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As a minimally invasive recording technique, stereo-electroencephalography (SEEG)

measures intracranial signals directly by inserting depth electrodes shafts into the human

brain, and thus can capture neural activities in both cortical layers and subcortical

structures. Despite gradually increasing SEEG-based brain-computer interface (BCI)

studies, the features utilized were usually confined to the amplitude of the event-related

potential (ERP) or band power, and the decoding capabilities of other time-frequency

and time-domain features have not been demonstrated for SEEG recordings yet. In

this study, we aimed to verify the validity of time-domain and time-frequency features

of SEEG, where classification performances served as evaluating indicators. To do this,

using SEEG signals under intermittent auditory stimuli, we extracted features including

the average amplitude, root mean square, slope of linear regression, and line-length

from the ERP trace and three traces of band power activities (high-gamma, beta, and

alpha). These features were used to detect the active state (including activations to

two types of names) against the idle state. Results suggested that valid time-domain

and time-frequency features distributed across multiple regions, including the temporal

lobe, parietal lobe, and deeper structures such as the insula. Among all feature types,

the average amplitude, root mean square, and line-length extracted from high-gamma

(60–140 Hz) power and the line-length extracted from ERP were the most informative.

Using a hidden Markov model (HMM), we could precisely detect the onset and the end

of the active state with a sensitivity of 95.7 ± 1.3% and a precision of 91.7 ± 1.6%.

The valid features derived from high-gamma power and ERP in this work provided new

insights into the feature selection procedure for further SEEG-based BCI applications.

Keywords: stereo-electroencephalography, brain-computer interface, feature evaluation, time-domain feature,

high-gamma
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1. INTRODUCTION

Brain-computer interfaces (BCIs) aim to build a bridge between
the human brain and the external world by directly interpreting
neural signals from the brain. Over the past two decades,
intracranial electroencephalography (iEEG) has been proved
to be a reliable brain signal acquisition technique for BCI
(Schalk and Leuthardt, 2011; Herff et al., 2020). Compared
with scalp EEG, iEEG has millimeter-level spatial resolution
(Parvizi and Kastner, 2018), a higher signal-to-noise ratio,
and a broader frequency range (up to 500 Hz) (Urrestarazu
et al., 2007). Typically, iEEG recordings are categorized into
electrocorticography (ECoG) and stereo-electroencephalography
(SEEG). Due to sufficient information from low-frequency
oscillations and broadband gamma activities (Parvizi and
Kastner, 2018), decoding studies using iEEG have achieved
remarkable performances in motor (Chestek et al., 2013; Branco
et al., 2017), visual perception (Miller et al., 2016), intonational
speech prosody (Tang et al., 2017), and mood paradigms (Sani
et al., 2018). ECoG electrode arrays are surgically placed above or
below the dura matter to record neural activities of the cortex,
and hence can not access the neural activities of subcortical
structures. In comparison, as a minimally invasive approach with
less infection and hemorrhage risk (Arya et al., 2013; Mullin
et al., 2016), SEEGmeasures neural activities directly by inserting
depth electrodes containing multiple recording contacts into the
human brain. Therefore, SEEG can simultaneously measure the
neural information from both cortical and deeper structures,
including the insula and hippocampus. Especially, SEEG is
suitable for simultaneous recording of two brain hemispheres
(Nair et al., 2008; Minotti et al., 2018). With the increasing
use of SEEG in monitoring medication-resistant epilepsy, it
becomes possible to evaluate the potential of SEEG signals in BCI
applications.

Several SEEG-based BCI studies have been reported. Within
these studies, band power features and event-related potentials
(ERP) features are the most commonly used features. In
typical motor BCI paradigms, two-dimensional cursor trajectory
(Vadera et al., 2013), different hand gestures (Li et al., 2017b;
Wang et al., 2020), and imagined grip force level (Fischer et al.,
2017) have been successfully decoded using the power of classic
motor-related brain oscillations such as alpha (8–12 Hz) and beta
(13–30 Hz) power, as well as high-gamma (60–200 Hz typically)
power. Besides these band power features, ERP recorded in the
sensorimotor cortex has also been used to decode executed and
imagined grip forces (Murphy et al., 2016). Moreover, significant
ERPs obtained in the middle temporal region (Li et al., 2017a),
the ventricle (Shih and Krusienski, 2012), and the hippocampus
(Krusienski and Shih, 2011) have been adopted in the building of
visual spellers.

Notably, the above SEEG-based BCI studies only take the
average amplitude of the band powers or ERPs as features.
While other summative measurements of the band power and
ERP traces in a time window have been successfully used
in BCI studies based on either EEG or ECoG and exhibited
remarkable decoding performance. For example, the root mean
square (RMS) of ERP can provide informative features in visual

speller and movement tasks (Mak et al., 2012; Bascil, 2018).
The slope between peak and valley points and the slope from
linear regression of EEG in a time window also play a role in
decoding (Phillips et al., 2012; Adam et al., 2014). Moreover,
the line-lengths of ECoG signals have been used as features in
hand motion decoding (Xie et al., 2015). To date, it is largely
unknown whether or not the above time-domain features could
provide selective information for SEEG-based BCI. Additionally,
when these time-domain features are extracted from traditionally
used band power traces, novel time-frequency features (e.g., line-
length of high-gamma power trace) can be generated. Also, it is
still unknown whether such time-frequency features can play a
role in SEEG-based BCI applications.

