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Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradoxPhylogenetic analysis of the Archaea has been mainly established by 16S rRNA sequence comparison. With the accumulation of completely sequenced genomes, it is now possible to test alternative approaches by using large sequence datasets. We analyzed archaeal phylogeny using two concatenated datasets consisting of 14 proteins involved in transcription and 53 ribosomal proteins (3,275 and 6,377 positions, respectively).

Abstract

Background: Phylogenetic analysis of the Archaea has been mainly established by 16S rRNA
sequence comparison. With the accumulation of completely sequenced genomes, it is now possible
to test alternative approaches by using large sequence datasets. We analyzed archaeal phylogeny
using two concatenated datasets consisting of 14 proteins involved in transcription and 53
ribosomal proteins (3,275 and 6,377 positions, respectively).

Results: Important relationships were confirmed, notably the dichotomy of the archaeal domain
as represented by the Crenarchaeota and Euryarchaeota, the sister grouping of Sulfolobales and
Aeropyrum pernix, and the monophyly of a large group comprising Thermoplasmatales,
Archaeoglobus fulgidus, Methanosarcinales and Halobacteriales, with the latter two orders forming
a robust cluster. The main difference concerned the position of Methanopyrus kandleri, which
grouped with Methanococcales and Methanobacteriales in the translation tree, whereas it emerged
at the base of the euryarchaeotes in the transcription tree. The incongruent placement of M.
kandleri is likely to be the result of a reconstruction artifact due to the high evolutionary rates
displayed by the components of its transcription apparatus.

Conclusions: We show that two informational systems, transcription and translation, provide a
largely congruent signal for archaeal phylogeny. In particular, our analyses support the appearance
of methanogenesis after the divergence of the Thermococcales and a late emergence of aerobic
respiration from within methanogenic ancestors. We discuss the possible link between the
evolutionary acceleration of the transcription machinery in M. kandleri and several unique features
of this archaeon, in particular the absence of the elongation transcription factor TFS.

Background
Deciphering the evolutionary history of the Archaea, the third
domain of life [1,2], is essential to resolve a number of impor-
tant issues, such as the dissection of their many eukaryote-
like molecular mechanisms, understanding the adaptation of

life to extreme environments, and the exploration of novel
metabolic abilities (for recent reviews on the Archaea, see
[3,4]). Until recently, the phylogeny of the Archaea was
mainly based on 16S small ribosomal RNA (16S rRNA)
sequence comparisons [5]. Such analyses, which included
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environmental samples, suggest a diversity comparable to
that of the Bacteria [3,6], with cultured lineages falling into
two main phyla, the Euryarchaeota and the Crenarchaeota
[2]. 16S rRNA trees suggest a specific order of emergence and
mutual relationships among archaeal lineages that have
important implications for understanding the evolution of
many archaeal features, as well as the very nature of the
archaeal ancestor. For example, the early emergence of Meth-
anopyrales suggests that methanogenesis (methane produc-
tion from H2 and CO2) is an ancestral character [7], whereas
the sister grouping of Methanomicrobiales/Methanosarci-
nales and Halobacteriales would imply a late emergence of
aerobic respiration in archaea.

New phylogenetic approaches that exploit the expanding
database of completely sequenced archaeal genomes have
recently challenged some of these conclusions. In particular,
a consensus of a number of whole-genome trees based on
gene-content comparison among all archaeal genomes does
not recover the monophyly of Euryarchaeota, as Halobacteri-
ales are at the base of the archaeal tree (see [8] and references
therein). Moreover, whole-genome trees, whether based on
gene content or on the conservation of gene order, pair-group
Methanopyrus kandleri with Methanobacteriales and Meth-
anococcales [9], contradicting the early branching of this
archaeon in the 16S rRNA tree. Phylogenies based on whole-
genome analyses may, however, be biased by the abundant
lateral gene transfer (LGT) events that have occurred between
archaea and bacteria, as well as between archaeal lineages
[10-14]. For example, the early branching of Halobacteriales
in whole-genome trees may reflect the fact that Halobacteri-
ales contain a high number of genes of bacterial origin [15,16].
Similarly, the grouping of M. kandleri with other ther-
mophilic methanogens may be explained by extensive LGT
across different lineages of methanogens sharing the same
biotopes.

