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Discontinuous transition to loop formation in
optimal supply networks
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The structure and design of optimal supply networks is an important topic in complex
networks research. A fundamental trait of natural and man-made networks is the emergence
of loops and the trade-off governing their formation: adding redundant edges to supply
networks is costly, yet beneficial for resilience. Loops typically form when costs for new edges
are small or inputs uncertain. Here, we shed further light on the transition to loop formation.
We demonstrate that loops emerge discontinuously when decreasing the costs for new
edges for both an edge-damage model and a fluctuating sink model. Mathematically, new
loops are shown to form through a saddle-node bifurcation. Our analysis allows to heur-
istically predict the location and cost where the first loop emerges. Finally, we unveil an
intimate relationship among betweenness measures and optimal tree networks. Our results
can be used to understand the evolution of loop formation in real-world biological networks.
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biological as well as technical systems. Leaf venation net-

works supply plant leaves with water and nutrients! and
vascular systems supply vertebrates with oxygen and nutrients?.
On the other hand, society relies on man-made supply networks
such as power grids® or hydraulic networks?. Finally, networks
that formed over time such as drainage basins show a similar
structure®. Understanding the design principles of such networks
is a central challenge in network science®.

The evolution or construction of supply and transportation
networks is essentially determined by the trade-off between cost
and resilience’=°. Cost limits the number of connections in the
network, as resources are generally scarce. Resilience requires
additional connections to cope with damages or perturbations.
Many actual networks contain loops to establish a certain level of
topological resilience, hence they stay connected and operational
even if some elements fail!%. The interplay of topology and resi-
lience is analysed in various disciplines including traffic net-
works8, communication networks!! or dynamical networks!2.
Finally, a variety of results on structural resilience, that is the
ability of a network to remain connected when a fraction of nodes
or links fails, have been obtained in network sciencel314,

In this article, we focus on linear flow networks modelling
power grids, hydraulic networks or vascular networks>%1°,
Different structural patterns are observed in nature, consisting
of both networks with and without loops. For instance, leaf
venation networks are loopy in general, except for a few old
species such as Ginkgo. In electric power systems, large-scale
transmission grids are strongly meshed, while local distribution
grids are topological trees (Fig. 1). Optimal network structures
balancing costs and resilience have been analysed via extensive
numerical simulations in the setting where a single source
supplies the remaining network, such as in plant leaves!>~17.
The optimal structure does not contain any loops if connections
are reliable and perturbations are weak, for instance in dis-
tribution grids. Loops come into being when sources or sinks
fluctuate strongly or connections are subject to damages, such
as in transmission grids or newer leaf species. While some work
has been done in the context of networks optimising transport

The reliable function of supply networks is essential for

time!8, the exact mechanism of loop formation in minimal-
dissipation networks is still not fully understood.

Here, we analyse the transition to loop formation on a theo-
retical basis and derive several analytical results. We consider
optimal network structures in the sense that function is optimised
while costs are constrained or vice versa. Two aspects of resilience
are studied in detail—damage to edges and fluctuations of supply
and demand. In particular, we investigate the optimal structure as
a function of the severity of damage and the strength of fluc-
tuations. In contrast to prior work, we focus on the occurrence of
the very first loop, which enables an analytical approach to loop
formation and yields several rigorous results. We first establish
this approach for an elementary sample network and then gen-
eralise it to networks of arbitrary size and compare analytic
predictions and numerical results.

In particular, we demonstrate that the transition to loop for-
mation is generally discontinuous in the sense that optimal edge-
capacities jump discontinuously when fluctuations increase or
costs decrease. Loopy network structures emerge as new local
minima of the dissipation function that form via a saddle-node
bifurcation, and not via a bifurcation of an already existing
minimum. Hence, a large number of local minima may exist
simultaneously and we establish a purely topological expression
based on the edge betweenness to understand their structure. As a
direct application of our analysis, we derive a simple criterion to
predict the location of the first loop in the transition from a tree
network.

Results

Modelling supply networks. We consider a simple supply net-
work model which was previously used to study loop formation
in generic distribution networks!>16. Mathematically, the supply
network is constructed from a graph G with node set V and edge
set E. At each node n € V, there is an in- or outflow with a
strength P,,, where P,, > 0 denotes a source and P, < 0 a sink. The
in- and outflows may either represent individual supply nodes or
allocated demands associated with the node!®. An edge in the
network is either labelled by its index e € E or by its terminal

Fig. 1 Loopy and non-loopy real-world supply networks. a The leaves of Ginkgo biloba and ¢ the distribution grid IEEE123 form loopless supply networks. b
The venation network of Prunus serrulata and d the Scandinavian power grid on the transmission level form loopy supply networks. Leaf venation networks
extracted from photographs, distribution grid taken from ref. 50 and transmission grid topology extracted from the open power system model PyPSA-Eur4®.
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nodes e = (n, m) which we use interchangeably. For each edge, we
fix an orientation which is encoded in the node-edge incidence

matrix I € RIV/ with elements
1 ifedge e startsatnode n,
I,, =< -1

0  otherwise.