Therefore, this study aimed to evaluate the validity of various
features of SEEG recordings, including time-domain features
extracted from ERP trace and time-frequency features extracted
from band power traces (high-gamma, beta, and alpha). To this
end, different features were extracted from continuous SEEG
signals, and we classified the active state (including activations
to two types of auditory name stimuli) and idle state from
continuous SEEG data, and the evaluation indicators were
set as the sensitivity and precision for active state detection.
Moreover, to find optimal decoding settings, performances of
different window lengths and classifiers were compared as well.
The results showed that the onset and the end of the active
state could be precisely detected using a hidden Markov model
(HMM). By splitting the active state into two different states,
a three-class (own name, other name, and idle) classification
still demonstrated the effectiveness of the proposed feature
combination and classification scheme. This study validated the
spontaneous decoding of subjects’ active state and idle state under
auditory stimuli using SEEG recordings, and systematically
evaluated various features under the same paradigm.

2. MATERIALS AND METHODS

2.1. Subjects
Seven right-handed subjects (Table 1) participated in this study.
All subjects were intractable epilepsy patients undergoing SEEG
monitoring for seizure localization. SEEG electrodes implanting
configurations were determined strictly for diagnostic purposes
rather than the needs of this study. Figure 1 shows an example
of SEEG electrodes placement and recording environments. All
subjects signed informed consent, which was approved by the
Ethics Committee of Huashan Hospital, Shanghai, China (No.
KY2019518).

2.2. Experimental Paradigm
In this study, we implemented an acoustic name presentation
experiment (Figure 2). More specifically, during the experiment,
all subjects received two kinds of auditory stimuli, where one
was the subject’s own name, and the other was a stranger’s name
with the same length as the own name. The name stimulus was
presented to each subject by an in-ear headphone. In each trial,
the subject received the stimulus first and then could relax in
the inter-trial interval (Figure 2). The two names were repeated
for equal trials in a pseudo-random sequence. The trial size,
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TABLE 1 | Subject demographics, implanting information, and neural recording details.

Subject Age Implanting Sampling Trial Cue and Stimulus Inter-trial

(years) hemisphere frequency size preparation duration (ms) interval (ms)

S1 31 Left (144) 2,000 60 − 2,000 2,000

S2 30 Left (138), Right (32) 2,000 80 − 2,000 2,000

S3 24 Right (104) 2,000 120 − 1,000 1,000

S4 24 Right (108) 1,000 120 − 1,000 1,000

S5 33 Left (150) 2,000 120 ∗ 1,000 1,100−1,300

S6 24 Left (90) 2,000 120 ∗ 1,000 1,100−1,300

S7 32 Left (30), Right (96) 2,000 120 ∗ 1000 1,100−1,300

The numbers in brackets in the “Implanting hemisphere” column indicate the number of contacts in the hemisphere. The “∗” or “−” in the “Cue and preparation” column indicates the

existence or non-existence of the cue and preparation time before the name presentation, respectively.

FIGURE 1 | Electrode implantation and recording environments for SEEG. (A) Surgical implantation of electrode shafts. (B) A sample of 3D brain model with

implanted electrode shafts. (C) A patient and the whole recording system in a clinical environment.

duration of the stimulus, and inter-trial interval of each subject
were shown in Table 1. After preliminary analysis for the first

two subjects S1 and S2, we found that 1-s stimulus duration was

enough to elicit the subject’s complete response, and 1-s inter-

trial interval was enough for the response to revert to the baseline.
Therefore, the stimulus duration and inter-trial interval were

set as 1 s for the following subjects. Furthermore, to avoid the

subject’s adaption, another floating inter-trial interval from 100
to 300 ms was added (Nowicka et al., 2016) for subjects S5-S7,

and these subjects received a 100-ms cue (a short burst of sound)
and 500-ms preparation time before the name presentation
to attract attention.

2.3. Data Recording and Electrode
Localization
SEEG data were recorded with a clinical recording system (EEG-
1200C, Nihon Kohden, Irvine, CA). The cut-off frequency of
the hardware filter of the recording system was 0–3,000 Hz,
and SEEG data were digitized at 1,000 or 2,000 Hz. Each depth
electrode shaft contains 8–16 contacts. Each contact is 2 mm long
with a 0.8 mm diameter and 1.5 mm spacing distance. For signal
recording, the ground electrode was placed at the location of Fpz
on the scalp; SEEG signals were referenced against the average of
two white matter contacts that were adjacent to each other and
located remotely from the suspected epileptogenic foci and gray
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FIGURE 2 | Experimental paradigm. The periods from the 300 to 1,000 ms following the stimuli onsets were defined as active states during the signal processing.

matter. This referencing technique was the same for all channels
and is commonly used by the surgeons at Huashan hospital.
For each subject, using pre-implant MRI and post-implant CT
images, we first rebuilt the individual brain by performing brain
reconstruction and segmentation in Freesurfer (Fischl et al.,
2002), and then identified the 3D coordinates and the anatomical
labels within the brain for all SEEG contacts using iEEGview
Matlab toolbox (Li et al., 2019).

2.4. Pre-processing and Channel Selection
We first investigated the capability of SEEG to distinguish the
active state and the idle state, where the periods from 300 to
1,000 ms following the name stimuli onsets were used for the
active state calculation consistently (Figure 2). To do this, for
each type of signal trace, including the high-gamma (60–140
Hz), beta (13–30 Hz), and alpha (8–12 Hz) band power, as
well as the ERP, we selected the corresponding active channels
separately, where the channels presenting significantly different
amplitudes of signal traces between the active period and the
idle period were identified. In detail, take the high-gamma power
as an example to show the channel selection. In the first step
of channel selection, for each channel, the amplitude of high-
gamma power was extracted as follows: (1) the signals were
filtered by a 50 Hz comb notch filter to remove the possible line
noises and their harmonics; (2) we re-referenced the signals using
the Laplacian reference method (Li et al., 2018); (3) we band-
pass filtered the signals between 60 and 140 Hz using a 6th-order
Butterworth filter and thus high-gamma signals were generated.
Then we applied the Hilbert transform on the high-gamma signal
of each channel to extract its absolute amplitude. By squaring the
absolute amplitude, we obtained the high-gamma power trace
of each channel. Regarding the ERP trace, raw voltages of the
active channels were subjected to a 50-Hz comb notch filter and
a high-pass filter (0.5 Hz), and then a Laplacian re-referencing
scheme, and thus the ERP traces were generated. Then for each
type of signal trace, we divided the trace into trials according
to the markers at the stimulus onset. For each trial, the 200-
ms period preceding the stimulus onset was considered as the

baseline, namely the idle state period (Figure 2). We normalized
the trace using Z-scored transformation against its baseline.
Finally, the trace of each trial was convoluted with an 80-ms
Gaussian window for smoothing (Miller et al., 2016).