One possible way to bypass the problem of LGT is to focus on
informational proteins, as their genes are supposed to be less
frequently transferred [17]. In general, the use of large data-
sets of concatenated sequences (that is, fusions) has proved
very useful in increasing tree resolution, especially if proce-
dures are used to remove from the analysis proteins that have
been affected by LGT [18-21]. Our recent analyses of bacterial
and archaeal phylogenies based on ribosomal proteins
showed a minimal occurrence of transfers, suggesting that the
phylogenetic signal carried by the components of the transla-
tion apparatus is not biased by LGT and can provide a bona
fide species tree [20,21]. In archaeal trees based on a concate-
nated dataset of 53 ribosomal proteins from 14 taxa, the
dichotomy Euryarchaeota/Crenarchaeota was recovered,
with Halobacteriales being a sister group of Methanosarci-
nales, as in the 16S rRNA tree [21]. At that time, the position
of M. kandleri could not be tested, as its genome was not yet
available. A more recent tree based on a fusion dataset of
ribosomal proteins has shown that M. kandleri groups with

Methanobacteriales and Methanococcales [9], as in whole-
genome trees [8]. Surprisingly, however, this analysis showed
Halobacteriales at the base of the archaeal tree [9]. To further
investigate archaeal phylogeny with components of informa-
tional systems, we updated our ribosomal protein concatena-
tion by including newly available genome sequences, and we
performed a similar analysis with proteins of the transcrip-
tion apparatus. Previous analyses based on large subunits of
archaeal RNA polymerases have indeed suggested that tran-
scription proteins may be good phylogenetic markers for the
archaeal domain [22].

Results
Sequence retrieval
By surveying proteins involved in transcription in 20 com-
plete, or nearly complete, archaeal genomes we retrieved and
constructed 15 sequence alignment datasets corresponding to
12 subunits of RNA polymerase and three transcription fac-
tors (see Materials and methods). Several of the archaeal
RNA polymerase subunits do not have any homologs in bac-
teria, and all of them can be only partially aligned over their
eukaryotic homologs (dramatically shortening the number of
positions for analysis and increasing the risk of reconstruc-
tion artifacts). Consequently, as in Matte-Tailliez et al. [21],
we decided not to include any bacterial/eukaryote outgroup
in our analysis. To compare the results obtained with tran-
scription proteins with those obtained with ribosomal pro-
teins, our previous alignment dataset of ribosomal proteins
[21] was updated by including four additional taxa (Sulfolo-
bus tokodaii, Thermoplasma volcanium, Methanopyrus
kandleri, Methanococcus maripaludis).

Detection of LGT and dataset construction
Phylogenetic analyses were carried out on the 15 single data-
sets of transcription proteins in order to identify possible LGT
events. Undisputed groups such as Thermoplasmatales,
Halobacteriales, Sulfolobales, Thermococcales, Methanosa-
rcinales and Methanococcales were recovered in the majority
of the single trees (data not shown). However, other relation-
ships were largely unresolved in several trees as a result of the
small size of the datasets. The only case of putative LGT was
detected in the phylogeny based on RNA polymerase subunit
H, as Thermoplasmatales were robustly grouped with M.
kandleri (83% Boostrap proportion (BP)) (Figure 1). This sur-
prising grouping (never observed in other phylogenies), was
also strongly supported by a well-conserved insert of five or
six amino acids shared only by the RNA polymerase subunits
H from M. kandleri and Thermoplasmatales (Figure 1). The
proximity of Halobacteriales suggests that M. kandleri
acquired its subunit H gene from Thermoplasmatales and not
the other way round. RNA polymerase subunit H was thus
excluded from further analysis in order to limit the introduc-
tion of a possible bias. The remaining 11 RNA polymerase
subunits (A', A", B, D, E', E", F, K, L, N, P), and the transcrip-
tion factors NusA, NusG and TFS, were then concatenated
Genome Biology 2004, 5:R17
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into a large fusion of 3,275 amino acids. A previous analysis
on 53 ribosomal proteins showed a minimal occurrence of
LGT [21]. We did not observe any new case of LGT in our
updated datasets with the four additional taxa. The 53 ribos-
omal proteins were thus concatenated into a large fusion con-
taining 6,377 positions.

Phylogenetic analyses
The trees resulting from the transcription and translation
datasets (hereafter referred to as the 'transcription tree' and
the 'translation tree') are shown in Figure 2a and 2b, respec-
tively. The same topologies were recovered with the three
methods used for phylogenetic reconstruction, but with little
variation in bootstrap values (data not shown). The transcrip-
tion and the translation trees presented interesting similari-
ties, such as the Crenarchaeota/Euryarchaeota dichotomy
(100% BP), the sister grouping of Sulfolobales and Aero-
pyrum pernix (84% and 100% BP) and the monophyly of a
large group comprising Thermoplasmatales, Archaeoglobus
fulgidus, Methanosarcinales and Halobacteriales (96% and
100% BP), with the latter two orders forming a well-sustained
cluster (100% BP). However, the transcription tree strongly
supported A. fulgidus as the sister group of the Methanosarci-
nales/Halobacteriales clade (100% BP), whereas in the trans-
lation tree A. fulgidus grouped, albeit with weak confidence
(41% BP), with Thermoplasmatales. Moreover, the transcrip-
tion tree recovered a robust monophyly (80% BP) of three
methanogens (Methanothermobacter thermoautotrophi-
cum, Methanocaldococcus jannaschii, and Methanococcus
maripaludis), while in the translation tree these taxa were
paraphyletic with a moderate support (BP 62%). The appar-
ent incongruence between the two trees concerning the

