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Abstract

Background: Computed tomography (CT) scans are routinely performed in positron
emission tomography (PET) and single photon emission computed tomography (SPECT)
examinations globally, yet few surveys have been conducted to gather national
diagnostic reference level (NDRL) data for CT radiation doses in positron emission
tomography/computed tomography (PET/CT) and single photon emission computed
tomography/computed tomography (SPECT/CT). In this first Nordic-wide study of CT
doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT
examinations specific to the clinical purpose of CT, and the scope for optimisation is
evaluated. Data on hybrid imaging CT exposures and clinical purpose of CT were
gathered for 5 PET/CT and 8 SPECT/CT examinations via designed booklet. For each
included dataset for a given facility and scanner type, the computed tomography dose
index by volume (CTDIvol) and dose length product (DLP) was interpolated for a 75-kg
person (referred to as CTDIvol,75kg and DLP75kg). Suggested NDRL (75th percentile) and
achievable doses (50th percentile) were determined for CTDIvol,75kg and DLP75kg
according to clinical purpose of CT. Differences in maximum and minimum doses
(derived for a 75-kg patient) between facilities were also calculated for each examination
and clinical purpose.

Results: Data were processed from 83 scanners from 43 facilities. Data were sufficient to
suggest Nordic NDRL CT doses for the following: PET/CT oncology (localisation/
characterisation, 15 systems); infection/inflammation (localisation/characterisation, 13
systems); brain (attenuation correction (AC) only, 11 systems); cardiac PET/CT and SPECT/
CT (AC only, 30 systems); SPECT/CT lung (localisation/characterisation, 12 systems); bone
(localisation/characterisation, 30 systems); and parathyroid (localisation/characterisation,
13 systems). Great variations in dose were seen for all aforementioned examinations.
Greatest differences in DLP75kg for each examination, specific to clinical purpose, were as
follows: SPECT/CT lung AC only (27.4); PET/CT and SPECT/CT cardiac AC only (19.6);
infection/inflammation AC only (18.1); PET/CT brain localisation/characterisation (16.8);
SPECT/CT bone localisation/characterisation (10.0); PET/CT oncology AC only (9.0); and
SPECT/CT parathyroid localisation/characterisation (7.8).

Conclusions: Suggested Nordic NDRL CT doses are presented according to clinical
purpose of CT for PET/CT oncology, infection/inflammation, brain, PET/CT and SPECT/CT
cardiac, and SPECT/CT lung, bone, and parathyroid. The large variation in doses suggests
great scope for optimisation in all 8 examinations.
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Background
Computed tomography (CT) was first made commercially available on a hybrid single

photon emission computed tomography/computed tomography (SPECT/CT) system in

1999 and on a positron emission tomography/computed tomography (PET/CT) system in

2000 [1] and use of hybrid molecular imaging (MI) CT systems has since grown rapidly

[1, 2]. In 2016, there were almost a thousand PET/CT scanners available in European

Union (EU) member states, derived from figures provided by Eurostat [3] and United

Kingdom (UK) figures from Dickson and Eve [4], and there were at least 193 SPECT/CT

scanners in the UK alone [2]. The rapid diffusion and utilisation of PET/CT and SPECT/

CT scanners may raise concern for patient radiation exposure [5–7]. Therefore, nuclear

medicine professions should optimise CT radiation doses following the as low as

reasonably achievable (ALARA) concept.

Diagnostic reference levels (DRLs) allow facilities to evaluate their practice, by com-

paring radiation doses given locally with those given in the wider population. National

DRLs (NDRLs) are published by relevant radiation authorities, which are informed in

the first instance by collection of radiation dose data. The use of DRLs enable the

health professions to compare their third quartile values for the radiation dose

measures of computed tomography dose index by volume (CTDIvol) and dose length

product (DLP) against the NDRL standard for their respective country. Third quartile

values are often supplemented with median values as achievable doses, which serve as

an additional reference level to aid optimisation [8].