In the second step of channel selection, a random permutation
test was used to check whether the single channel was active
indeed by using all trials within the channel repeatedly (Schalk
et al., 2007; de Pesters et al., 2016; Li et al., 2018). Therefore, we
could evaluate each channel independently by this permutation
test. Take the high-gamma power as an example. For each
channel, the average high-gamma power amplitude of the active
state period and the idle state period in each trial were set as x and
y, respectively. We first concatenated all x and y of all trials as z,
and then correlated z with the corresponding labels to obtain the
observed Spearman r-value. Second, the active/idle labels (e.g.,
−1/1 for active/idle state respectively) were randomly shuffled,
and the r-value between z and randomized labels was calculated.
Then we repeated this randomization step 1,000 times, thus
generating a Gaussian distribution with 1,000 surrogate r-values.
The observed r was considered statistically significant if it
belonged to the 95th percentile of the Gaussian distribution (p
< 0.05 after Bonferroni correction), and correspondingly, these
channels were considered active and selected for further analysis.
The high-gamma responses of a representative active channel
from different subjects are shown in Figure 3. To avoid too much
redundant information, we only kept the ten most informative
channels with the smallest p-values for each type of signal trace
if the number of active channels was larger than ten. Only the
kept active channels were used in the following feature extraction.
Regions containing active channels are shown in Table 2.

2.5. Feature Extraction
Using the selected active channels for high gamma, beta, and
alpha bands, as well as ERP activity separately, we extracted the
features input into the classifiers, where the idle state periods
were treated as the periods except the active state periods
(Figure 2). In detail, ERP and power traces of high-gamma,
beta, and alpha bands in a time window were extracted from
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FIGURE 3 | Representative high-gamma responses and positions of active channels for each subject. Each time-power plot in the top and bottom rows reflects a

subject’s high-gamma power (mean and standard error) across trials from an active channel. The responses to own name and other’s name stimuli were displayed

separately. The black vertical line indicates the stimuli onset. The standard Montreal Neurological Institute (MNI) brain models in the middle row show positions of the

above channels in the sagittal, coronal, and transverse view. Channel positions of different subjects are marked with different colors and numbers.

the pre-processed signals using the corresponding active channel
set respectively (Figure 4, Section 2.4). Then four time-domain
features, including the average amplitude, RMS, slope, and line-
length were extracted from each type of signal trace (high-gamma
power, beta power, alpha power, and ERP). Therefore, for each
type of signal trace, an active channel generated four features
(Figure 4), and the feature combination had 16 types of time-
frequency and time-domain features in total. For each feature
dimension, according to its values and active/idle labels (−1/1)
across trials in the training set, here we implemented a random
permutation test again and thus generated the p-value for the
feature dimension. Only ten features with the smallest p-values
were kept. Finally, for convenience of visualization, a principal
component analysis (PCA) was used for dimension reduction,
and principal components that corresponded to more than 95%
of explained variance were used for classification.

2.6. Classification and Evaluation
Three-fold cross-validation was used during the classification
procedure (Miller et al., 2016). More specifically, the continuous
data stream during the whole experiment was divided into three

consecutive streams evenly, where two streams were used to train
the classifier, and the remaining one was used as the testing
set. In this way, there was no overlap between sliding windows
of the training set and test set. To comprehensively evaluate
the decoding capability of obtained SEEG signals, we compared
the influence of different windows lengths on the classification
performance. In detail, window lengths from 150 to 500 ms were
used to generate the samples used for training and testing, where
the overlap time of the sliding window was 50 ms. Moreover, to
find which kind of classifiers was more proper for decoding in
the current task, under each window length, we also compared
the performance of a series of classifiers, including HMM, linear
discriminant analysis (LDA), support vector machine (SVM),
and random forest (RF).

Details on the fundamentals and implementation of HMM are
available in Rabiner (1989). In brief, the probability of themodel’s
current state is obtained by multiplying the transition probability
of the previous state to the current state and the probability
of detecting the current features given the current state. In our
cases, to initialize the HMM based on continuous variables,
the matrix of state transition probability and the probability
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TABLE 2 | Regions containing active channels used for classification.

Subject Regions containing

active channels

Subject Regions containing

active channels

S1 Left insula

Left putamen

Left bankssts

Left superior temporal

Left supramarginal

Left pars opercularis

S2 Left insula

Left supramarginal

Left pars opercularis

Left superior temporal

Left transverse

temporal

Right insula

Right supramarginal

S3 Right insula

Right fusiform

Right superior temporal

Right inferior parietal

Right inferior temporal

Right parahippocampal

Right transverse

temporal

S4 Right fusiform

Right inferior parietal

Right inferior temporal

Right superior temporal

Right superior parietal

Right transverse

temporal

S5 Left insula

Left hippocampus

Left superior temporal

Left transverse

temporal

S6 Left bankssts

Left inferior parietal

Left middle temporal

S7 Right superior temporal

Right insula

Right supramarginal

The “bankssts” of subject S1and S6 is the abbreviation for banks of the superior temporal

sulcus. As long as a channel was decided as active using any one of the four signal traces,

the corresponding anatomical label was shown in this table.

density functions of features under different states were required
(Rabiner, 1989). Therefore, we first estimated the probability
density functions of features under the two states separately by
the Gaussian mixture model (GMM), a parametric probability
density function represented by a weighted sum of Gaussian
component densities (Reynolds, 2009). And then, the matrix of
state transition probability was generated by computing state
transition times according to active/idle labels of the training set.