if edge e endsatnode n, (1)

Each edge is assigned a capacity k, € R, and a flow whose
strength or value is denoted as F, € R. Fixing the orientation of
an edge e = (n, m) means that F, > 0 describes a flow from node n
to node m and F, < 0 describes a flow from node m to node n.
The flows satisfy the continuity equation or Kirchhoff’s current
law (KCL) at every node of the network,

Zln,eFe = an

ecE

VneV. (2)

In addition to that, we assign a potential 8, to each node in the
network. In terms of physical quantities, this potential 6, € R
can represent the pressure at the nodes of a hydraulic network,
the voltage in DC resistor networks or the nodal voltage phase
angle in linearised AC power grids®1>20-21, For these systems, the
flow on a link e = (n, m) scales linearly with the potential drop
0, — 0, along the link and can be calculated as

F,=k,(0,—0,). (3)

Together with the continuity equation (2), this linear set of
equations determines the values of the potentials 6, up to a global
constant. The resulting flows automatically satisfy Kirchhoff’s
voltage law (KVL) which states that the flow around any closed
loop expressed in terms of the edges C = {e }

vanishes [ref. 22, pp. 40]

€. ,...,€
€17 767 " Thnax

Z ZEF e — 0. 4
ecC ( )

Here, the factor z, € { — 1, 1} is used to keep track of the
orientation of an edge e with respect to the orientation of the edge
in the loop C, i.e.

1
z, = .

Optimising supply networks: minimum dissipation topologies.
We now illustrate how to determine the optimal supply network
that is described by the above the set of equations. To this end, we
want to find the edge capacities that determine the network
structure that is optimal for performing a given task. Throughout
this manuscript, we call the network structure optimal if the edge
capacities are such that the overall network dissipation is mini-
mised, as suggested for example in refs. 1>-17. The network dis-
sipation may be calculated as

if edgee = (e, ¢,) isoriented frome, toe,,

if edgee = (e, ¢,) is oriented frome, toe;.

2
_vE
- k : (5)
ecE e
In addition to that, we assume that the resources to build the
network are limited. This resource constraint takes the form

K =K,

2K ©)
where the cost parameter y > 0 depends on the type of problem
under consideration. For instance, assuming Poiseuille flow
through cylindrical pipes of fixed length and radius R,, k, ~ R%,
such that y = 1/2 fixes total fluid volume and y = 1/4 fixes total
pipe mass!>-17:23.24, The parameter K corresponds to the overall
available budget. Note that different definitions of optimal
networks arise in other applications, e.g. in hydraulic engineering

where typically the cost is minimised while the dissipation is
constrained?®. In Supplementary Fig. 5 and Supplementary
Note 5, we demonstrate that the same kind of discontinuous
transition is observed when extending our analysis to this setup.

In general, it is neither useful nor meaningful to allow arbitrary
connections between the nodes. Geometric constraints apply to a
variety of networks. For instance, leaf vascular networks or river
basins are naturally planar. To take into account such constraints
and keep the problem feasible one typically fixes a set of potential
edges £ such that E C &. These edges are often taken from a
square grid!®, a triangular grid!®, or various types of disordered
tessellations”2%. Note that while planarity of the network
described by the set of potential edges £ simplifies the theoretical
analysis, our results are not limited to planar networks as we
demonstrate for a simple, non-planar network in Supplementary
Fig. 6.

We focus on two different models here: a model with
fluctuating sources and sinks and a model of stochastic damage
to the edges. Both models can be thought of as quantifying
network resilience: We call a network resilient if it is able to
function properly under the uncertainties induced by edge
damage or fluctuating inputs. For both models, our main
question will be the following: Under which conditions does the
optimal network structure contain loops and how do these loops
emerge?

Fluctuating sink model: First, we introduce the fluctuating sink
model. In this model, we include fluctuations by treating the P, as
random variables. For each random realisation, the sources and
sinks are balanced, i.e. they sum to zero,

ZP” =0. (7)

nev

Network structures are then optimised to have a minimum
average dissipation

RS ®

ecE e

for a given set of resources. Here, the brackets (-) denote the
expected value taken over all realisations of the random variables
P,. Note that the fluctuations affect only the flows directly by
virtue of Eq. (3), whereas the network topology is assumed to be
fixed by the construction of the network such that the average is
taken over the squared flows only. Equation (8) can be minimised
analytically with respect to the k,, where the resource constraint is
taken into account via the method of Lagrange multipliers.
Calculating the optimal edge capacities by extremising the
Lagrange function yields!® (Supplementary Note 1)

(P2

| Cace (ED)™

This expression depends on the second moments of the flows
(F?), which in turn depend on the capacities k.. Hence, Eq. (9)
can be interpreted as a self-consistency condition which has to be
solved together with Eq. (3).

