatory elements with improved sensi-
tivity and specificity using the multiscale feature vector introduced
in dREG. We implemented dREG on a general purpose graphical
processing unit (GPU) using Rgtsvm (Wang et al. 2017). Our
GPU implementation decreased run-times by >100-fold, allowing
analysis of data sets which took 30–40 h using 32 threads in the
CPU-based version of dREG to be run in under an hour.

We used the speed of our GPU-based implementation to train
a new support vector regression (SVR) model that improved dREG
accuracy. We trained dREG using 3.3 million sites obtained from
five independent PRO-seq or GRO-seq experiments in K562 cells
(Supplemental Fig. S1; Supplemental Table S1). To improve the ac-
curacyof dREGpredictions in theunbalanced setting typical for ge-
nomic data, where negative examples greatly outnumber positive
examples, dREGwas trained on a data set where bona fide positive
regulatory elements represent just 3% of the training data.
Together, these improvements in the composition and size of the
training set increased the area under the precision-recall curve by
70% compared with the original dREG model when evaluated on
two data sets that were held out during training (Supplemental
Fig. S2).

Wedeveloped a novel strategy to identify regions enriched for
dREG signal, which we call transcription initiation regions (TIRs),
and filter these based on statistical confidence (see Methods; Fig.
1A; Supplemental Fig. S3). We estimate the probability that
dREG scores were drawn from the negative class of sites (i.e.,
non-TIRs) by modeling dREG scores using the Laplace distribu-
tion. The Laplace distribution was used to model SVR scores previ-
ously (Lin and Weng 2004) and fits dREG scores in negative sites
reasonably well (Supplemental Fig. S4). To improve our statistical
power to identify bona fide regulatory elements, we merge nearby
candidate sites into nonoverlapping genomic intervals, or candi-
date TIRs, each of which contains approximately one divergently

oriented pair of paused RNA polymerases (Core et al. 2014;
Scruggs et al. 2015).We compute the joint probability that five po-
sitions within each TIR are all drawn from the negative (nonregu-
latory element) training set using the covariance between
adjacently positioned dREG scores (see Methods). This novel
peak calling strategy provides a principledway to filter the location
of TIRs based on SVR scores estimated using dREG.

Comparison to orthogonal genomic data

To evaluate the performance of dREG in real-world examples, we
analyzed three data sets in K562 (PRO-seq), GM12878 (GRO-seq),
and HCT116 (GRO-seq) that were held out during model training.
Holdouts were selected because they cover a range of library se-
quencing depths and new cell types that together allowed us to
determine whether the dREG model generalized to additional
data sets. dREG predicted 34,631, 71,097, and 62,934 TIRs in
K562, GM12878, and HCT116, respectively. dREG recovered the
location of the majority of regulatory elements defined using or-
thogonal strategies at an estimated 5% false discovery rate: 81.3%
or 96.1% of DNase I hypersensitive sites (DHSs) marked by tran-
scription (using GRO-cap pairs) and 58.4%, 71.8%, or 84.9% of
DHSs marked by the acetylation of histone 3 lysine 27 (H3K27ac)
(Fig. 1B). Sensitivity for both GRO-cap and H3K27ac-DHSs was
greater than twofold higher for dREG than for the elegant model-
based Tfit program (Azofeifa et al. 2018) when run on the same
data. Transcription initiation regionsdisplaya range in theefficien-
cy of initiation on the two strands (Duttke et al. 2015; Scruggs et al.
2015), and dREGwas able to identify the location of both uni- and
bidirectional transcription initiation sites (Supplemental Fig. S5).

Extending dREG analysis to 14 data sets in six cell types, we
found that the sensitivity of dREG varied systematically by the
library sequencing depth (Fig. 1C). dREG achieved a reasonable
sensitivity on a K562 holdout data set with 27Muniquelymapped
reads (81.3% of DHSs overlapping GRO-cap pairs were recovered)
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Figure 1. dREG identifies regions of transcription initiation. (A) WashU Epigenome Browser visualization of dREG signal, PRO-seq data, GRO-cap, DNase-
seq, and H3K27ac ChIP-seq near the PRR14L and DEPDC5 genes. Inserts (cf. gray shaded pointers) show an expanded view of gene-proximal promoter el-
ements (left) and a distal enhancer (right), each encoding multiple transcription initiation sites. (B) Bar plots show the fraction of transcribed DHSs (left) and
H3K27ac+DHSs (right) thatwere discoveredbydREG (red) and Tfit (blue) in holdout data sets. (C) Scatterplot shows the fraction of sites recovered (y-axis) as
a function of sequencing depth (x-axis) for 12 data sets shown in Supplemental Table S1. The best fit lines are shown. The color represents whether the data
set was used for training (green) or is a holdout data set (K562, red) or cell type (GM12878, lavender; HCT116, orange; CD4+ T-cells, gray; MCF-7, blue).
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and saturated the discovery of enhancers supported by ENCODE
data at between 60 and 100 M uniquely mapped reads. After ac-
counting for sequencing depth, we did not observe any systematic
difference between data sets that were held out or used during
training, suggesting that dREG was not noticeably overfitting
to the training data. We did not notice any systematic bias in sen-
sitivity for either PRO-seq or GRO-seq data, for any specific cell
type or based on the lab or origin (Fig. 1B,C; Supplemental Fig.
S6A,B). Finally, we also obtained reasonably good performance us-
ing dREG to analyze publicly available mNET-seq data in HeLa
cells (Supplemental Fig. S6A,C; Mayer et al. 2015; Nojima et al.
2015). These results suggest that our new dREGmodel is highly ex-
tensible to nascent transcription data from a variety of different
sources.