To evaluate the detection performance for the active state,
the sensitivity and precision of the classification were calculated,
where the metrics are defined as follows:

Sensitivity =
TP

TP+ FN
× 100% (1)

Precision =
TP

TP+ FP
× 100% (2)

In the equations, true positives (TP) was the number of active
state periods identified by both algorithm and actual labels as
well; false negatives (FN) was the number of actual active state
periods, which were missed by the algorithm; the false positive
(FP) was the number of actual idle state periods, which were
identified as active state periods by the algorithm. Representative
detection results of subjects S2 and S3 are shown in Figure 5. In
the examples, all active state periods of S2 are TP detections, and
S3 has one FP detection and one FN detection.

Besides the sensitivity and precision, we also calculated the
accuracy indicator. The total accuracy for all periods of active and

idle states was defined as follows:

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
× 100% (3)

True negatives (TN) was the number of idle state periods
identified by both algorithm and actual labels as well. Using TP,
FN, FP, and TN, we also calculated the confusion matrix to show
the classification accuracy of each type of state.

Additionally, we have calculated the chance levels of
the sensitivity, precision, and total accuracy indicators by
permutation tests. In detail, within each subject, we randomly
shuffled the actual labels (active or idle) of all sliding windows
before the feature extraction and classification. Then we re-
implemented the feature extraction and classification. The
evaluation indicators were calculated with actual labels and the
outputs of the classifier. This procedure was repeated 1,000 times,
and the significance level of evaluation indicators corresponded
to the 95th percentile (p < 0.05) of the empirical distribution
established by randomly permuting the labels (Combrisson and
Jerbi, 2015; Branco et al., 2016).

Further, using the identified window length and classifier,
we calculated the time difference between the detected active
state onset and the actual active state onset (Onsetdetected minus
Onsetactual), as well as the time difference between the detected
active state end and the actual active state end (Enddetected minus
Endactual). We only calculated the time differences when the
actual active state and the detected active state had overlapping.
Additionally, when the actual active state and the detected active
state had an onset difference or end difference larger than 400
ms, the averaged time difference would be expanded, in the
meantime, an extra FP or FN detection would be counted to
make the evaluation stricter. In a few cases, one period of detected
active state could penetrate two periods of actual active state. In
such cases, only 1 TP detection and 1 FP detection were counted,
and the time difference of the onset point was equal to the onset
of the detected active state minus the onset of the first period of
actual active state, and the time difference of the end point was
equal to the end of the detected active state minus the end of the
second period of actual active state.

2.7. Comparison With Traditional
Frequency-Domain and Time-Frequency
Features
Frequency-domain features have been widely used in decoding
the field potentials. Also, both short-time Fourier transform
(STFT) and wavelet transform have been widely used for
extracting time-frequency domain features in field potentials
(EEG, ECoG, SEEG, and local field potential) analysis. Therefore,
we compared the combination of time-domain and time-
frequency features of this study with other frequency-domain
and time-frequency features. In sliding windows, spectral
amplitudes in the frequency domain were extracted by
autoregressive (AR) model, and time-frequency features were
extracted by STFT and wavelet transform separately. Details of
implementation of the three approaches are as follows.
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FIGURE 4 | The flow chart of signal processing and classification procedure. Time-domain features, including the average amplitude, root mean square, slope of

linear regression, and line-length were extracted from the high-gamma, beta, and alpha band power traces, as well as the event-related potential.

FIGURE 5 | Representative results of state detection. Light blue and red bars

respectively indicate the actual active state and detected active state by the

HMM classifier. Periods with white indicate the actual and detected idle states.

Panels (A,B) are the results from two typical subjects (S2 and S3). There is no

FN and FP detection in (A), and there is one FN detection and one FP

detection in (B).

AR model: for each time window, we converted the re-
referenced SEEG data into the frequency domain with an AR
model of order 100 (Schalk et al., 2007). Using the AR model
(built by the Matlab function pyulear), we calculated the spectral
amplitudes in the interested frequency bands (high-gamma, beta,
and alpha) with 1 Hz bins. In each frequency band, we averaged
the spectral amplitudes across frequency bins. STFT: we used
the Matlab function spectrogram to implement the STFT in each
time window. In detail, the 400-ms re-referenced SEEG data
was divided into sections (length = number of data points/4.5,
referring to the example of function introduction), and the
sections were windowed using a Hamming window.We specified
50% overlap between contiguous sections. Thus the time-variant

power spectral densities (PSD) were extracted from the high-
gamma, beta, and alpha bands, respectively. In each frequency
band, we averaged the PSD across frequency bins and time
points to generate the feature for the 400-ms window. Wavelet
transform: the Matlab function cwt was used to implement the
continuous wavelet transform in each time window. The cwt was
obtained using the analytic Morse wavelet with the symmetry
parameter equal to 3 and the time-bandwidth product equal to
60. The wavelet coefficients in the high-gamma, beta, and alpha
bands were extracted separately. After that, in each frequency
band, we averaged the absolute value of wavelet coefficients across
frequency bins and time points.

For each frequency band, only features of its own active
channels (Section 2.4, Figure 4) were kept. After extracting
frequency-domain or time-frequency features across all sliding
windows by each approach, we then re-executed the same PCA
dimension reduction and GMM-HMM classification scheme for
each frequency band separately.