Establishing CT DRLs specifically for hybrid imaging is complicated by the clinical

purpose of the CT scan, which could be for attenuation correction (AC) of the SPECT

or PET signal; anatomical localisation of increased or reduced tracer uptake in the MI

images; characterisation from the CT scan of the disease aetiology of abnormal tracer

uptake seen on the MI images; or fully diagnostic purposes, where the exposure settings

are equivalent to those used in standalone CT protocols in the radiology department.

The image quality and therefore radiation doses required for the different clinical pur-

poses increase from AC only through to fully diagnostic. Thus, when using information

on radiation doses or exposure settings for reference, this should relate to the same

clinical purpose [2].

Use of DRLs for common examinations involving ionising radiation has been re-

quired in the European Medical Exposures Directive for more than 20 years [9]. How-

ever, there are to date no published NDRLs for CT in hybrid imaging for the vast

majority of countries worldwide. CT radiation doses for PET/CT oncology whole body

examinations are the most widely investigated of all MI examinations, with national

surveys having been conducted in France [10], Bulgaria [11], United States of America

(USA) [12, 13], Korea [14], UK [2], Switzerland [15], and Australia and New Zealand

[16]. Meanwhile, CT dose data for SPECT/CT and other PET/CT examinations is more

sparse, with national surveys for SPECT/CT having only been conducted in the UK [2],

Switzerland [15], and Bulgaria [17]. These studies have shown large diversity amongst

facilities in the clinical purpose of CT for the same examination [2], and in mean radi-

ation doses given by different facilities for the same examination and clinical purpose,

which demonstrates a great need for optimisation for CT in hybrid imaging [2, 10, 14].

These studies have also demonstrated large differences in doses given by different

countries for the same examination and clinical purpose [2], which highlights the need
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for country- or region-specific reference data. The International Commission on Radio-

logical Protection (ICRP) states that DRL values should be used for reporting radiation

doses for PET, SPECT, and CT components of nuclear medicine hybrid imaging exami-

nations [18]. However, since Denmark, Finland, Norway, and Sweden have already

established country-specific NDRLs for administered radiopharmaceutical activities

[19–22], this survey does not focus on administered radiopharmaceutical activities. This

Nordic-wide multi-centre study rather focuses on gathering reference data for the CT

component of PET/CT and SPECT/CT examinations.

This survey aims to suggest a Nordic NDRL for CT doses associated with PET/CT

and SPECT/CT scans. It further evaluates the scope for optimisation by assessing

variation in doses between facilities in the Nordics.

Methods
Overview

Dose data has been gathered for CT scans undertaken for 5 PET/CT examinations

(oncology, infection/inflammation, brain, cardiac (myocardial perfusion), and bone) and

8 SPECT/CT examinations (cardiac (myocardial perfusion), lung, bone, parathyroid,

sentinel node, octreotide, metaiodobenzylguanidine (mIBG), and thyroid post ablation).

This study also controls for confounding variables present in some previous studies, by

controlling for differences in body mass within the population as recommended by the

ICRP [18].

Ethics approval and consent to participate

This study is exempt from notification to a research ethics committee under Section 14

of the Danish Act on Research Ethics Review of Health Research Projects [23].

Data collection

Each facility in Denmark, Finland, Norway, and Sweden undertaking PET/CT and/or

SPECT/CT examinations was invited to participate in the study. For each type of exam-

ination, a data capture form requested information on the following: scanner type; clin-

ical purpose of CT (AC only, localisation, characterisation, or fully diagnostic); protocol

settings; and data for up to 30 patients (Additional file 1).

CT protocol

Requested data included acquisition and reconstruction settings in the protocol influ-

encing image quality and dose, and use of dose optimisation features such as tube

current (mA) modulation, tube voltage (kV) selection, and iterative reconstruction. As

the purpose of this study was to establish suggested NDRL CT doses for MI-specific

practices, facilities were asked to submit data for fully diagnostic purposes only in cases

where the fully diagnostic scan was the only CT scan undertaken.

Patient data

Requested data included sex of patient, height, body mass, body region scanned, and

radiation dose reported by the scanner (CTDIvol, DLP). Data were collected between

April 2017 and February 2018.
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Exclusion criteria

For protocols utilising tube current modulation, patient datasets were excluded if body

mass was not recorded or if data were recorded for less than 10 patients (as this would

not be sufficient to provide reliable data for weight-derivation for a 75-kg person).