Despite a high degree of overlap with histone modification
ChIP-seq assays, dREG had a higher resolution for the regulatory
element core region, consisting of divergently opposing RNApoly-
merase initiation sites (Core et al. 2014). Regions identified by
dREG were on average 6.4-fold shorter (460 bp for dREG sites)
than H3K27ac ChIP-seq peaks (2924 bp on average), closer in
size to high-resolution DNase-seq data (322 bp on average) (Fig.
2A). dREG frequently separated out individual TIRs in clusters
of initiation sites that could not be distinguished based on his-
tone modification ChIP-seq peak calls, for instance, in the MYC

enhancer locus (Fig. 2B; Fulco et al. 2016). Histone modification
ChIP-seq or DNase-seq data aligned to the center of human
dREG sites revealed good agreement with the center of the nucle-
osome-free region (Fig. 2C). Thus, our new dREG implementation
substantially improved both resolution and accuracy compared
with alternative genomic tools.

Discovery of novel regulatory elements using dREG

Despite a high degree of overlap, up to 10% of TIRs did not overlap
other marks expected at active enhancers. The number of TIRs
found uniquely by dREG depended on sequencing depth (400–
8000 TIRs, depending on the data set) and did not saturate even
in data sets sequenced to a depth of 350M uniquelymapped reads
(Fig. 3A). As expected, TIRs had lower dREG scores and lower poly-
merase abundance when they were found uniquely by dREG
(Supplemental Fig. S7), suggesting that these siteswere often either
weaker regulatory elements that were more difficult for all assays
to distinguish from background or false positives.

We askedwhether TIRs that were not supported byDNase-seq
or H3K27ac ChIP-seq peak calls reflect bona fide novel regulatory
elements or false positives by dREG. TIRs detected uniquely by
dREG frequently (>50% depending on the data set) overlapped
ChIP-seq peak calls for sequence-specific transcription factors
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Figure 2. dREG calls are often concordant with other molecular assays. (A) Histogram shows the size distribution of dREG TIRs, H3K27ac ChIP-seq peaks,
or DHSs. (B) WashU Epigenome Browser visualization of dREG signal, PRO-seq data, GRO-cap, DNase-seq, H3K4me3, H3K4me1, H3K27ac ChIP-seq, and
CRISPR interference score (CRISPRi) at three enhancers (e1, e6, and e7) that affect transcription of MYC in K562 cells based on CRISPR interference
(CRISPRi). (C) Heat maps show the log-signal intensity of PRO-seq, DNase-seq, or ChIP-seq for H3K27ac, H3K4me1, and H3K4me3. The fraction of sites
intersecting ENCODE peak calls is shown in the white-black color map beside each plot. Color scales for signal and the fraction in peak calls are shown below
the plot. Each row represents TIRs found overlapping an annotated transcription start site (n=15,652) or >5 kb to a start site (n=43,127).
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(Fig. 3B; Supplemental Fig. S8). A small number of TIRs were en-
riched for H3K4me1, a mark associated with both active and inac-
tive enhancers. Examining examples on the WashU Epigenome
Browser (Zhou et al. 2011) revealed clearly defined transcription
units that initiate long intergenic noncoding RNAs (Fig. 3C).
Often the promoter of these transcription units lacked sufficiently
robust enrichment of histonemodifications or DNase-seq signal to
make confident peak calls, and many lacked sufficient paused Pol
II to be represented in GRO-cap data (Fig. 3C; Supplemental Fig.
S9). Nevertheless, examination of these TIRs genome-wide re-
vealed a local increase in the abundance of reads in the average
profiles of active histone modification ChIP-seq data (Fig. 2C;
Supplemental Fig. S10), suggesting that at least some were false
negatives by other assays. Finally, sites detected only by dREG in
K562 cells were often DHSs in a related cell type (Supplemental
Fig. S11). Taken together, these findings suggest that TIRs uniquely
identified by dREG were frequently novel regulatory elements but
were enriched below the level of detection of other molecular as-
says in K562 cells.

Transcription factor binding predicts DHS status

An alternative, but not mutually exclusive, explanation for TIRs
identified uniquely by dREG is that some regulatory elements tol-
erate differences in the core marks reported to correlate with regu-

latory function. We hypothesized that certain transcription
factors are more tolerant of deviations from the core regulatory ar-
chitecture than others. We focused on DNase-seq as a general
marker for the nucleosome-depleted region in the center of regu-
latory elements. As a control for differences between K562 clones,
growth conditions, or cell handling, we performed ATAC-seq to
confirm low levels of chromatin accessibility in our own K562
cell stocks, closely related to those used to generate PRO-seq data
(Supplemental Fig. S12).