2.8. Detection Involving Different Active
States
To further demonstrate the effectiveness of the proposed feature
combination and GMM-HMM classification scheme, we added
a three-class classification, where the active state was split into
the own name state and the other’s name state. We termed
different states as idle state, own name state, and other name state,
respectively. Before the detection, the same feature extraction
process described above was used (Section 2.5, Figure 4). But
slightly differently, the feature selection process was extended for
the current classification scheme on the basis of the described
method (Section 2.5), where the permutation test for feature
selection was conducted three times at each feature dimension
here. In detail, using permutation tests, the p-values (Bonferroni
corrected) of comparisons between idle/own name states were
first computed at all feature dimensions separately, and ten
feature dimensions with the smallest p-values were selected.
In the same way, we also computed p-values for comparisons
between idle/other name states and own/other name states
to select ten feature dimensions respectively. As the above
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classification scheme, only one HMM classifier was used, which
had three types of outputs (own name, other name, and
idle state).

3. RESULTS

3.1. Influence of Window Lengths and
Classifiers on Detection Performance
Figure 6 shows the detection performances of the active state
against the idle state. Figures 6B,E show the average sensitivity
and precision across subjects respectively, where the rows
indicate results of the four classifiers and the columns indicate
the results under different window lengths. In general, results
suggested that the sensitivity and precision did not simply follow
an upward or downward tendency as the window length changed
for the same classifier. In general, for different classifiers, we
observed the HMM outperformed all the other classifiers. Thus
we focused on the performance of HMM. To show the standard
error across subjects, the average sensitivities and precisions of
HMM under all window length settings were shown in the line
charts (Figures 6A,D). Under each window length, the sensitivity
and precision of HMM were high enough (around 90%), and the
sum of sensitivity and precision reached its maximum under the
400-ms window, where the sensitivity was 95.7 ± 1.3% and the
precision was 91.7 ± 1.6% (mean ± standard error). Thus only
this window length was adopted in the following classification.

The performance of HMM and other classifiers was further
evaluated under the 400-ms window. The four classifiers’
sensitivities and precisions were shown in bar charts to display
the standard error across subjects (Figures 6C,F). The average
sensitivity of HMM (95.7 ± 1.3%, ) was lower than ones of LDA
(99 ± 0.5%) and RF (98.3 ± 0.8%), and higher than the one
of SVM (95.1 ± 3.2%). The four groups of sensitivities met the
homogeneity of variances (p = 0.06, Levene test), and thus one-
way ANOVA suggested that there was no significant difference
among sensitivities of the four classifiers (F = 1.2, p = 0.33).

Regarding the precision, HMM resulted in the highest
performance (91.7 ± 1.6%, Figure 6F). The four groups of
precisions did not meet the homogeneity of variances (p =

0.02, Levene test), and thus non-parametric tests (Mann–
Whitney U-test) suggested that p-values for comparisons
between HMM against LDA, SVM, and RF were 0.003, 0.027, and
0.008 respectively. SVM resulted in the second-highest average
precision, whereas the value was only 65.2%, much lower than
the value of HMM. Taken together, the results demonstrated
that, among all the classifiers, HMM could achieve the highest
precision and high enough sensitivity. Therefore, HMM was
adopted as the classifier in the following calculation.

Under the identified window length and the classifier, we
further showed the total accuracy and confusion matrix for
each subject (Figure 7). Six subjects (S1-S6) achieved a total
accuracy above 90%, and the total accuracies of all subjects were
significantly higher than their chance levels (p < 0.05). Subject
S7 showed a relatively low total accuracy (83.8%) because 26.7%
periods of actual idle state were identified as active state by the

FIGURE 6 | Sensitivities and precisions under different window lengths and

different classifiers. Panels (A–C) indicate the evaluations of sensitivities.

Panels (D–F) indicate the evaluations of precisions. Panels (B,E) show the

average sensitivity and precision across subjects respectively, where the rows

in the matrix indicate results of the four classifiers and the columns indicate the

results under different window lengths. Darker color indicates a higher value.

Panels (A,D) further visualize performances of HMM with standard errors

across subjects, where all window lengths were used. Panels (C,F) further

visualize performances of four classifiers with standard errors across subjects,

where only the 400-ms window was adopted. *p < 0.05.

algorithm. In contrast, the accuracy for the actual active state was
still at a high level of 94.2%.

3.2. Timing of the Onset and the End of
Detected Active States
Results showed that the average onset time difference across all
subjects was−43 ms, and the average end time difference was 65
ms (Figure 8A). By group analysis of all active state periods from
all subjects, the empirical distributions of the two types of time
difference peaked at −64 and 40 ms, respectively (Figure 8B). In
general, the two types of time differences fluctuated around 0 ms
across all active state periods. We displayed the time differences

Frontiers in Neuroscience | www.frontiersin.org 8 March 2022 | Volume 16 | Article 818214

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ye et al. State Detection Using SEEG

FIGURE 7 | Total accuracy and confusion matrix for each subject. The total accuracy of all periods of active and idle states for each subject is marked with red, and

the chance level is marked with dark blue. In the confusion matrix, each row represents a type of actual state, and each column represents a type of detected state.

FIGURE 8 | Timing of the onset and the end of detected active states. The sub-figures display the time difference between the detected active state onset and the

actual active state onset, and the time difference between the detected active state end and the actual active state end. (A) Displays the two types of time differences

within each subject (mean ± ste). (B) Displays the empirical distributions of the two types of time differences by group analysis of all active state periods from

all subjects.

only if both the sensitivity and the precision were at a level of
around 90%.