positions of A. fulgidus and of the three methanogens most
probably reflects a lack of phylogenetic signal rather than
LGT or long-branch attraction. Future analyses including
more positions and a wider taxonomic sampling will help in
resolving these nodes better. The two phylogenies differed
remarkably concerning the base of the Euryarchaeota. The
transcription tree showed M. kandleri as the first offshoot
(100% BP) just before Thermococcales, whereas in the trans-
lation tree Thermococcales represented the most basal
branch, with M. kandleri grouping paraphyletically with
Methanococcales and Methanobacteriales (88% BP).

Interestingly, M. kandleri displayed a very long branch in the
transcription tree (Figure 2a), a peculiarity not observed in
the translation tree (Figure 2b), suggesting an acceleration of
evolution of M. kandleri transcription proteins. We tested the
possibility that this acceleration was due to a composition
bias by removing aspartate and glutamate from the transcrip-
tion dataset, as the proteome of M. kandleri displays an unu-
sually high content of negatively charged amino acids [9],
possibly as an adaptation to the very high intracellular salin-
ity (1 M of cyclic 2,3-diphosphoglycerate) [23]. The resulting
phylogeny was very similar to the transcription tree of Figure
2a, with M. kandleri emerging at the base with a very long
branch (data not shown).

The comparison of the percentages of amino-acid differences
in transcription and translation fusion datasets for each pair
of species is shown in Figure 3. A strong correlation between
the percentages of amino-acid differences in the two datasets
could be observed for each pair of species (R = 0.88). For M.
kandleri, however, this correlation was less strong, reflecting

Unrooted neighbor-joining phylogenetic tree of the RNA polymerase subunit H computed from a Γ-corrected matrix of distancesFigure 1
Unrooted neighbor-joining phylogenetic tree of the RNA polymerase subunit H computed from a Γ-corrected matrix of distances. Numbers close to 
nodes are bootstrap proportions. The scale bar represents the number of changes per position per unit branch length. For each taxon, the portion of the 
alignment from positions 57 to 83 is displayed. For clarity, identical amino acids shared by the current taxa and the first taxon (Aeropyrum pernix) are 
indicated by dashes, whereas stars correspond to missing amino acids.
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the fact that the transcription dataset displayed much higher
evolutionary rates compared to the translation dataset (see
legend to Figure 3).

We then tested the possibility that the basal placement of M.
kandleri in the transcription tree might be due to a biased

phylogenetic signal specifically contributed by one or more
RNA polymerase subunits. Indeed, we found that M. kandleri
displayed a strongly supported basal position associated with
a long branch in single trees based on RNA polymerase large
subunits A' and A" (Figure 4a and 4b, respectively), whereas
it was grouped with the two other thermophilic methanogens

Unrooted maximum likelihood (ML) phylogenetic trees obtained from the transcription and translation datasetsFigure 2
Unrooted maximum likelihood (ML) phylogenetic trees obtained from the transcription and translation datasets. (a) Transcription; (b) translation. The 
best tree and the branch lengths were calculated using the program PUZZLE with a Γ-law correction. Numbers at the nodes are ML bootstrap supports 
computed with the RELL method using the MOLPHY program without correction for among-site variation. The scale bars represent the number of 
changes per position per unit branch length.
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in a tree based on RNA polymerase large subunit B (Figure 5).
This indicates that subunits A' and A" may be largely

responsible for the basal placement of M. kandleri in the
transcription dataset. This was not very surprising, as RNA

Unrooted neighbor-joining phylogenetic tree of the RNA polymerase subunits A' and A" computed from a Γ-corrected matrix of distancesFigure 3
Unrooted neighbor-joining phylogenetic tree of the RNA polymerase subunits A' and A" computed from a Γ-corrected matrix of distances. (a) 
Polymerase A'; (b) polymerase A". Numbers close to nodes are bootstrap proportions. The scale bars represent the number of changes per position per 
unit branch length.
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polymerase A' and A" represents about 30% of the fusion sites
(812 and 360 sites, respectively). However, as M. kandleri
still emerged first when these subunits were removed from
the dataset (data not shown), other factors may be involved.
Interestingly, M. kandleri emerged with a relatively long
branch at the base of the euryarchaeal part of a RNA polymer-
ase subunit B tree reconstructed without correction for varia-
tion of evolutionary rates among sites (data not shown).
When a Γ-law is taken into account, this basal placement dis-
appears (Figure 4), strongly suggesting that long-branch
attraction artifact could affect the M. kandleri placement.