To determine whether specific transcription factors may be
more permissive to binding in sites having low levels of chromatin
accessibility, we trained a logistic regression model to predict
whether TIRs discovered using dREG intersect a DHS. Transcrip-
tion factor binding site ChIP-seq data alone predicted the presence
of DHSs better than using the dREG score in amatched set of hold-
out sites (ROC=0.88 [TF binding], ROC=0.75 [dREG score])
(Supplemental Fig. S13). Thus, ChIP-seq data for specific trans-
cription factors was predictive of which TIRs lacked nuclease
hypersensitivity.

To identify transcription factors that contribute to this signal,
we computed the ratio of ChIP-seq peak calls that were found
using dREG but not DNase-seq to those that were found using
both assays (referred to as dREG+DHS−/dREG+DHS+). As expect-
ed, only a small fraction of most transcription factors were bound
without creating a DHS (Fig. 3D). However, different transcription
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Figure 3. dREG identifies new regions that were not found using other molecular assays. (A) Scatterplot shows the number of new TIRs that were not
discovered in DNase-seq or H3K27ac ChIP-seq data (y-axis) as a function of sequencing depth (x-axis) for seven data sets shown in Supplemental Table
S1. The best fit line is shown. The color represents whether the data set was used for training (green) or is a holdout data set (K562, red) or cell type
(GM12878, lavender; HCT116, orange; CD4+ T-cells, gray; MCF-7, blue). (B) Stacked bar charts show the number of elements discovered using dREG,
but not found in DNase-seq or H3K27ac ChIP-seq (y-axis) for PRO-seq or GRO-seq data sets in K562, GM12878, and HCT116 cells. The color denotes other
functional marks intersecting sites discovered only using dREG. (C) Three separate genome browser regions that denote TIRs discovered using dREG, but
were not found in DNase-seq or H3K27ac ChIP-seq data. Tracks showdREG signal, PRO-seq data, GRO-cap, DNase-seq, H3K27ac ChIP-seq, and annotated
genes. (D) Histogram representing the fraction of binding sites for 100 transcription factors supported by a dREG TIR that was not also discovered in DNase-
seq data. Several of the outliers are shown. The color denotes whether the factor is a member of the RNA polymerase III (Pol III) preinitiation complex
(green), Pol II preinitiation complex (red), associated with H3K9me3 (light purple), or H3K27me3 heterochromatin (purple), or is a sequence-specific tran-
scription factor (blue).
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factors exhibited a broad range of binding in dREG+DHS− sites.
The highest scoring outliers were frequently members of the core
Pol II and Pol III transcription machinery (e.g., RPC155, BRF2,
CHD1, POLR2A, and TAF7), consistent with PRO-seq detecting
transcription more directly than DNase-seq and potentially sug-
gesting that some bona fide transcription initiation sites were
not sensitive to DNase I.

Pol III transcription initiation without chromatin accessibility

Transcription factors with the largest fraction of ChIP-seq peaks in
dREG+DHS− sites were RPC155 and BRF2 (ratio of dREG+DHS
−/dREG+DHS+=0.37 and 0.29, respectively), which encode the
catalytic core of RNA polymerase III and a Pol III initiation factor.
If a fraction of dREG+DHS− TIRs were explained by Pol III initia-
tion, we expected to find a structured combination of DNA se-
quence motifs at these TIRs that were reported in canonical Pol
III promoters (James Faresse et al. 2012). Indeed, the TATA and
PSE DNA sequence elements were enriched with the correct spac-
ing in dREG+DHS− TIRs compared to TIRs that intersect POLR2A
(Pol II) ChIP-seq data (P<1× 10−5) (Supplemental Fig. S14). dREG
+DHS− TIRs were enriched for Pol III promoter motifs to a similar
magnitude as TIRs bound by RPC155, the core subunit of Pol III,
based on ChIP-seq (Supplemental Fig. S14). These observations
suggest that some Pol III promoters were not sufficiently exposed
to the DNase I enzyme to be detected in DNase-seq data.

Heterochromatin domains frequently harbor TIRs

We found that dREG+DHS− TIRs were often associated with ChIP-
seq for heterochromatin markers (e.g., KAP1 and EZH2) (Fig. 3D).
We found 6375 dREG TIRs that overlapped heterochromatin-asso-

ciated ChromHMM states in K562 cells (Polycomb-repressed and
heterochromatin; low signal [Ernst et al. 2011]). In total, 55% of
TIRs overlapping heterochromatin regions were not found by
DNase-seq, a significant enrichment compared with all TIRs (P<
2.2 ×10−16, Fisher’s exact test).