3.3. Evaluations for Different Features
Besides the combination of time-frequency and time-domain
features, we further evaluated the decoding performance of
each single type of feature. Briefly, using each single type
of feature adopted in Section 2.5 (e.g., line-length of high-
gamma power trace, Figure 3), we separately implemented the
classification again. Results from all subjects showed that the
decoding accuracy varied across feature types (Figures 9A,B).
For example, all features derived from alpha power resulted in
low sensitivities (< 40%) and precisions (< 70%); all features
derived from the slope of linear regression also resulted in low
sensitivities (< 40%) and precisions (< 80%). Therefore, the

following analysis rejected these invalid features. In contrast,
high-gamma amplitude, high-gamma RMS, high-gamma line-
length, and ERP line-length showed the highest sensitivities and
precisions for all subjects. Within these four types of informative
features, high-gamma line-length obtained the highest sensitivity
(94.7%), and ERP line-length obtained the highest precision
(91.8%). After redundant feature rejection, we recalculated the
performance based on the combination of the above four types
of features.

The combination of the four-type informative features
achieved an average sensitivity of 95.8 ± 1.4% (mean ±

ste) and an average precision of 91.5 ± 1.2% (Figure 9C).
The highest sensitivity was in S2 (100%), and the highest
precision was in S3 (96.7%). The lowest sensitivity was in
subject S4 (88.8%), and the lowest precision was in S1 (86.4%).

Frontiers in Neuroscience | www.frontiersin.org 9 March 2022 | Volume 16 | Article 818214

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ye et al. State Detection Using SEEG

FIGURE 9 | Performances of each single feature type and the four-type

feature combination. Panels (A,B) exhibit sensitivities and precisions of 16

types of time-frequency or time-domain features separately, where each type

of feature was a subset of the feature combination in Section 2.5 and

Figure 4. The crossover point of the row and column indicates the result of

the corresponding feature. Each row represents a type of signal trace, where

γ , β, α, and ERP indicate the high-gamma power, beta power, alpha power,

and the event-related potential, respectively. Each column represents a type of

time-domain feature, where A, RMS, k, and L indicate the amplitude, root

mean square, slope, and line-length, respectively. The value represents the

mean accuracy across subjects. (C) Sensitivity and precision of the four-type

feature combination. Error bars depict the standard error across subjects. The

results were compared with the performances of the 16-type feature

combination, where the blue horizontal line and the red horizontal line indicate

the sensitivity and the precision calculated using the 16-type feature

combination, respectively.

Importantly, Mann–Whitney U-tests suggested no significant
difference between the performances calculated using the four-
type feature combination and the performance calculated using
all 16-type feature combination (Section 3.1), where the p-value
for the sensitivity and the precision were 0.99 (Figure 10A)
and 0.65 (Figure 10B), respectively, indicating that the four-type
feature combination provided enough information. Meanwhile,
though the sensitivity of the four-type feature combination was
higher than the sensitivity of each single type of the feature,
including the sensitivity of ERP line-length (92.9± 2.55%), these
differences did not show statistical significance (p = 0.15–0.6,
Mann–Whitney U-tests, Figure 10A). The differences between
the precision of the four-type feature combination and the
precision of the single type of informative feature did not show
statistical significance, either (p = 0.25-1, Mann–Whitney U-
tests, Figure 10B). Moreover, there was no significant difference

FIGURE 10 | Statistic results of comparisons among features. Panels (A,B)

exhibit the p-value of the Mann–Whitney U-test for the sensitivity and

precision, respectively. Pairwise comparisons were performed among the

features (or feature combination), where the crossover point of the row and

column indicates the p-value between the corresponding two features (or

feature combination). The symbols for features (γ , β, α, A, and L) are the same

as those in Figure 9. Set 4 indicates the four-type feature combination, and

Set 16 indicates the 16-type feature combination.

among sensitivities of single types of features (p = 0.34-0.87,
Figure 10A), and there was no significant difference among
precisions of single types of features, either (p = 0.21-1,
Figure 10B). Thus, these results suggested that each single type of
informative feature encoded sufficient information. Though each
single type of informative feature could detect the state transition
independently in the current work, we still adopted the four-type
feature combination in following analyses to reserve discriminant
information maximally.

Figures 11A–C display performances of spectral amplitudes
in the high-gamma, beta, and alpha bands calculated by the AR
model. In general, these traditional frequency-domain features
could not achieve satisfactory performance among all subjects.
Though spectral amplitudes of the high-gamma band achieved
the best performances among the three frequency bands, only
subjects S2 and S5 obtained sensitivity and precision above
90%, and the sensitivity or precision was lower than 80% in
other subjects (Figure 11A). The sensitivity and precision of
subject S6 were especially low. Regarding the beta and alpha
bands, the averaged sensitivity across subjects was only 36% and
35%. These frequency-domain features always failed to detect
the state transition, and thus the classifier always resulted in
sustained outputs of the same state. Therefore, the number of
TP was limited in a small value but the number of FN could be
large, accounting for low sensitivity and precision simultaneously
(Figures 11B,C).

Figures 11D–F display performances of time-frequency
features calculated by STFT, and Figures 11G–I display
performances of time-frequency features calculated by wavelet
transform. Results showed that time-frequency features in the
high-gamma band (Figures 11D,G) outperformed features in
the beta and alpha bands, similar to previous results. Thus we
only compared the performances in the high-gamma band. The
sensitivity and precision calculated by STFT were 85.8 ± 5.1%
(mean ± ste) and 85.5 ± 3.2%, respectively (Figure 11D), and
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FIGURE 11 | Performances of frequency-domain or time-frequency features calculated by autoregressive model, short-time Fourier transform, and wavelet transform.