Rare evolutionary events
To gain further insight into the nodes showing contradictory
placements between the transcription and translation trees,
we searched for rare evolutionary events that may be used as
synapomorphies for clade identification. We first analyzed
the genomic context to look for possible signatures that sup-
port some nodes in our phylogenies. The genes encoding RNA
polymerase subunits are clustered in several 'operon-like
structures' in all archaeal genomes, together with genes
encoding NusA, TFS, and several ribosomal proteins (data

not shown). Unfortunately, we could not infer any possible
grouping based on the structure of these operons, except for
the confirmation of closely related species.

An interesting rare character in the transcription dataset was
the split/fusion of the RNA polymerase B subunit [21,24].
This subunit is encoded by a single gene (rpoB) in crenar-
chaeotes, Thermococcales and Thermoplasmatales, and by
two genes (rpoB' and rpoB") in all other euryarchaeotes. The
split of the B-subunit gene has taken place at the same posi-
tion in all archaeal species, suggesting that it occurred only
once in the archaeal domain. Consistently with both the rpoB
tree (Figure 4) and translation trees (Figure 2b), the most
parsimonious scenario that may explain the distribution of
this character is the occurrence of a single rpoB gene split
soon after the divergence of Thermococcales, followed by a
gene fusion event in the lineage leading to Thermoplasmat-
ales [21]. Importantly, this scenario supports the emergence
of M. kandleri after Thermococcales.

Finally, we focused on large insertions/deletions (indels), as
these events are less prone to convergence than amino-acid
substitutions and may be potentially good phylogenetic char-
acters [25]. Indels were looked for in all individual transcrip-
tion protein datasets. Unfortunately, no indel-sharing
indicative of phylogenetic relationship among groups could
be found. Intriguingly, the proteins from the M. kandleri
transcription set harbored a greater number of indels than
observed in any other archaeal species; 27 of these indels
were specific to this species, whereas the average number of
indels specific to other archaeal lineages was between one and
eight (Table 1). In addition, the specific indel regions in M.
kandleri are frequently flanked by very highly divergent
regions (Figure 6). The presence of such a high proportion of
indels in the M. kandleri transcription dataset is consistent
with an accelerated evolution of transcriptional proteins in
this taxon with respect to any other archaeal lineage included
in the present analysis.

Discussion
The availability of completely sequenced genomes offers new
opportunities to determine inter-species evolutionary rela-
tionships. It was suggested for some time that this task would
be hopeless for prokaryotes because of the extent of LGT
between domains and phyla [26,27]. However, it has subse-
quently been shown that a universal tree of life roughly simi-
lar to the 16S rRNA tree (with the tripartite division of cellular
organisms) could be recovered by different whole-genome
approaches, indicating that a bona fide phylogenetic signal
may still be present in contemporary organisms [8,28,29].
Nevertheless, whole-genome trees are highly sensitive to
LGT, which can produce misleading placements of specific
lineages [30]. As an alternative approach, several authors
have used sets of concatenated protein sequences to increase
tree resolution [9,18-21,31]. These approaches are based on

Comparison between the percentage of differences observed in the transcription and ribosomal datasets for each couple of taxaFigure 4
Comparison between the percentage of differences observed in the 
transcription and ribosomal datasets for each couple of taxa. The x-axis 
represents the percentage of amino-acid differences observed between 
two taxa for the concatenated transcription dataset. The y-axis represents 
the percentage of amino-acid differences observed between two taxa for 
the concatenated ribosomal dataset. Circles show for each pair of taxa the 
comparison between the observed percentage of differences for the 
concatenated transcription and ribosomal datasets. The majority of circles 
are localized close to the diagonal indicating a strong correlation (R = 
0.88) between the differences observed into the two concatenated 
datasets. White circles represent the comparisons of Methanopyrus 
kandleri with other taxa.
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the idea that a core of proteins (mostly informational pro-
teins) has evolved mainly through vertical inheritance and
can thus be used to retrace a genuine species phylogeny. Fur-
thermore, by focusing on relatively small groups of proteins,
it is possible to identify and remove proteins affected by LGT
by performing single phylogenetic analyses. We have previ-
ously applied such a strategy to a dataset of ribosomal pro-
teins used to retrace the phylogeny of the Bacteria [20] and
the Archaea [21]. These analyses showed that LTG events
involving ribosomal proteins are rare, and that these rare
transfers affect the resulting phylogenies only slightly
[20,21]. The similar analysis presented in this paper revealed
no new case of LGT in our updated ribosomal protein dataset
and a single case in the transcription dataset (Figure 1). This
confirms that a large fraction of informational genes belong to
a core of genes refractory to frequent transfers and they may
therefore be used to retrace a genuine organismal phylogeny
[17,32]. An alternative explanation may be that the genes
involved in transcription and in translation are systematically
transferred together. However, this hypothesis would imply
the co-transfer and replacement of more than 70 genes local-
ized in different regions of the genome.