Next, we examined TIRs in H3K27me3 domains. Broad
H3K27me3 domains frequently harbored several TIRs (Fig. 4A).
Often these TIRs were supported by GRO-cap signal, suggesting
that they were not false positives. H3K27me3 domains contained
a median of ∼1 TIR per 50 kb of contiguous H3K27me3 (Fig. 4B).
TIRs inH3K27me3domains generally had lower levels of transcrip-
tion (Fig. 4C), consistentwith a causal role forH3K27me3 in reduc-
ing transcriptional activity (Hosogane et al. 2016; Coleman and
Struhl 2017). Despite the lower levels of transcription, nearly
25% of TIRs in H3K27me3 domains were also supported by ChIP-
seq for POLR2A (Pol II), RPC155 (Pol III), or other transcription fac-
tors. While overlap with POLR2A ChIP-seq was depleted in
H3K27me3 domains as expected, RPC155 ChIP-seq was enriched
bymore than 40% (P=1×10−8, Fisher’s exact test), potentially sug-
gesting that Pol III initiation may be less affected by H3K27me3
than Pol II. TIRs inH3K27me3 domains also frequently overlapped
active histone marks, especially H3K4me3 and H3K4me1. Taken
together, our results are consistent with recent reports that tran-
scription start sites within heterochromatin can escape repression
(Leemans et al. 2018).

Transcription factors have distinct enrichments of chromatin

marks in DHS− TIRs

Several sequence-specific transcription factors were also observed
to have a high fraction of sites that were dREG+DHS−. For
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Figure 4. dREG TIRs located in H3K27me3 domains. (A) WashU Epigenome Browser visualization of dREG signal, PRO-seq data, GRO-cap, H3K27me3
ChIP-seq, DNase-seq, and H3K4me1, H3K4me3, and H3K27ac ChIP-seq. The insert (cf. gray shaded pointer) shows an expanded view of the
H3K27me3 domain encoding multiple transcription initiation sites that were also supported in GRO-cap data. (B) The number of TIRs discovered in
each H3K27me3 broad peak as a function of H3K27me3 peak size. The line represents the median, and gray shading denotes the fifth and 95th percentile.
The x-axis is a log scale. (C) The boxplot shows the difference in PRO-seq read counts betweenTIRs in anH3K27me3 peak call (+H3K27me3, left) and outside
of an H3K27me3 peak call (−H3K27me3, right). The y-axis represents the number of reads found within 250 bp of each TIR.

Discovering TREs using dREG

Genome Research 297
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238279.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238279.118/-/DC1


example, CEBPB, NFYB, GATA2, and SPI1 had a relatively high
fraction of binding sites outside of DHSs. The subset of DHS+
andDHS− binding sites for these four transcription factors had dis-
tinct profiles in the flanking chromatin. All four transcription fac-
tors were enriched for increased MNase-seq read density centered
on the binding site and spanning a region ∼300 bp in DHS− sites
(Fig. 5), suggesting systematic differences in the chromatin envi-
ronment in these regions. In contrast, binding sites for MAZ and
ZNF143, which exhibited a low fraction of binding sites outside
of DHSs, did not show as prominent an increase in MNase-seq sig-
nal in DHS− binding sites (Fig. 5).

Transcription factors also showed differences in their enrich-
ment of histone post-translational modifications. NFYB exhibited
no enrichment of active histone modifications in DHS− binding
sites but was flanked on both sides by high levels of H3K27me3
(Fig. 5). GATA2, SPI1, and CEBPB binding sites were enriched for
marks of both active and repressive chromatin, with a narrow en-
richment of H3K27me3 signal localized at the putative binding
site (Fig. 5). Likewise, histone modification ChIP-seq in DHS−
regions lacked the dip in the center of TIRs characteristic of a
nucleosome-depleted region. Thus, in some cases regulatory ele-
ments discovered by dREG, but not by DNase-seq, appear to reflect
binding of strong transcriptional activators that do not meet the
current description of a regulatory element.

Taken together, these results suggest that dREG identified
thousands of TIRs that were not discovered using DNase-seq data
but which were reproducibly associated with specific transcription
factors. These observations may reflect transcription factor bind-
ing events that tolerate deviations from the core TIR architecture,
preventing their discovery using more widely applied molecular
tools. Collectively, these observations suggest that no molecular

assay has fully saturated the repertoire of active regulatory ele-
ments, even in well-studied cell types like K562.

Web server access to dREG

We developed a web interface for users to run dREG on their own
PRO-seq, GRO-seq, or ChRO-seq data. Users upload PRO-seq data
as two bigWig files representing raw counts mapped to the plus
andminus strand. A typical run takes∼4–12 hdepending on server
usage. Users are required to register for an account, which keeps
track of previous jobs. Once dREG completes successfully, users
can download dREG peak calls and raw dREG signal. Additionally,
the dREG web interface provides a link to visualize input PRO-seq
data, dREG signal, and dREG peak calls as a private track hub on
theWashU Epigenome Browser. dREG is available on the Extreme
Science and Engineering Discovery Environment (XSEDE) as a
science gateway (Gesing et al. 2017; Knepper et al. 2017) and is im-
plementedusing theAiravatamiddleware (Marru et al. 2011; Pierce
et al. 2015). The dREG science gateway is available at https://dreg
.dnasequence.org/.