Panels (A–C) display the performances of autoregressive model. Panels (D–F) display the performances of short-time Fourier transform. Panels (G–I) display the

performances of the wavelet transform. By each approach, the sensitivity and precision were calculated in the high-gamma, beta, and alpha bands separately. The

results were compared with the performances of the above four-type feature combination (Figure 9C), where the blue horizontal line and the red horizontal line

indicate the sensitivity and the precision calculated using the four-type feature combination, respectively. The green horizontal lines of each subject in (A,D,G) indicate

the chance levels of the sensitivity and the precision corresponding to the features.

the sensitivity and precision calculated by wavelet transform
were 92.1 ± 2.9% and 86.8 ± 3%, respectively (Figure 11G). By
these two approaches, sensitivities and precisions for all subjects
were higher than the chance levels significantly (p < 0.05).
However, sensitivities and precisions of both wavelet transform
and STFT were lower than the sensitivity and precision of our
four-type feature combination (95.8 and 91.5%). Limited by the
number of subjects, the comparisons could not show significant

differences (p = 0.1–0.4, Mann–Whitney U-tests). For results
of STFT, the sensitivity of subject S6 was below 60%; for results
of the wavelet transform, sensitivity of S4 and precision of S1
were below 80%. In contrast, our four-type feature combination
could always achieve remarkable sensitivities and precisions in
these subjects, and even the minimum precision was up to 86.4%
(S1). Overall, the four time-domain or time-frequency features
we proposed have demonstrated their superiorities.
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3.4. Performance of Three-Class Detection
The three-class state detection was implemented using the above
four-type optimal feature combination. Representative detection
results of subjects S2 and S3 were shown in Figures 12A,B,
respectively. In the example of S2, the first actual other
name state period contained a very short period of detected
own name state, and thus a false detection was counted.
The third actual own name state period was misidentified as
other name state. In the example of S3, there were more
false detections between the own name state and other name
state. Besides, there was an actual other name state period
misidentified as idle state, and an actual idle state period
misidentified as other name state. Averaged state detection
accuracies across subjects can be seen in Table 3. The accuracies
for own name state and other name state detection were
68.2 ± 5% and 70.8 ± 6.6%, respectively. About 29.8 ±

4.6% of actual own name state periods were misidentified as
other name state periods, and 26.8 ± 6.6% of actual other
name state periods were misidentified as own name state
periods. In contrast, the accuracy for the idle state was still
high (86.4± 2.7%).

FIGURE 12 | Representative results of three-class (own name, other name,

and idle) state detection. Periods with white indicate the actual and detected

idle states. Panels (A,B) are the results from two typical subjects (S2 and S3).

The traces of principal components of SEEG features were normalized.

TABLE 3 | Averaged state detection accuracies across subjects (%).

Actual/Detected Idle Own Other

Idle 86.4 ± 2.7 5.9 ± 1.7 8.2 ± 2.4

Own 2 ± 1.3 68.2 ± 5 29.8 ± 4.6

Other 2.4 ± 0.9 26.8 ± 6.6 70.8 ± 6.6

The values following the “±” indicate the standard error across subjects. The bold values

indicate the accuracy of each class.

4. DISCUSSION

4.1. Influencing Factors of Detection
Performance
The present study demonstrated the capability of using SEEG
recordings to detect the active state against the idle state,
and moreover, evaluated the influences of the detection
configurations from multiple aspects, including the window
length, the classifier, and features derived from ERP and different
power traces. The current result showed that too long or too short
windows could omit or conceal useful classification information.
Under the current window settings, although performances of the
different subjects did not show a united tendency as the window
length changed, windows with a length of around 400ms resulted
in high and balanced sensitivity and precision in all subjects.

Our results suggested that HMM could produce the best
performance among all the adopted classifiers under the current
task. This may be because HMM models the matrix of state
transition probability between samples (Blunsom, 2004; Elliott
et al., 2008). In this situation, adjacent samples relate to
each other, and the previous state provides references for
estimation of the current state. Therefore, HMM is a popular
statistical tool for modeling a wide range of time-series data. In
contrast, other classifiers such as LDA, SVM, and RF, generally
ignore the relationship between samples and deal with samples
independently, even though these samples come from an ongoing
data flow. Thus these three classifiers in our cases tended to
generate independent and random outputs during the idle state,
resulting in more false detections of the active state, and thus the
precision was much lower.

4.2. Interpretations of Time-Domain
Features and Frequency Band
The time-domain features in this study usually have specific
implications, where the amplitude feature reflected the
magnitude of the signal; the RMS feature could reflect the
signal fluctuation (Pavlov et al., 2018), and the slope feature
reflected the changing trend. Line-length is the running sum of
the absolute differences between all consecutive samples within a
predefined window, and thus the value of this feature will grow
as the data sequence magnitude or signal variance increases
(Koolen et al., 2014). Hence, line-length can be seen as an
amplitude and frequency demodulator (Koolen et al., 2014). In
this work, we extracted time-frequency features by performing
the above time-domain operators to different band power traces
or ERP of SEEG signals. The comparisons among decoding
capabilities of various features were then implemented. Besides
the high-gamma amplitude, the current study pioneered other
three time-frequency or time-domain features derived from
SEEG signals, including the high-gamma RMS, high-gamma
line-length, and ERP line-length. These novel features could
result in remarkable classification performance separately under
the current task (Figures 9A,B), and thus provided effective
guidance for SEEG studies. Some of the four informative features
have been proven effective in ECoG or EEG studies using other
paradigms. For example, the amplitude of high-gamma power
extracted by the band-pass filter and Hilbert transform could
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distinguish the movement of each finger (Hotson et al., 2016).
ERP line-length of ECoG could also decode different hand
motions (Xie et al., 2015), and ERP line-length also worked
in burst detection for EEG (Koolen et al., 2014). Meanwhile,
the four-type feature combination’s performance was higher
than ones calculated by each single type of informative feature,
although the p-values of comparisons were greater than 0.05,
which might be caused by the limited number of subjects.
Further, the performance of the four-type feature combination
was at the same level as the performance achieved using all
features (Figure 9C), which was beneficial to the decoding from
the view of computational efficiency.