Edge-damage model. A second class of dissipation-optimised
networks that is relevant to biology and engineering seeks to find
optimal networks subject to damage. For instance, leaf vascu-
lature might be attacked by a herbivorous insect, or a power grid
might lose a power line due to an outage. In the following, we
generalise the broken-bond model considered in ref. 1> by
allowing partial damage to the network capacities instead of
complete removal of edges.

In this edge-damage model, the sources and sinks are still
balanced but do not fluctuate stochastically. Instead, we assume

k, =

} K (9)
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Fig. 2 Graph set up to analyse the transition from tree networks to loopy networks. a Elementary network to study spontaneous loop formation in

optimum supply networks. The network consists of five nodes (green circles) where node n = 1 has an inflow of four, P,

= 4, and all other nodes have an

outflow of unity. These in and outputs determine the flows F;, i € {1, 2, 3, 4, 5} along with the links with capacities k;. The optimum topology for this set-up
is a tree network. If the in- and outputs are fluctuating, an additional edge (dotted arrow) may be beneficial to reduce the average dissipation. This edge
introduces a new degree of freedom expressed as a cycle flow f. b For a larger network, we generalise this setup as follows: we start from a tree network
and then consider the impact of a new edge at an arbitrary position (n, m) (dotted, red arrow). We then collect the edge sets L (shaded green) and R
(shaded blue) along the shortest path from the source to the newly formed edge. This edge induces a cycle flow f. ¢ A network formed from a triangular
grid with a set of potential edges &€ coloured in grey which we will analyse throughout the manuscript. Realised edges (black) correspond to a global
minimum of the dissipation for the fluctuating sink model where a single, fluctuating source (large circle) supplies the remaining network.

that all nodes but one are sinks with P;,; = —P supplied by a

single node with P, = (N — 1)P, where N is the number of nodes.
To model partial damage of edge I, we modify the edge
capacities according to

ke - (I_Ag))kev (10)

with the damage fraction

0
a0 - (1)
Ae(0,1] ife=1L

Thus, a damage parameter A = 1 corresponds to complete
removal of the damaged edge. We now define the average over all
possible damage scenarios. Specifically, if g(k,) is some function of
the capacities k., we define

if e#l,

|E|

|E|Zg ATk

where |E| is the number of edges in the network. Here and in the
following, we use the notation (-)’ to distinguish the average over
damage scenarios from the average over fluctuating sources
and sinks.

As before, the central objective is to minimise the average
dissipation of the network,

- 52(5%)

e

(12)

(13)

taken over all possible damaged edges under the resource
constraint Eq. (6).

We now proceed to study loop formation in the two models
outlined above in detail.

Discontinuous transition to loop formation in small network.
As an illustrative example, let us consider an elementary network
as sketched in Fig. 2a and analyse the transition to loop formation
in both, the fluctuating sink model and the edge-damage model.

Disontinous transition in fluctuating sink model: The network
consists of four variable sinks at nodes 2, 3, 4, 5 (circles) that are
modelled as iid Gaussian random variables P, 5 4 5 ~ N (4, o) and
four edges (arrows) connecting them with capacities k; and flows
F;, i € {1, 2, 3, 4}. A fifth, potential edge is shown as a dotted
arrow. If it exists, it carries flow Fs and has capacity ks = «
(Fig. 2a). The central question we will study for this setup is the
following: When is the optimal network tree-like (x = 0) and
when is it loopy (x > 0)—and how does x behave at the
transition point?

We first consider the case where the loop is not present, i.e.
x = 0. In this case, the network is a tree and we can calculate the
second moments (F?), i € {1,2,3,4} explicitly in terms of the
capacities: they are determined by the statistics of the source and
the sinks by virtue of the continuity equation (2). Using the
optimal capacities for a tree network (6), we obtain an explicit
equation for the optimal dissipation (Dj,..) that only depends on
the statistics of the sinks (Supplementary Note 4)

(y+1)/y
] (19

[2(6% + 1)+ 2(20% + 427"
<Dtree> = K

How does this result change if we allow closing the loop as
illustrated in Fig. 2a, i.e. if we include the corresponding edge in
the set of potential edges £?

Let us assume that the loop carries a flow F5 and has a non-
zero capacity ks = x > 0. In the following, we denote the flows and
capacities in the loopy network with a tilde. In the presence of a
loop, we can no longer determine the flows using the continuity
equation (2) alone. Instead, we have an additional degree of
freedom: a cycle flow f around the newly formed edge such that

F, =F, —f, F; = F, +f and F; = f. The strength of the cycle
ﬂow can be determlned using the KVL (4)
F, F
f +2—==0. (15)
kK k k

=

1

This approach allows us to eliminate the dependence on the
cycle flow strength f, and we can evaluate the dissipation (Digopy)
of the loopy network by inserting the result into Eq. (8)
(Supplementary Note 4). The new expression for the dissipation
no longer contains the flows explicitly, which considerably
simplifies finding the optimal topology: we no longer have to
take care of the interdependence of flows and capacities, but can
minimise (Dioopy) in terms of only the capacities k;.