Data analysis

All data analyses were undertaken using Microsoft Excel (Microsoft Office 365 Pro Plus).

For each system-examination combination where tube current modulation was used, mea-

sured CTDIvol and DLP values for patients were plotted against their body mass. The

GROWTH function was then used to calculate the predicted exponential growth and fit an

exponential curve to the existing x- and y-values. From this curve, a single dose value

(CTDIvol,75kg and DLP75kg) for a 75-kg patient was interpolated/extrapolated for that

system-examination combination. This was used for all examinations, except PET/CT brain

where the mean value was used. For data submissions from systems where the scans did

not apply tube current modulation, mean CTDIvol and DLP values were used. Mean scan

length was estimated for each system for each examination by dividing mean DLP by mean

CTDIvol. Quantitative CTDIvol,75kg, DLP75kg, and scan length values for each examination

and clinical purpose were expressed as mean, median, minimum, maximum, and mini-

mum/maximum. NDRL (75th percentile) and achievable doses (50th percentile) were

suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT,

where there were data submissions for 10 or more systems.

Cardiac SPECT and PET data were combined, as were octreotide and mIBG. Data for

scans covering only the head or extremities were separated from data for scans cover-

ing the main body (shoulders, thorax, abdomen, pelvis) where there is more attenu-

ation. For PET/CT oncology, in cases where multiple CT scans were performed for a

single patient, data were analysed for the standard vertex to mid-thigh scan range, with

additional diagnostic scans removed from the analysis. However, presented diagnostic

data for the vertex to mid-thigh range may contain more than one scan phase where

intravenous contrast is used.

Brain PET/CT data were normalised to use of a 16-cm diameter CTDI phantom for

each CT system included in the study, allowing a valid comparison between different

systems. The conversion factors between 16- and 32-cm diameter CTDI phantoms

were calculated as CTDIvol for the 16-cm phantom divided by CTDIvol for the 32-cm

phantom, based on data from each scanner’s system specifications.

To understand the main sources of difference in dose between facilities for the same

examination and clinical purpose of CT, where possible, protocol settings were com-

pared between the systems giving the maximum and minimum DLP75kg for a given

examination and clinical purpose. In order to make fair comparisons, it was necessary

to use effective mAs, which is a measure of photon flux that accounts for the influence

of tube rotation time and pitch factor. Effective mAs is calculated as follows:

tube current mAð Þ�tube rotation time sð Þð Þ=pitch factor

Results
Data were processed from 83 different scanners submitted from a total of 43 Nuclear

Medicine facilities. This comprised data from 34 PET/CT scanners from 29 facilities
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(Denmark 13, Finland 5, Norway 6, Sweden 5) and 49 SPECT/CT scanners from 40

facilities (Denmark 13, Finland 6, Norway 11, Sweden 10). This represented a response

rate of 76% of Danish Nuclear Medicine facilities, 35% of Finnish facilities, 53% of

Norwegian facilities, and 36% of Swedish facilities.

Figure 1 provides an overview of minimum, 25th percentile, 50th percentile, 75th

percentile, and maximum DLP75kg for examination types and clinical purposes with

enough data submissions (from 10 or more systems) for reliable interpretation. This

demonstrates large variation in dose, both within an examination type and clinical pur-

pose, and between different examinations. For PET/CT oncology, there was diverse

practice with some facilities performing extra scan ranges in addition to the standard

vertex to mid-thigh CT scan. However, data are presented only for the standard scan

length. Data for extra CT scans were removed and contribute an additional radiation

dose.

Table 1 presents suggested NDRLs (75th percentile) and achievable doses (50th per-

centile) for CTDIvol, 75kg and DLP75kg for the examination types and clinical purposes

with data submissions from 10 or more systems, with the exception of diagnostic CT in

PET/CT oncology where standalone diagnostic NDRLs apply.