The excellent performances of the high-gamma band reported
in this study had potential physiological interpretations. The
high-gamma band is considered to reflect the local neural
population’s activity directly around or underneath the recording
electrode (Ray et al., 2008). This means that the high-gamma
activity indicates the excitability of the local region (Mukamel
et al., 2005; Cardin et al., 2009; Miller et al., 2014; Parvizi
and Kastner, 2018). Therefore, high-gamma activities may, to a
large extent, reflect detailed neural information. Moreover, the
superiority of high-gamma band reported in this work is also in
agreement with previous BCI studies, such as spoken sentence
decoding (Anumanchipalli et al., 2019; Moses et al., 2019), hand
gestures (Chestek et al., 2013; Branco et al., 2017) and upper
limb joints prediction (Thomas et al., 2019). Additionally, Miller
et al. (2016) predicted the onset and type of visual stimulus
from continuous data using broadband activities. The broadband
activity extracted from the field potential has been shown to
correlate with neuronal firing rate (Miller et al., 2009, 2016),
and thus achieved superior detection performance, similar to
findings in our study. In the current study, features derived
from alpha and beta bands showed relatively poor performances.
One possible explanation might be that features derived from
slow-frequency oscillations in field potential had a relatively
long variation period, and thus these features could not capture
the rapidly changing external stimuli. Similarly, the beta band
always showed poorer performance than the high-gamma band
in tasks of hand gesture decoding (Chestek et al., 2013). Unlike
the high-gamma band, low-frequency oscillations are considered
as carrier frequencies for communication between distant brain
regions (Brovelli et al., 2004; Knyazev et al., 2011; Potes et al.,
2014; Parvizi and Kastner, 2018). Therefore, intracranial low-
frequency oscillations were more commonly used to explore
functional connectivity among different brain regions (Kirkby
et al., 2018; Goodale et al., 2019). Regarding the ERP, its
line-length also showed excellent performance. ERP contains
both exogenous components and endogenous components. The
exogenous components are modulated by physical attributes of
stimuli but not by cognitive processes (Coles and Rugg, 1995;
Cygan et al., 2014), whereas the endogenous components are
considered related to cognitive processes, reflecting decision
making, stimulus evaluation, and recognition (Coles and Rugg,
1995; Smigielski et al., 2020). During the ongoing process of name
presentation in this study, the processing of physical attributes
of auditory stimuli coexisted with cognitive processes constantly.
Therefore, the ERP time series might be the integration of
exogenous potentials and endogenous potentials. Abundant

inner biological mechanisms of ERP might be the reason for its
remarkable tracking of the rapidly changing external stimuli.

4.3. Implications
The processing of the acoustic name stimulus in the human
brain involved a distributed connectivity network (Northoff and
Bermpohl, 2004; Davey et al., 2016). For example, the acoustic
name stimulus activates not only low-level auditory sense in the
primary auditory cortex (mainly in the transverse temporal gyrus
and the superior temporal gyrus) (Pickles, 2013; Nakai et al.,
2017), but also activates high-level cognition in other structures
such as the medial prefrontal cortex, inferior parietal lobule
(Davey et al., 2016), the insula (Qin et al., 2012; Ye et al., 2021),
and the fusiform (Carmody and Lewis, 2006). Parts of these
findings by fMRI and scalp EEG measurements could be verified
in the current study, showing that activated brain regions for
the acoustic name stimulus distributed broadly in the temporal
lobe, parietal lobe, and deeper structures such as the insula
and fusiform (Table 2). Hence, all subjects showed noteworthy
detection performance for the active state despite individual
differences in electrode implantation. These facts might suggest
that comprehensive utilization of neural responses frommultiple
distributed regions could improve the decoding performance
and hence are recommended for further BCI applications. This
idea has been implemented in previous SEEG-based motor
decoding studies, which investigated the decoding performance
of different regions and their combination. For example, while
the primary motor cortex is always known as the optimal region
to decode hand and foot movements and forces (Vadera et al.,
2013; Murphy et al., 2016), other regions such as the primary
somatosensory cortex and the posterior parietal cortex still
provide supplementary BCI control signals (Branco et al., 2017;
Wang et al., 2020).

As discussed in Section 4.1, compared with other classifiers,
the GMM-HMM scheme has been proved suitable for
spontaneous state detection owing to its modeling for the
state transition (see Section 2.6). The decoding capability of the
GMM-HMM scheme deserves further investigation using other
BCI paradigms besides the auditory experimental paradigm in
this study.

4.4. Limitations and Future Work
Even though we have demonstrated the availability of various
SEEG features for active state detection, results showed that
it was relatively hard to distinguish the two stimuli from the
continuous signals under the current detection strategy, which
might be caused by several possible reasons. First, we might
not have enough sampling points within the critical regions
that show selective responses because of the limited number
of subjects. Second, in the current classification scheme, each
feature only made a general description for a sliding window
instead of several values at different time points within the
window, which might not capture subtle differences between
the two stimuli. In future work, we would adopt a cascade
classification scheme to overcome this problem, where the HMM
detects the active state onset first, and then another classifier
could distinguish the type of the stimulus using the information
at different time points within the active state (Ye et al., 2021).
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Based on a sufficient number of subjects in the future, we
would reopen the investigation on statistical significance of
comparisons between the four-type feature combination and
each single type of informative feature. Additionally, during the
classification process, this work used all the most informative
channels together, however, as is well-known, different brain
regions play distinguished roles during the task. Therefore,
evaluating the contribution of single regions to the decoding
separately is still essential and needs to be addressed using a larger
number of subjects in the future.

5. CONCLUSION

Distributed SEEG recordings provide a new perspective to
investigations on the link between neural activities in the human
brain and external auditory stimuli. In this study, we proposed
a GMM-HMM framework for auditory active state detection
using continuous SEEG signals, by which the onset and the
end of auditory stimuli were estimated. We have verified the
effectiveness of the single type of time-frequency or time-domain
features, and the combination of these features has also been
proven effective in spontaneous state detection. As a preliminary
investigation, the findings of this study provided important clues
for further SEEG-based BCI studies.
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