The likely displacement of the original RNA polymerase sub-
unit H of M. kandleri by the orthologous subunit from Ther-
moplasmatales indicates that orthologous displacement is
nevertheless possible 'at the heart of the transcription

machinery', at least across euryarchaeal lineages. The likely
location of subunit H on the outside of the archaeal RNA
polymerase, as in eukaryotic RNA polymerase [33,34], might
facilitate its replacement. Interestingly, this gene replace-
ment occurred in situ, that is without disruption of gene
arrangement, as the phylogenies obtained from the nearest
neighbors of the gene encoding subunit H in M. kandleri
(subunits B, A' and A") did not indicate any specific affiliation
of this species with Thermoplasmatales. Several such precise
homologous gene displacements have recently been reported
[35,36], and may be explained by a high rate of LGT and intra-
chromosomal recombination, followed by purifying selection
for the maintenance of operon structure [36].

The phylogenies based on the transcription and translation
datasets shared a number of nodes. In particular, a robust
cluster comprising Thermoplasmatales, A. fulgidus, and a
Halobacteriales/Methanosarcinales clade strengthens the
notion of a late emergence of aerobic respiration in archaea
from within methanogenic ancestors. This result is in agree-
ment both with the classical rooted 16S rRNA trees [5] and
with a recent whole-genome tree obtained by Daubin et al.
[37]. Furthermore, the hypothesis of a late emergence of aer-
obic respiration in Halobacteriales is in line with the finding
that enzymes involved in this process in Halobacterium were
probably recruited by LGT from bacteria [16]. Our results
thus strengthen the hypothesis that the early emergence of

Unrooted neighbor-joining phylogenetic tree of the RNA polymerase subunit B computed from a Γ-corrected distance matrixFigure 5
Unrooted neighbor-joining phylogenetic tree of the RNA polymerase subunit B computed from a Γ-corrected distance matrix. Numbers close to nodes 
are bootstrap proportions. The scale bar represents the number of changes per position for a unit branch length. In Methanococcus maripaludis, 
Methanocaldococcus jannaschii, Methanopyrus kandleri, Methanothermobacter thermoautotrophicus, Archaeoglobus fulgidus, Thermoplasmatales, 
Methanosarcinales and Halobacteriales genomes, the gene for the RNA polymerase subunit B is split in two parts: B' and B". The black and white boxes 
correspond to the B' and B" parts of the gene, respectively. S and F represent the split and fusion event hypotheses of the B' and B" parts of the gene.
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Halobacterium species in some whole-genome trees might be
due to the high proportion of genes of bacterial origin in
Halobacterium [8,15]. The early branching of halobacteria in
the ribosomal protein tree published by Slesarev et al. [9]
may be explained by an artifact caused by the inclusion of a
bacterial outgroup, as archaeal ribosomal proteins are diffi-
cult to align over their bacterial homologs.

We were particularly interested in clarifying the controversial
position of M. kandleri, as this is relevant to the important
issue of the origin of methanogenesis [7]. The emergence of
M. kandleri at the base of the euryarchaeal phylum in the 16S
rRNA tree would point to a methanogenic (and hyperther-
mophilic) ancestor for euryarchaeotes, and possibly for all the
Archaea. Accordingly, some specific features of M. kandleri
have been interpreted as ancient characters. An example is
the presence of an unsaturated terpenoid, considered to be a
precursor of normal archaeal lipids, as the major membrane
component [38]. However, following the recently published
genome of M. kandleri, whole-genomes trees constructed by
different methods, as well as ribosomal protein trees, have
challenged the supposed ancestral character of this lineage,
suggesting instead that M. kandleri should be included with
other methanogens in a monophyletic group [9]. Our transla-
tion tree was in agreement with Slesarev et al., showing a
placement of M. kandleri just after Thermococcales and close
to Methanobacteriales and Methanococcales (Figure 2b),

thus further supporting a relatively late emergence of metha-
nogenesis in the Archaea. The emergence of M. kandleri at
the base of the Euryarchaeota (that is, before Thermococca-
les) in the transcription tree (Figure 2a) was reminiscent of
that observed (albeit with lower support) in the 16S rRNA tree
[3]. However, the long branch of M. kandleri suggests that
this basal placement in the transcription tree may be due to a
tree-reconstruction artifact, possibly magnified by a mislead-
ing phylogenetic signal contributed by the large RNA
polymerase subunits A'/A" (Figure 4a and 4b). Consequently,
the late emergence of this species observed in the translation
tree (Figure 2b), which is not likely to be biased by tree-recon-
struction artifacts, is probably the correct one.