We proceed to evaluate the optimal network structure fixing
the mean of fluctuations to ¢ = —1 and the resource constraint to
K = 1. To examine the effect of the two remaining parameters
separately, we analyse the transition to loop formation for y = 0.9
fixed while varying ¢ and for o = 3 fixed with varying y. We then
compute the dissipation (Dioopy) as a function of the capacities x
and k;, and compare it to the dissipation (Die.) of the
corresponding tree network. Note that the capacities in the
optimum tree network are explicitly given by Eq. (9) such that
(Dyree) 1s fixed. For the loopy network, we still need to determine
the optimum structure, i.e. we compute the minima of (Djoopy) as
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Fig. 3 Discontinuous transition in dissipation minimum appears throughout models and parameters. Capacities at the global minimum (thick lines)

show a discontinuity for different models when analysing the topology shown in Fig. 2a. a, ¢ We analyse the edge capacities k. at the local minima (straight
lines) and saddle (dotted lines) for varying cost parameter y (a) and varying fluctuation parameter o (c) for the fluctuating sink model with fluctuation
mean u = —1 and total capacity K = 1. For both parameters, the capacity at the loop « (light orange) undergoes a saddle-node bifurcation which causes a
discontinuous transition in the global minima (thick lines) from non-loopy to loopy networks. b, d An analogous saddle-node bifurcation in the capacities k.
may be observed in the generalised damaged bond model in terms of both the cost parameter (b) and the damage parameter (d). For all four plots, dotted

black lines denote the matching values in the other plot.

a function of « and k; recalling that k; =k, k, = k, and k, is
then fixed by the resource constraint Eq. (6).

For both varying fluctuations ¢ and varying costs y, we find
that the transition to loop formation is discontinuous: the loop
starts to form with a non-zero capacity x when analysing the
globally optimal network structure (Fig. 3a, ¢, thick, orange line).
Analogously, the capacity k; bifurcates (red line).

But what is the nature of this transition? In fact, we find that new
minima emerge through a saddle-node bifurcation independently of
the parameter we vary. Thus, new minima do not form from the
existing tree minimum but instead emerge elsewhere in the energy
landscape. To support this claim, we plot the capacity at the saddle
in Fig. 3 (dotted, coloured lines) and analyse the dissipation
landscape close to the bifurcation point (Supplementary Fig. 3).
Using these results, we can also map out the parameter region
where loop formation is beneficial (Supplementary Fig. 2). In
Supplementary Fig. 7, we illustrate the nature of this transition for
an even simpler network and find a closed-form solution for the
region of the parameter space where loop formation is beneficial.

Discontinuous transition in edge-damage model: We now turn
to the edge-damage model and analyse the optimal topology
again for the graph shown in Fig. 2a. Most importantly, we find
that the transition between a tree-like and a loopy optimal
network is also discontinuous in the damage model in both the
cost parameter y and the damage parameter A, and new extrema
appear again through saddle-node bifurcations (Fig. 3b, d). This
demonstrates that despite the fact that in the damage model, the
optima follow a different scaling law from those in the fluctuation
model!>, the mechanism and type of the transition from tree-like
to loopy optimum is generic.

Discontinuous transition persists beyond the first loop.
Whereas the transition to the first loop that forms is important in
many real-world supply networks, such as the Gingko leaf and the
distribution grid shown in Fig. 1, other networks display several
loops, such that their formation beyond the first loop becomes
important. In particular, the tree has mainly theoretical impor-
tance in many applications such as hydraulic networks where
spanning trees in loopy networks play an important role in
modelling and optimisation?>»27-2%, Remarkably, we can
demonstrate numerically that the discontinuous character of loop
formation persists beyond the first loop.

In Fig. 4, we analyse this transition for the fluctuating sink
model with cost parameter y = 0.5 for a larger, globally optimal
tree network which was formed from a set of potential edges &£
corresponding to a triangular grid as shown in Fig. 2c. We map
out the order in which new loops form (colour code) when
decreasing the cost for new edges and slightly perturbing the
previous network structure. All new loops emerge discontinu-
ously with a non-zero capacity from an existing loopy network
topology (Fig. 4c). Note that in contrast to Fig. 3, the optimal
capacities are obtained here using an iterative approach for
finding local minima of the dissipation that is due to ref. 10 (see
“Methods” section). In a Supplementary Fig. 8, we demonstrate
that an analogous transition exists for varying fluctuation
strength ¢ and fixed cost parameter y.