Discussion

In this article, we have introduced an optimized version of our
dREG software package, a sensitive machine learning method
that identifies the location of regulatory elements using data
from run-on and sequencing assays, including PRO-seq, GRO-
seq, and ChRO-seq (Core et al. 2008; Kwak et al. 2013; Chu et al.
2018).Ouroptimizationeffortshaveachieved substantial improve-
ments in computational efficiency, sensitivity, specificity, and site
resolution. We developed a new approach to identify dREG peaks,

called transcription initiation regions,
based on a hypothesis testing framework
that controls falsediscovery rates. Finally,
we provide dREG as a web service where
users can easily upload their own run-on
and sequencing data.

Taken together, our dREG imple-
mentation has a number of advantages
compared with alternative approaches.
dREG offers substantial improvements
in resolution for transcription factor
binding sites, which tend to be located
between divergently initiating RNApoly-
merase (Core et al. 2014). Likewise, dREG
provides informationabout localpatterns
of transcription initiation, improved sig-
nal to noise ratio, and a higher sensitivity
for certain types of active regulatory ele-
ments. Compared with GRO-cap (Core
et al. 2014), dREG is less dependent on
paused Pol II and can also be used to
detect the levels of gene transcription in
the same molecular assay. Most impor-
tantly, dREG/PRO-seq allows users to
measure multiple aspects of gene regula-
tion, includingtheprecisepositionof reg-
ulatory elements, gene expression, and
pausing levels using a single genomic ex-
periment. When paired with ChRO-seq
(Chu et al. 2018), which applies run-on
assays in solid tissues, dREG allows the

Figure 5. dREG TIRs with specific transcription factor binding show distinct chromatin marks.
Metaplots show the raw signal of DNase-seq, MNase-seq, and ChIP-seq for H3K4me1, H3K4me3,
H3K27ac, and H3K27me3 near binding sites for six transcription factors, including MAZ, ZNF143,
GATA2, SPI1, NFYB, and CEBPB. Signals are shown for dREG+DHS− (green) and dREG+DHS+ (purple)
sites. The number of sites contributing to each signal is shown (bottom).
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discovery of regulatory elements in primary tumors and other
clinical isolates, in which the application of genomics technolo-
gies are limited by sample quantity and the cost of applyingmulti-
ple assays across large cohorts.

By comparing TIRs to other functional genomic assays, we
identified >8000 regulatory elements that were not detected using
DNase-seq or H3K27ac ChIP-seq. Differences between assays may
in part reflect false negatives in DNase-seq and ChIP-seq, where
signals drop below the background level, or false positives by
dREG. Several lines of evidence outlined in our results suggest
that most TIRs are unlikely to reflect false positives. For instance,
we observed a residual enrichment in the average profiles of other
functionalmarks near TIRs that lack peak calls, which suggests that
at least some fraction of TIRs reflect weak enrichment in other mo-
lecular assays that were not detected as peaks. Our resultsmay con-
tribute additional support to experiments assigning regulatory
function to rare sites which lack canonical promoter and enhancer
marks (Rajagopal et al. 2016; Diao et al. 2017). Nascent transcrip-
tion may be an effective tool to expand the catalog of functional
elements.

TIRs may also reflect weakly bound transcriptional activators
that are relatively tolerant of binding to sites lacking DNase-seq.
Indeed, several of the transcription factors with a relatively large
fraction of dREG+DHS− binding sites were identified as having pi-
oneer factor activity, including GATA2, SPI1, NFYB, and CEBPB
(Heinz et al. 2010; Grøntved et al. 2013; Barozzi et al. 2014;
Sherwood et al. 2014). It is possible that some of these elements
may denote distinct architectures of functional elements that are
better identified using nascent transcription. Consistent with
this, we found an enrichment of MNase protection at sites lacking
DNase-seq signal. At least one of the transcription factors that we
discovered having this property (GATA2) was from a family report-
ed to bind concurrently with a nucleosome in vitro (Cirillo and
Zaret 1999; Takaku et al. 2016). Thus, one interpretation is that
many of these sites reflect weak binding events in which the tran-
scription factor and nucleosome are both present on the DNA.

Amajor open question following our study is whether weaker
regulatory elements that lack DNase-seq signal or chromatin mod-
ificationshave a distinct biological function.NFYB is an interesting
example, as we observed enrichment of H3K27me3 in flanking
sites, a unique pattern of MNase-seq signal, and binding inside of
H3K27me3 chromatin domains. Transcription may be required
within H3K27me3 domains either to maintain silencing or to es-
tablish new profiles during cellular differentiation or in response
to environmental signals. We anticipate that future studies will
use transcription to categorize these distinct groups of functional
elements in additional detail and will determine their biological
relevance in a myriad of cell types and biological conditions.