Moreover, a late placement of M. kandleri is congruent with
our analysis of the split/fusion of RNA polymerase B subunit
(Figure 5), as an early emergence of this taxon would imply a
less parsimonious scenario involving an additional split event
for the rpoB gene. Importantly, the inclusion of Methanosa-
rcinales in our analysis clearly indicates that methanogens
are not monophyletic, as the common ancestor of all metha-
nogens is also the ancestor of non-methanogenic organisms
(Thermoplasmatales, Halobacteriales and Archaeoglobales).
The presence in this group of non-methanogenic lineages
would be due to secondary loss, as is indeed suggested by the
presence of relics of the methanogenic pathway in A. fulgidus
[9,39].

Table 1

Indels in the 12 subunits of RNA polymerase

Total number of indels Number of specific indels Percentage of specific indels

Aeropyrum pernix 38 4 10.53

Pyrobaculum aerophilum 33 5 15.15

Sulfolobus solfataricus 28 1 3.57

Sulfolobus tokodaii 30 3 10

Archaeoglobus fulgidus 17 2 11.76

Halobacterium sp. 23 2 13.04

Haloarcula marismortui 24 3 12.50

Methanocaldococcus jannaschii 24 7 29.17

Methanococcus maripaludis 22 6 27.27

Methanopyrus kandleri 57 27 47.37

Methanosarcinales 10 2 20

Methanothermobacter 
thermautotrophicus

17 2 11.76

Thermococcales 19 2 10.53

Thermoplasmatales 36 8 22.22

For each species, regions containing insertions/deletions (indels) have been counted for the 12 RNA polymerase subunits (A', A", B, D, E', E", F, H, K, 
L, N, P), TFS, NusA and NusG. We use 'indel region' terms because if two species exhibit indels in the same region, even if they are different sizes, 
we count this region as a shared indel region. For each species, the number and percentage of specific regions containing indels (that is, the indel 
region is exclusive to that species and is not shared by any other species) are indicated. As they share exactly the same indels, the three Pyrococcus 
species, the three Methanosarcina species and the two Thermoplasma species plus Ferroplasma are grouped in Thermococcales, Methanosarcinales and 
Thermoplasmatales respectively. Consequently, the specific indels are those specific to the group.
Genome Biology 2004, 5:R17
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In the present study we show that M. kandleri displays higher
evolutionary rates in its transcriptional proteins (Figure 3)
compared with the other archaeal species analyzed, consist-
ently with a surprisingly high number of specific indels (Table
1). We have identified two new specific features in the molec-
ular biology of M. kandleri that may explain such evolution-
ary acceleration: the displacement of RNA polymerase
subunit H by a homologous protein from a distantly related
archaeal lineage, and the loss of the transcription factor TFS.
As both proteins contact the RNA polymerase core
[33,34,40,41], their replacement or loss may have led to the
overall release of evolutionary constraints in core RNA
polymerase subunits. This phenomenon was possibly further
amplified by an extremely low diversity of signaling systems
in the genome of M. kandleri, and an unusual under-repre-
sentation of DNA-binding proteins generally implicated in
transcriptional regulation of specific operons in archaea [9].

The absence of transcription elongation factor TFS in M. kan-
dleri is especially intriguing. Archaeal TFSs are homologous
to both eukaryotic RNA polymerase subunit M and to the car-
boxy-terminal domain of the eukaryotic transcription elonga-
tion factor TFIIS [42]. However, biochemical experiments
have shown that archaeal TFS is not part of the RNA polymer-
ase core and displays an activity more consistent with the
function of eukaryotic TFIIS [43,44]. Eukaryotic TFIIS has
the ability to strongly enhance the weak intrinsic nuclease
activity of RNA polymerase II (PolII), allowing it to bypass
template-arrest sites by activating the cleavage reaction of

nascent RNAs and releasing stalled RNA polymerase com-
plexes [45]. Bacteria have no homolog of TFIIS, but two func-
tional analogs, GreA and GreB, which perform exactly the
same reaction in vitro and interact with the RNA polymerase
core in a very similar fashion [40,41]. The ubiquitous distri-
bution of TFIIS in eukaryotes and GreA/GreB in bacteria
underlines the extremely important role of these proteins,
which is probably similar for archaeal TFS (for reviews, see
[46,47]). To our knowledge, M. kandleri is the only cellular
organism whose genome has been completely sequenced that
lacks a homolog of either TFS or GreA/GreB. Given the high
evolutionary rates of the transcriptional machinery in M.
kandleri, the absence of TFS may be tolerated because of spe-
cific mutations in the sequence of large subunits that would
either increase the intrinsic RNA polymerase nuclease activ-
ity, or render stalled elongation complexes less stable, leading
to the dispensability of TFS-mediated dissociation [48].
Alternatively, TFS function may be replaced in M. kandleri by
a non-homologous enzyme yet to be discovered.