Identifying optimal trees for networks of arbitrary size. We
now generalise our reasoning to larger networks with an arbitrary
number of nodes N. For this analysis, we focus on the fluctuating
sink model. Again we assume that all nodes j = 2, ..., N act as
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Fig. 4 Discontinuous transition to loop formation persists beyond the first loop. a, b \We order the loops in a colour code according to their appearance
with increasing cost parameter y: the darker the edge colour, the earlier the edge appears. For the loop that appears as the i-th loop, we denote its critical
cost parameter y.; where the loop starts to become beneficial for the dissipation-optimised network. € The transition to loop formation is discontinuous
beyond the first loop: loops appearing at higher values of y again appear with a non-zero capacity as shown in detail in the inset. Fluctuation strength is

fixed to 6 = 0.5 for all panels.

sinks with P; being random variables and that the source j = 1
balances the sinks. We start from a tree network and analyse at
what value of the cost parameter y it becomes beneficial to add a
single edge thus closing a single loop. This setup is sketched in
Fig. 2b. We first demonstrate how to calculate the dissipation in
such a setting and then illustrate the procedure to minimise it.
In an arbitrary tree network, the flows do not depend on the
link capacities but only on the topology of the network as
illustrated in the last section. This is due to the fact that for each
node j = 2, 3, ... there is only one path from the respective node
to the root j = 1 of the tree. The flow F, on an edge e is thus
directly given by the KCL Eq. (2). Here, we fix the orientation of
the flows such that they point away from the source as illustrated
in Fig. 2b. Therefore, flows in tree networks are always positive.
To express the flows F, in terms of the sources and sinks P;, we

introduce the tree matrix 7 € R/E*IEl by
+1 ifedge e isonthe pathfromnode
j+1 totheroot j=1

0  otherwise.

T, =

(16)

This yields an explicit expression for the flows,

N
=2 TejiPy -
Jj=2

We can insert this result into the network dissipation (Eq. (8)),
which yields

(17)

tree ZZTE] lTet IPPj>ke_l

ecT ij=2

(18)

where T = E(G) is the set of all edges in the tree, i.e. before the
addition of a loop.

From trees to loopy networks: optimising networks with a
single loop. Remarkably, we can also find an explicit expression
for the dissipation eliminating the flows in a near-tree network by
exploiting the KVL to eliminate the new degrees of freedom,
similar to the strategy in the previous section.

We consider a network that consists of a tree plus a single link
¢ = (m, n) with capacity « as sketched in Fig. 2b. The edges on the
paths from nodes n and m to the root node are summarised in the
edge sets L and R, respectively, which we define as follows:
Denote by p(m) and p(n) the set of all edges along the shortest
path from the source node to the node m and n, respectively,

oriented in the direction pointing away from the source. Note
that these paths are unique in a tree network. Then define the
following sets:

= p(n)\(p(m) N p(n)),
= p(m)\(p(m) N p(n)),

such that the union of the edge set L U R U {(m, n)} forms a cycle.
As we will see in the following, this definition turns out to be
useful when studying the dissipation in the presence of a
single loop.

Due to the presence of the loop, we have a new degree of
freedom, the cycle flow strength f. According to the KCL Eq. (2),
the flows in the loopy network are given by

f if e= (m,n)

(19)

- F,+ if e€ R
Fo= Tt B ec K (20)
F,—f ifeeL(n)
F otherwise.

e

The value of f is fixed via the KVL:
—F +f FAf [ _
Sy SR

ecL ¢ ecR ke
-1\ 7! F F, @)
= f= (e T ) (Z,;—”—Zf)-
ecLUR ecL ¢ ecR

We can now evaluate the dissipation Eq. (8) in the presence of
the new edge (m, n) by plugging in the relations (20) and (21),

F? K F, F, ’
:Z;j 1+Z,§‘<Z%Zh>' (22)

ecT ecL ecR
e€LUR

D loopy

The average dissipation thus reads

(F?) K
{Digopy) = == ———B,,, (23)
oopy eeZT ke 1 + Cm,nK m,n
where we introduced the abbreviations
eEL eeR (24)
cm,n = 7{
eELUR

which are functions only of the updated capacities k, along the
sets of edges L and R. Importantly, the resulting expression no
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formation first becomes beneficial. b Starting from a globally optimal tree network with cost parameter y = 0.4, we slowly increase the cost parameter. We
then determine in which order and at which critical value of the critical cost parameter y. new edges appear closing a loop. € The pressure drop is strongly
correlated with the critical cost parameter y. where the given loop starts to form. Colour code corresponds to order of appearance of edges from dark (first)

to light (last).

longer contains the updated flows F,, but only the flows in the
tree network F,, which are determined by Eq. (17). This allows us
to minimise the dissipation with respect to the updated capacities
k, without having to take into account the interdependence of
flows and capacities.