Methods

Overview of the dREG method

We devised a method to detect the location of transcriptional reg-
ulatory elements from GRO/PRO/ChRO-seq data (dREG). The ba-
sic idea behind dREG is to differentiate between two types of
regions that show high levels of RNA polymerase: (1) positions
where new RNA polymerase initiates; and (2) positions where
RNA polymerase transcribes through after initiating at an up-
stream site. Our strategy for dREG prediction and scoring closely
follows our prior work (Danko et al. 2015), except with modifica-
tions that leverage our new and considerably faster implementa-

tion to achieve higher classification accuracy. In addition, we
have also added a novel strategy to improve the resolution for
the region between divergently initiating transcription start sites.

We used support vector regression to score 50-bp intervals
along the genome. Loci that were low in PRO-seq reads were prefil-
tered and excluded fromboth training and prediction tasks (see be-
low for details). We summarized PRO-seq read counts near each
position by integrating reads in nonoverlapping windows center-
ing around the informative positions, followed by transformations
that are the same as in our priorwork (Danko et al. 2015). Nonover-
lappingwindowswere taken atmultiple scales, spanningboth plus
andminus strands and both upstream and downstream directions.
dREG scores can be interpreted as the degree to which each geno-
mic position resembles a position that falls inside of a region in
which transcription initiates. We use dREG scores to identify non-
overlapping regions enriched for transcription initiation. We call
these dREG “peaks” because they are analogous in most respects
to ChIP-seq peaks.

Selecting positions to score

We used the SVR to score loci that meet either of the following
heuristics: (1) contain more than three reads in a 100-bp interval
on either strand; or (2) more than one reads in 1-kbp interval on
both strands (called “informative positions”). These heuristics
were designed to reduce the number of sites that we scored with
each data set, while at the same time scoring at least one site
near each bona fide TIR. To select these heuristics, we defined
the upper bound of sensitivity for TIRs as the fraction of all
GRO-cap peaks (extended by 500 bp and merged) that we recov-
ered. We computed the fraction of TIRs that were missed (this
quantity is the lower bound of our false negative rate [FNR]), and
the number of positions meeting these criteria which we would
have to score over different values of each of these heuristics
(Supplemental Fig. S15), including the number of reads on either
strand in a 100-bp window; the number of reads on the plus and
minus strandwithin awindow of 1 kb; combining separate thresh-
olds for reads on either strand; and for reads on both the plus and
minus strand. We found that the FDR was minimized to a reason-
able value of 7.8%using both thresholds, as described above, with-
out expanding the number of sites beyond what is reasonable for
computation in a data set sequenced to a depth that is typical for
PRO-seq data (∼40 M reads). In a more deeply sequenced data set
(400 M reads), we found this heuristic resulted in a theoretical
lower-bound FDR of <1%.

dREG training

The new dREG model was trained using PRO/GRO-seq signal in
K562 cells obtained from five independent experiments conduct-
ed by different hands in different labs over a period of ∼2 yr.
This diversity of training data was designed to accommodate vari-
ation in experimental conditions, batch-specific effects caused by
a variety of technical factors, and detection factors such as se-
quencing depth. A sixth K562 data set (G7) and a data set repre-
senting an independent cell type (GM12878) were held out
during model training to evaluate whether the final model was
able to generalize to additional data sets. Supplemental Table S1
lists all data sources.

PRO-seq and GRO-seq data were downloaded from Gene
Expression Omnibus (see accession numbers in Supplemental
Table S1). We verified that all libraries were highly correlated
with one another (Supplemental Fig. S1). Using this data, dREG
was trained on a positive set of transcribed DHSs, defined as the in-
tersection between DHSs identified by Duke and UW DNase-seq
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assays (Thurman et al. 2012) and GRO-cap HMM calls (Core et al.
2014). We defined a negative set as informative positions that do
not intersect with Duke DHSs, UW DHSs, or GRO-cap HMM calls
in K562 cells. We labeled each informative position as 1 or 0 ac-
cording to whether it was found within a positive or negative re-
gion. To improve performance in unbalanced data sets, we
trained dREG on an unbalanced training set. In practice, the num-
ber of informative genomic positions within and outside of bona
fide TSSs differ greatly. To reduce the generalization error on ge-
nome-wide predictions, we optimized the ratio between positive
and negative sets to bestmimic this scenario.We selected 20 K pos-
itive examples and 640 K negative examples from each of the five
data sets, which amounted to 3.3 M training examples. Since the
size of the data set was beyond the capacity of conventional CPU-
based SVM implementations, we developed a GPU-based SVM/
SVR package Rgtsvm to handle this data set, accomplishing the
training within ∼28.5 h in a NVIDIA K80 GPU (Wang et al. 2017).
The final models can be obtained from: ftp://cbsuftp.tc.cornell
.edu/danko/hub/dreg.models/asvm.gdm.6.6M.20170828.rdata.