It is tempting to speculate that these peculiarities in the tran-
scription apparatus of M. kandleri may explain a number of
unique features of this species by the effects of some altera-
tion in this machinery on the evolution of this organism.
Indeed, in addition to the presence of unusual lipids in its
membranes, M. kandleri displays specific features not
observed in other archaea. This is the case for its reverse
gyrase, for example. In all other hyperthermophilic archaeal
taxa reverse gyrase is a monomer formed by the fusion of a

An example of an indel being flanked by divergent regions in Methanopyrus kandleriFigure 6
An example of an indel being flanked by divergent regions in Methanopyrus kandleri. The portion of the alignment corresponds to positions 1,281 to 1,340 
in our RNA polymerase subunit A' dataset. For clarity, identical amino acids shared by each taxon and the first taxon (Sulfolobus tokodaii) are indicated by 
dashes, whereas stars correspond to missing amino acids.
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helicase and a topoisomerase, but in M. kandleri it is com-
posed of two proteins, one corresponding to the helicase
module and the amino terminus of the topoisomerase module
and the other to the carboxy terminus of the topoisomerase
module [49]. Another peculiarity of M. kandleri is its histone
protein, formed by the fusion of two monomers into a single
polypeptide containing two tandemly repeated histone folds
[50]. Interestingly, the recent sequencing of the M. kandleri
genome has identified several other cases of unique protein
fusions [9]. Also, M. kandleri contains the largest proportion
of orphan genes found in any prokaryotic genome [51]. This is
reminiscent of the presence in M. kandleri of a unique DNA
topoisomerase, Topo V, which is exclusive to this archaeon
[52]. All these observations suggest an unusually high level of
gene loss, gene capture and intramolecular recombination
(producing gene fusions and formation of indels) in this
archaeon.

We hypothesize that the loss of TFS in M. kandleri may be
directly linked to all these oddities. In fact, as TFIIS, as well as
GreA/GreB, is involved in the release of stalled elongation
complexes [45] and transcription fidelity [53,54], an appeal-
ing hypothesis is that the absence of TFS in M. kandleri may
induce some transcriptional mutagenesis. For instance,
absence of TFS may possibly allow transcriptional bypass of
DNA lesions that would normally trigger transcription-cou-
pled repair systems. Also, the lack of TFS may prevent disso-
ciation of stalled complexes and consequently increase the
number of replication fork disruptions due to collision
between the replication and transcription machineries. This
situation may mobilize mutagenic DNA repair systems to pro-
mote replication restart via homologous recombination. Of
course, one cannot exclude the possibility that all the idiosyn-
crasies of M. kandleri may be due to another as-yet undeter-
mined feature of this organism, such as the one that triggered
the initial evolutionary acceleration of RNA polymerase sub-
units that may have facilitated the loss of TFS. Nevertheless,
the hypothesis of a direct effect of the loss of a TFIIS-like tran-
scription elongation factor on the rate of genome evolution is
fascinating and should be readily testable using the TFIIS and
greA greB mutants already available. If this hypothesis turns
out to be correct, this would imply a strong correlation, previ-
ously unnoticed, between transcription and the rate of
genome evolution.

Materials and methods
Sequence retrieval and dataset construction
All proteins annotated as implicated in transcription in the
genome of Pyrococcus abyssi [55] were used as seeds for
BLASTP and PSI-BLAST searches [56] on 20 complete or
near-complete archaeal genomes (Pyrobaculum aerophy-
lum; Aeropyrum pernix; the two Sulfolobales - Sulfolobus
solfataricus and S. tokodaii; the three Thermococcales -
Pyrococcus furiosus, P. horikoshii and P. abyssi; the two
Methanococcales - Methanococcus maripaludis and