Now that we have derived an explicit equation for the
dissipation in near-tree networks, we will demonstrate how to
minimise the resulting expression. For tree networks, the minima
of the dissipation may be calculated explicitly using the method of
Lagrange multipliers (see Supplementary Note 2). In contrast to
that, we have to take into account an inequality constraint x >0
for near-tree networks as local minima may exist also at the
boundaries of the domain. This can be done using the
Karush-Kuhn-Tucker (KKT) conditions with the new Lagrange
type function

2 K

Lk, ®) = E TG

ecT e

—i(Ky—Zicy—KV> — ux,

ecT

(Fe)

(25)

where A,y € R are KKT multipliers. The minimum is then
determined by the KKT conditions (see “Methods” section).
This approach results in explicit equations for the optimal edge

capacities k,, x in near-tree networks for which we could,
however, not find a closed-form solution for arbitrary networks
and values of y (Supplementary Note 2). Still, we can make use of
the resulting equations to gain insight into the process of loop
formation. In particular, the KKT condition for the newly added
edge (m, n) with capacity x reads

B,,=(1+ Cm’nk)2xy71yi vV k=0, (26)
i.e. the capacity of the new edge either vanishes (x = 0) or has the
non-zero value given above. Importantly, we can obtain insights
into the process of loop formation even without explicitly solving

these equations.

How do loops emerge? We now illustrate how to make use of Eq.
(26) to understand the process of loop formation. In particular,
we rigorously demonstrate that loops form discontinuously as
illustrated for the small tree network. Furthermore, we show that
the tree remains a local minimum of the average dissipation even

| (2020)11:5796 | https://doi.org/10.1038/s41467-020-19567-2 | www.nature.com/naturecommunications

after the formation of a loop. We summarise these results in the
following.

Theorem 1 (Tree remains KKT point) Consider a linear flow
network subject to the resource constraint with y € (0, 1). Then the
following statements hold for the KKT points of the average
dissipation (Disepy):

1. There is always a KKT point at k = 0, i.e. the tree is always a
(potential) local minimum.

2. The KKT point at k = 0 is isolated in the sense that we can
find a real number € > 0 such that there are no other KKT
points for k € (0, ).

The proof makes use of the fact that we can find lower and

upper bounds for the functions B,,,, A and C,,, even without
explicitly solving Eq. (26) and can be found in Supplementary
Note 3. We note that the fact that the tree remains a local
minimum is well-known for deterministic sources!”24.

We thus showed rigorously that for y < 1, KKT points that
characterise a loopy network cannot emerge through a bifurcation
of the local optimum describing a tree network since the KKT
point at ¥ = 0 is isolated. Instead, new local minima of the
dissipation generally emerge elsewhere and the transition to loopy
networks is discontinuous. Having understood the mechanism of
loop formation, we now proceed to analyse which edges will form
the first loops.

Where do loops emerge first? We now study the location of the
first loop that appears in the globally optimal network as the
parameters of the model are varied. We start from the regime
where the global optimum is a topological tree. Consider the
expression for the average loopy dissipation (Dy,py) to which a
single edge (m, n) of capacity x was added, as calculated in Eq.
(23). We can find the location where loops form first by making
the following approximation: assume that after the addition of the
loop, the capacities of the edges e along the shortest path from the
source to the loop, e € R U L, change only by a constant factor ¢
(y, e), ie. k,=c(y,e) k,, whereas the other edges remain
unchanged such that c(y, e) = 1 for these edges. Looking at
Fig. 3a, we can see that this is a reasonable assumption for the
small network considered there. Note that the prefactor can be
expected to be close to unity c(y, e) = 1 even for edges e € L U R if
we assume that the network is very large because then the new
edge will emerge with a very small capacity due to the resource
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as given in Eq. (31) may be used to estimate the
) correlates strongly with the

tree)

tree

actual network dissipation at local minima (D) with high-cost y = 0.7 and low fluctuations 6 = 0.5 since on average only (N, = 1.44 loops form for this set
of parameters (Pearson correlation coefficient of r = 1.0). d Moving to networks containing many loops, (N;) = 36.66 on average, obtained by minimising
the dissipation for lower cost y = 0.8 and more fluctuations ¢ = 1.0, the tree estimate still strongly correlates with the dissipation at minima as measured
by a Pearson correlation coefficient of r = 0.82. Results were obtained by applying the relaxation method 100 times for each set of parameters where the

set of potential edges £ forms a triangular network with N =

constraint Y7,k + x¥ =
dissipation reads

>

ecT

K?. With this approximation, the loopy

(F2) K
c(y, e)k, c(y,e)2(1+

<Dloopy> ~

cm,n<ke>x) By (k). (27)

c(ye)

Here, we defined the quantities B, ,(k.) and C,, ,(k.) which we
obtain from B,,, and C,,, (Eq. (24)) by replacing the updated

capacity I~ce by the tree capacity k.. The last expression can then be
simplified considerably by making use of Eq. (3),

o= (525 )

= <(6n - Gm)2>

Thus, the emergence of loops is essentially governed by the
potential drop across neighbouring vessels. Similar to how cracks
in brittle materials form to relieve high elastic stresses, loop
formation is determined by the relief of large pressure drops. Our
explicit prediction is consistent with the idea that the reduction of
pressure drops may have driven the evolution of leaf venation30.
From a developmental perspective, it connects to work explaining
plant vein formation using models where mechanical stress relief
is a crucial ingredient>!-33. We confirm the ‘stress relief’ by loop
formation in terms of the potential drop by analysing the pressure
drop before and after the formation of the loop in Supplementary
Fig. 1.