Discovering peaks enriched for dREG signal

We devised a statistical framework to identify genomic regions
that are enriched for evidence of transcription initiation.We break
the discovery of sites into three separate stages: First, we identify
regions enriched for high dREG scores. Second, we stitch these re-
gions into candidate peaks. Third, we estimate the probability that
these peaks are drawn from the negative set of sites. Final predic-
tions for genomic regions that contain transcription start sites
are corrected using the false discovery rate correction for multiple
testing and reported to the user.

During the first stage, our goal is to obtain an initial and in-
clusive set of sites and to stitch these into candidate peaks. We
developed a statistical framework that determines a threshold
dynamically for each data set beyond which sites are likely to be
located near a transcription start site. We estimate the distribution
of dREG scores in negative sites using the Laplace distribution, fol-
lowing previous work using this distribution for the same task (Lin
and Weng 2004). The Laplace distribution is parameterized by a
mean and a scale (σ in Equation 1). We assume that negative sites
have amean value of 0. The distribution of dREG scores represents
a mixture distribution comprised of both negative and positive re-
gions, and therefore fitting the scale parameter to all of the data
tends to systematically overestimate the scale. To estimate the scale
for a given data set, we take advantage of the fact that the Laplace
distribution is symmetric about itsmean.Negative dREG scores are
depleted for transcription start sites and provide an estimate of the
scale parameter which is empirically close to that obtained from
the entire set of negative training examples when labels are avail-
able (Supplemental Fig. S4). Therefore, we estimate the scale pa-
rameter using negative dREG scores. Under these assumptions,
the maximum likelihood estimate of the scale parameter is given
as shown in Equation 1:

s =
∑l

i=1 |ji|
l

, (1)

where ξ represents the dREG scores in training examples and l is
the number of training examples. Genomic loci with dREG scores
higher than 99.95% under the background model were selected
and stitched together into intervals by extending genomic loci
that pass the threshold by ±100 bp and merging these extended
loci that were in 500-bp proximity. These broad regions are similar
to those introduced in our first dREG publication (Danko et al.
2015).

Wenext designedheuristics to refine the resolution of prelim-
inary broad regions into narrow dREG peaks. Our approach was
motivated by reports that TIRs often form clusters of distinct di-
vergently oriented initiation sites within a local genomic region
(Scruggs et al. 2015; Chen et al. 2016). Conceptually, our strategy
increases the density of sites that are scored by dREG within the
region and defines heuristics to identify local maxima.We first in-
creased the local density of SVR predictions within the boundaries
of preliminary dREG peaks, from 50 bp (in the initial prediction of
broad dREG regions) to 10 bp. The dREG scores were smoothed by
computing aweighted average of the seven dREG scores, represent-
ing ±60 bp of DNA (Equation 2).

�ri = 1
16

ri−3 + 2
16

ri−2 + 3
16

ri−1 + 4
16

ri + 3
16

ri+1 + 2
16

ri+2

+ 1
16

ri+3. (2)

We identified points representing local maxima within each
peak in which the numerical first order derivatives changed from
positive to negative. This resulted in one or more local maxima
for each preliminary dREG region, each pair of which had a local
minima between them. We trained a random forest to decide
whether to break neighboring local maxima into separate tran-
scription initiation regions at the local minima between them.
The random forest employed dREG scores, ratio of scores between
the peak and valley, and the distance between each peak and the
valley. The random forest was trained on a manually curated
data set on Chromosome 22 of the G1 PRO-seq data set. dREG
regions that contained three or more local maxima were split iter-
atively until no two adjacent ignored local maxima regions exist-
ed. The boundaries of a final dREG peak were defined by two
valleys between the split local maxima region. For the unsymmet-
ric broad final peaks (≥900 bp), we trimmed the longer trail to limit
the width ratio between the long side and short side within 2:1.
The result of this procedure was a set of nonoverlapping transcrip-
tion initiation regions which were often found in clusters.

To estimate the statistical confidence of each candidate dREG
peak, we devised a hypothesis testing framework in which we test
the null hypothesis that points within each peak are drawn from
the null (i.e., non-TIR) distribution. We consider five dREG scores
around the peak center (i.e., peak center – 40 bp, peak center – 20
bp, peak center, peak center + 20 bp, peak center + 40 bp). Small
peaks (<50 bp) were removed. We model dREG scores using a mul-
tivariate Laplace distribution parameterized by a mean vector and
a covariance. We set the mean vector to 0, which corresponds to
our null hypothesis that all five of these points are in negative re-
gions. Nearby dREG scores have a complex correlation structure,
requiring us to account for the covariance between sites. The co-
variance structurewas specified by the Toeplitzmatrix with homo-
geneous variances and heterogeneous correlations (Equation 3),
because this formulation provides the most flexibility to fit com-
plex data, and plenty of data is available for training in each data
set. We compute the variance, σ2, between sites every 20 bp using
all of the dREG scores in the data set.

s2

1 r1 r2 r3 r4
r1 1 r1 r2 r3
r2 r1 1 r1 r2
r3 r2 r1 1 r1
r4 r3 r2 r1 1

⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

(3)

We calculated the P-value based on the conditional cumulative
distribution of a multivariate Laplace (i.e., p(Si≥ psi | Xi=0, for i ∈
[1,…,5]), where psi denotes the predicted score for locus i). Each
dREG peak is associated with an estimated P-value. P-values are
corrected for multiple testing using the Benjamini-Hochberg false
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discovery rate (Benjamini and Hochberg 1995). By default, dREG
reports peaks with an FDR corrected P-value≤0.05.