Methanocaldococcus jannaschii; the Methanobacteriales
Methanothermobacter thermoautotrophicus; the Methano-
pyrales Methanopyrus kandleri; the three Thermoplasmat-
ales - Ferroplasma acidarmanus, Thermoplasma
acidophilum and T. volcanium; the Archaeoglobales A. fulg-
idus; the three Methanosarcinales - Methanosarcina barkeri,
M. mazei and M. acetivorans; and the two Halobacteriales
Halobacterium species and Haloarcula marismortui). The
protein sequences retrieved were: rpoA' (PAB0424), rpoA"
(PAB0425), rpoB (PAB0423), rpoD (PAB2410), rpoE'
(PAB1105), rpoE" (PAB7428), rpoF (PAB0732), rpoH
(PAB7151), rpoK (PAB7132), rpoL (PAB2316), rpoM/TFS
(PAB1464), rpoN (PAB7131), rpoP (PAB3072), NusA
(PAB0426), NusG (PAB2352), TPB (PAB1726), TFB
(PAB1912), TFE (PAB0950), TFIIH (PAB2385), TIP49
(PAB2107). BLAST searches were performed at the National
Center for Biotechnology Information (NCBI) [57] for pub-
lished sequences, and locally for two unfinished genomes
Haloarcula marismortui ([58] and S. DasSarma, personal
communication) and Methanococcus maripaludis strain LL
[59].

For some proteins of small size, additional TBLASTN
searches were performed, as they were not annotated or their
sequences were partial (for example, the complete sequence
of the RNA polymerase subunit K from Ferroplasma acidar-
manus was retrieved by this approach, as the annotated
sequence was partial as a result of misdetection of the initial
methionine). Single protein datasets were aligned by CLUS-
TALW [60], manually refined by the use of the program ED
from the MUST package [61].

We retained only the proteins which were present in a single
copy in each genome and which were missing in not more
than one species. The majority of transcription factors (bona
fide or putative) were discarded, as they were present in mul-
tiple copies (TBP, TFB) or had a scattered distribution (for
example, TFE, TFIIH, TIP49), which prevented their reliable
use as phylogenetic markers. We thus kept only the putative
transcription factors NusA, NusG, and TFS (also annotated as
RNA polymerase subunit M). Although present in two copies
in Halobacterium sp. and Haloarcula marismortui, TFS was
retained because phylogenetic analysis indicated a recent
duplication event specific to Halobacteriales (data not
shown). Surprisingly, no TFS homolog was found in the com-
plete genome of M. kandleri. We also gathered 12 proteins
annotated as RNA polymerase subunits (A', A", B, D, E", E",
F, H, K, L N, P). Subunits E" and P were not found in Ferro-
plasma acidarmanus, possibly because the genome sequence
of this species is still incomplete. Finally, 15 aligned datasets
were kept for transcription proteins (NusA, NusG, TFS, and
12 RNA polymerase subunits).

Previous datasets of archaeal ribosomal proteins [21] were
updated to include four additional taxa (Sulfolobus tokodaii,
Methanopyrus kandleri, Thermoplasma volcanium,
Genome Biology 2004, 5:R17
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Methanococcus maripaludis). The 53 datasets presenting a
sufficient taxonomic sampling and no evidence of multiple
paralogies and/or LGT were retained and concatenated into
two large fusions, one consisting of 14 proteins of the tran-
scription apparatus (3,275 amino-acid positions), the other
consisting of 53 ribosomal proteins (6,377 positions).

Phylogenetic analyses
Phylogenetic analyses were performed on both single and
concatenated datasets by neighbor-joining [62] from gamma-
corrected JTT-F distance matrices calculated by PUZZLE 4.0
[63]. Bootstrap values were calculated on 1,000 replicates of
the original alignments [61]. Maximum likelihood (ML) anal-
yses were performed by ProtML of the MOLPHY 2.3 package
[64]. ML trees were selected among the 2,000 top-ranking
trees resulting from heuristic searches using the JTT-F model
of amino-acid substitution [65]. ML bootstrap proportions
were computed using the RELL (ReEstimation of Log
likelihood) method [66]. To conclude, exhaustive topology
searches were also performed on a partially constrained start-
ing tree where a few undisputed nodes were chosen according
to preliminary analyses {{(S. solfataricus, S. tokodaii), Aero-
pyrum pernix, Pyrobaculum aerophylum}, M. kandleri, ((P.
abyssi, P. horikoshii), P. furiosus), (Ferroplasma acidar-
manus, (T. acidophilum, T. volcanium)), A. fulgidus, ((M.
acetivorans, M. mazei), M. barkeri), (Halobacterium spe-
cies, Haloarcula marismortui), Methanocaldococcus jan-
naschii, Methanococcus maripaludis,
Methanothermobacter thermautotrophicus}. ML values
were computed for each topology by PUZZLE 4.0 [63] by tak-
ing into account the rate among site variations by a gamma
correction (eight rates). All individual and concatenated
alignments and the corresponding phylogenetic trees are
available online [67].
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