We now study the predictions made using Eq. (28) numerically
(see “Methods” section for details). Starting from an optimal tree
network, we first calculate the pressure drop (Fig. 5a). We then
successively decrease the cost for new edges and monitor the
order in which new loops form (Fig. 5b). Again, the transition to
loop formation is discontinuous, such that loops emerge with a
non-zero capacity at a critical value of the cost parameter y,,
which is highly correlated to the pressure drop (Fig. 5¢). We may
thus predict the location and cost parameter where loops form
based on the potential drop.

(28)

Edge betweenness determines network dissipation. As we have
demonstrated, all trees are—and remain—locally optimal structures
and loopy networks emerge via saddle-node bifurcations. Thus,

169 nodes as shown in Fig. 2c.

there may be a multitude of different local minima for a given set of
network parameters, so a natural question that arises is the fol-
lowing: How can we determine which of the local minima have less
dissipation than others and how can we find an order of different
topologies, e.g. to find the topology that globally minimises the
dissipation? Remarkably, we can trace back the answer to a purely
topological property: the edge betweenness centrality.

We start by simplifying the locally optimal dissipation of the
tree networks. In Eq. (17), we expressed the flows F, in a tree
network using the tree matrix 7. If we plug this expression into
the self-consistency equation for the capacities Eq. (9), set the
overall available capacity to K = 1, and plug everything into the
dissipation Eq. (8) we arrive at the locally optimal dissipation in
tree networks

+1

)

<D:ree - Z (ZTe] lTel 1 >> .

e=1

(29)

Importantly, the entries appearing in this expression only
depend on the mixed moments of the sinks and their second
moments. Since the sinks are ii.d. Gaussian random variables,
these moments are identical for different sinks and are given by

(Pf) = u* + 0%,
<Pin> = #2’

Thus, the sum runs over identical entries and we can calculate
the dissipation as

i>1
30
i,j>1. (30)

jasy

(Die) = [i (Ny(0) - @ + Ny (e u)_] BENCY

e=1

Here, N,(e) is the sum over the column of the tree matrix 7°
that corresponds to edge e. In fact, N,(e) has the following
interpretation: it is the number of paths from the source s to any
other node v that go through the edge e and may thus be
identified as a measure of shortest-path edge betweenness343°
(see “Methods” section). What can we learn from this analysis for
loopy networks?

To estimate the contribution of a single edge to the overall
network dissipation in a loopy network, we first calculate its edge
betweenness (Fig. 6a) and, based on this, the contribution it
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would have to the dissipation in a tree network (Fig. 6b). Adding
up the resulting expressions, we arrive at the tree estimate of the

dissipation in a loopy network (Dj..)(N,(e)). For near-tree

networks, the correlation between the estimate and the actual
dissipation at local minima is almost perfect as predicted by Eq.
(31) (Fig. 6¢). Increasing the number of loops by tuning the noise
parameter ¢ and the cost parameter y, edge betweenness and
dissipation remain correlated even when there is a significant
number of loops present in the network (Fig. 6d). Thus, we can
still understand the minimal dissipation in loopy networks based
on this topological measure.

We further discuss the possibility of characterising the global
tree minima of the network dissipation in Supplementary Note 6.

Discussion

In summary, we demonstrated that the transition to loop for-
mation in optimal supply networks is discontinuous throughout
different models and parameters. We explored this discontinuity
in detail for a small example network and rigorously proved that
the discontinuous nature of the transition persists for larger
networks as well. We showed that loops emerge through a saddle-
node bifurcation, explaining the discontinuous transition.

Our results shed light on recent advances in the study of
optimal supply networks. While the emergence of loops through
fluctuations or damage was discovered recently!>19, the theore-
tical nature of this transition was until now not well understood.
Here, we closed this gap by analysing the nature of the transition
to loop formation in more detail. In particular, we obtained a
measure of network stress that allowed us to predict the location
and parameters where loops start to form. This opens a new
pathway to the understanding of loop formation in natural net-
works such as leaves!0.

Our results offer a new understanding of the interplay between
the structure and function of supply networks. By unveiling the
relationship between the network’s topological edge betweenness
and its average dissipation, we established a new link between the
form and function of networks. These results may aid in the
understanding and design of globally optimal network structures
such as biological vasculature, electrical grids, or neural networks.
Our explicit prediction is consistent with the idea that the
reduction of pressure drop variations may have been a factor in
the evolution of leaf venation3). More generally, we show that
globally optimal network structures may be obtained by following
simple local rules for adding new links, in contrast to previous
work based on pruning an existing network26:3¢,

Let us finally discuss how our results derived for linear flow
models relate to other types of networks and systems. The starting
point of our analysis was the fundamental trade-off between cost
and resilience, which determines the optimal structure of a net-
work, and which extends far beyond the theory of supply net-
works. Resilience requires additional capacity or links which can
take over the load in the presence of failures or fluctuations—but
these are generally costly. From a practical view of network
design, the fundamental question is thus: Where and how should
new connections be added that increase resilience in an
optimal way?