Web-based implementation using Apache Arvitata

The public web-based version of dREG is hosted as a Science
gateway in the Extreme Science and Engineering Discovery Envi-
ronment high-performance computing resource (Gesing et al.
2017; Knepper et al. 2017). The dREG gateway is hosted on the
JetStream server as a web service which can submit compute jobs
and download the results of dREGpeaks. From the viewof software
architecture, it can be divided into two parts: the secured web ser-
vice and the high-performance computing (HPC) resource. The se-
cured web service built with PGA (PHP gateway with Airavata) on
an Apache web server performs user authentication, data upload,
sequence data transfer, and jobs submission to GPU servers via
Apache Airavata middleware (Marru et al. 2011; Pierce et al.
2015). The HPC resources are GPU servers hosted by XSEDE. The
dREG gateway uses a job scheduler to call the dREG package to
complete the peak calling on GPU nodes. Once the calculation is
completed, Apache Airavata copies the results from the HPC stor-
age into the user’s web storage. Since this gateway uses GPUs to
speed up dREG prediction with the aid of the Rgtsvm package
(Wang et al. 2017), a typical run takes ∼4–12 h (mean=6.7 h) after
the job starts running on the GPU server.

Using Tfit

The Tfit software (most recent on April 28, 2017) was obtained
from https://github.com/azofeifa/Tfit. The Tfit software package
was run using the default parameters, following instructions
from the package authors. We tried using a variety of different set-
tings (both with and without optimizing the template density
function by promoter or TSS associated regions; -tss parameter).
We also explored treating input data as both the full Illumina
mapped read or representing the position of RNA polymerase us-
ing the single base corresponding to the 3′ end of each read. We
present the parameters that achieved the highest sensitivity for
transcribed DHSs (without the -tss parameter, and using the com-
plete Illumina read in the input bigWig).

Comparison to DNase-seq and ChIP-seq data

Public PRO-seqandGRO-seqdatawere collected frompublished re-
sources (Hah et al. 2011; Danko et al. 2013, 2018; Allen et al. 2014;
Core et al. 2014;Niskanenet al. 2015;Dukler et al. 2017;Vihervaara
et al. 2017). DNase I hypersensitive sites for the ENCODE reference
cell types were processed using a uniform pipeline that we recently
described (Chu et al. 2018). Sites detected using dREG were classi-
fied into DHS+ (defined as TIRs having peak calls in both Duke
and UWDNase-seq data), and DHS− (defined as having peak calls
in neither Duke nor UWdata). All computations on BED files were
performedusingBEDTools (Quinlan andHall 2010). BEDToolswas
used to calculateoverlap regions (using the commandbedtools inter-
sect), closest distances (bedtools closest), and Jaccard scores (bedtools
jaccard). ENCODE hg19 blacklist regions were excluded from all
analyses. Downstream processing, data analyses, heat maps, and
other visualizationswere performed in R (R Core Team2019) using
the bigWig package (https://github.com/andrelmartins/bigWig).
Our scripts are posted on GitHub (https://github.com/Danko-
Lab/dREG/tree/master/GR_submit_2018).

Cell culture

Cell lines were obtained from the American Type Culture
Collection (ATCC) and cultured using standard cell culture proce-

dures and sterile technique. Human K562 suspension cells were
cultured in RPMI-1640 media supplemented with 10% fetal bo-
vine serum (FBS) and 1% penicillin/streptomycin. Human HeLa
adherent cells were cultured with Dulbecco’s Modified Eagle
Media supplemented with 10% FBS and 1% penicillin/streptomy-
cin. Media and antibiotics were from Corning and FBS was from
Atlanta Biologicals.

ATAC-seq data preparation and processing

ATAC-seq was performed on K562 and HeLa as described in
Buenrostro et al. (2013). Briefly, nuclei were isolated from 50,000
K562 and HeLa cells in duplicate, tagmented using the Nextera
DNA Sample Preparation kit, and amplified for seven PCR cycles
using the NEBNext DNA Library Prep kit. All libraries were pooled
and sequenced using an Illumina NextSeq 500. Raw sequencing
data was aligned to hg19 using BWA-MEM (Li 2013). The hg19 ge-
nome buildwas used tomaintain compatibility with existing PRO-
seq alignments. Aligning reads to GRCh38 is unlikely to substan-
tially affect the conclusions, as the two reference assemblies are
highly similar in the uniquely mappable euchromatin regions an-
alyzed here.

Data access

All new sequencing data generated in this study have been submit-
ted to the NCBI Gene Expression Omnibus (GEO; https://www.
ncbi.nlm.nih.gov/geo/) under accession number GSE121993.
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