Firstly, we discuss the question where new links should be
added. A large body of literature in network science approaches
aspects of resilience from the viewpoint of percolation theory.
The fundamental question in this purely structural treatment is:
Given a network, how many nodes or links may fail before the
network gets disconnected? It has been shown that a decisive
quantity to assess the resilience to random failures is given by the
ratio of the second and first moment of the degree distribution,

(k%)/{k})3738, These fundamental results were then used to
optimise network resilience with respect to both random failures
and targeted attacks!314. In the case of failures, it is beneficial to
add links between nodes which already have a high degree to
effectively increase (k?). This result might appear very different
from the findings of the present paper at first glance, but there are
in fact common underlying principles. In supply network models,
new links should be added where they will potentially attract a
high flow. In percolation type models, new links should be added
where they will potentially attract a high betweenness—a quantity
which can also be interpreted as a flow343%, As a result, one
should pick nodes whose characteristic quantity, either potential
0, or degree k, differs from their surrounding.

Secondly, we consider the question of how new links should be
added. The main finding of our work is that new links emerge in a
discontinuous way with a finite non-zero capacity. That is, to be
beneficial for the network, new links must have a certain mini-
mum connection strength. This result has no direct equivalence
in percolation approaches to network resilience since the vast
majority of studies in this field considers unweighted networks
only. However, there is a strong interest in network formation
processes, which induce discontinuities in macroscopic con-
nectivity of the network—including competitive percolation
models?%41, as well as transportation network models*2. In the
context of network resilience, it has been shown that inter-
dependencies and cascade effects can make the percolation
transition discontinuous*3.

Methods

Numerical simulation of loop formation. When analysing the transition to loop
formation such as in Figs. 4 and 5, we start from an optimal tree network T for
given parameters y, o and y corresponding to the dissipation minimum shown in
Fig. 2¢c. As a next step, we add all non-tree edges from the underlying triangular
grid with a very small capacity that corresponds to 1% of the minimum capacity in
the optimal tree, k; = 0.01 - min,.(k;), and then renormalise all capacities to
make sure the resource constraint (6) holds. Finally, we then apply the iterative
method described in ref. !¢ to let the new topology relax to a local minimum. If this
minimum contains loops despite having started very close to the (global) tree
minimum, and if its dissipation is lower than the one of the tree, we conclude that
the given loopy topology is favourable.

To analyse the predictive power of the pressure drop in Fig. 5, we initially
consider a large optimised tree network with N = 169 nodes and cost parameter
y = 0.4 for which we calculate the pressure drop (Fig. 5a) and then increase the cost
parameter from y = 0.7 to y = 0.99, reoptimising the network for each value of
gamma. Using the procedure outlined above, we compare the predicted positions
of the first loops as indicated by the initial pressure drop {(6,, — 6,)*) with the
actual order in which they appear (Fig. 5b).

Evaluating edge betweenness. In Eq. (31), we derived an alternative expression
for the network dissipation at local minima that is based on the edge betweenness
N,(e). The edge betweenness is defined as343>38

Np(e) _ Za(s, tle) .

o ol 1)

(32)

Here, o(s, t) is the number of shortest paths from node s to node t and (s, tle) is
the number of these shortest paths that contain the edge e. In the given setting, we
consider this measure with respect to a single source s that is identified as the
source node of the network. Furthermore, when analysing tree networks, there is
only one path from the source to every node o(s, t) = 1 and thus o(s, tle) = 1 v = 0.

In the main text, the edge betweenness is calculated using a method
implemented in PYTHON’s NETWORKX library#4-46,

Finding minima of a function with inequality constraints using KKT condi-
tions. Consider the function D(k) of some real vector k = (k, ..., ky)" € RY that
is subject to the equality constraint h(k) = 0 and the inequality constraint g(k) <0
which we assume to be described by differentiable, real-valued functions

g.f: RY — R. To identify potential maxima or minima of the function subject to
the constraints, we can make use of the KKT conditions. To this end, we consider
the Lagrange type function

L(k) = D(k) + Ah(k) + ug (), (33)
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where 1, ¢ € R are called KKT multipliers. Then the following conditions, the KKT
conditions, are a necessary condition for a point k* being a minimum of D(k)¥7:48

=0, vie{l,.N},
flk) =0,
g(k") <0, (34)
pz0,
ug (k") =0.

This formulation may be used to find out whether adding a single loop to a tree
network may reduce its dissipation.

Data availability

Photographs of leaf venation networks in Fig. 1 are available upon request. The topology
of the Scandinavian power grid has been extracted from the open European energy
system model PyPSA-Eur%’, which is fully available online at https://doi.org/10.5281/
zenodo.3886532. Distribution grid in Fig. 1c was extracted from ref. .

Code availability
Computer code will be made available at https://github.com/FNKaiser/Optimal_Supply_
Networks upon publication.
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