Fig. 1 Boxplot showing spread in DLP75kg data for reliable PET/CT and SPECT/CT datasets (Mean DLP data
(not weight-derived) normalised to a 16-cm CTDI phantom are given for PET/CT brain)

Bebbington et al. EJNMMI Physics            (2019) 6:24 Page 5 of 16



Table 2 provides summary data (mean, median, maximum (max), minimum (min),

and max/min) for CTDIvol, 75kg, DLP75kg, and scan length, and shows up to 27 times

difference in dose between facilities for the same examination and clinical purpose of

CT.

Figure 2a to d show the distributions of DLP75kg for included systems according to

clinical purpose of CT for PET/CT oncology, PET/CT infection/inflammation, PET/CT

brain, and SPECT/CT lung, demonstrating interspersion of the different clinical pur-

poses across the distributions, with AC only doses exceeding suggested NDRLs for lo-

calisation/characterisation (Fig. 2b and d) and one system’s localisation dose exceeding

another system’s diagnostic dose (Fig. 2c). Given the great dose variations between fa-

cilities for the same examination and clinical purpose of CT, Table 3 provides a com-

parison of protocol settings known to be major contributors to differences in dose,

between the systems with the maximum and minimum DLP75kg, for the examinations

and clinical purposes where comparisons were possible.

Seventy percent of facilities undertaking PET/CT infection/inflammation examina-

tions used the same CT protocol as that used for their PET/CT oncology protocol

whereas 17% used a different clinical purpose of CT, 4% used a different scanner, and

in 9% protocol settings were not provided.

Discussion
This study has suggested Nordic NDRL and achievable doses for CT scans performed

in 4 PET/CT and 4 SPECT/CT examinations which are specific to the clinical purpose

of the CT scan, as shown in Table 1. The data presented in this study demonstrates

great variation in CT radiation doses for the same examination and clinical purpose of

CT, for all investigated PET/CT and SPECT/CT examinations, as shown in Fig. 1 and

Table 2. For instance, up to 9 times difference in DLP75kg was seen for AC only in

PET/CT oncology, with some AC only doses exceeding the achievable dose and ap-

proaching the suggested NDRL for localisation/characterisation as shown in Fig. 2a. An

Table 1 Suggested NDRL and achievable doses for PET/CT and SPECT/CT examinations according
to clinical purpose (Mean DLP data (not weight-derived) normalised to a 16-cm CTDI phantom are
given for PET/CT brain; NDRL and achievable doses are not presented for PET/CT oncology
diagnostic CT scans as standalone diagnostic NDRLs should be used for comparison)

Examination Clinical purpose Suggested NDRL (75th
percentile)

Achievable dose (50th
percentile)

CTDIvol
(mGy)

DLP
(mGy.cm)

CTDIvol
(mGy)

DLP
(mGy.cm)

PET/CT oncology Localisation/
characterisation

2.9 310 2.6 258

PET/CT infection/
inflammation

Localisation/
characterisation

3.5 431 2.5 326

PET/CT brain AC only 6.4 148 5.7 104

PET/CT and SPECT/CT
cardiac

AC only 2.2 53 1.6 35

SPECT/CT lung Localisation/
characterisation

2.9 117 2.5 89

SPECT/CT bone (main
body)

Localisation/
characterisation

4.0 215 2.0 108

SPECT/CT parathyroid Localisation/
characterisation

5.7 199 3.5 131
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18 times difference in DLP75kg was seen for AC only in PET/CT infection/inflamma-

tion, with Fig. 2b showing a system giving AC only doses exceeding the suggested

NDRL for localisation/characterisation. For PET/CT brain, Fig. 2c shows a system

Fig. 2 Distribution of DLP75kg according to system number and clinical purpose for PET/CT oncology whole
body (Data submissions from a system for more than one clinical purpose are labelled with a letter suffix)
(a), PET/CT infection/inflammation (b), PET/CT brain (Mean DLP data (not weight-derived) normalised to a
16-cm CTDI phantom are given for PET/CT brain; Data submissions from a system for more than one
clinical purpose are labelled with a letter suffix) (c). SPECT/CT lung (d)
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giving localisation doses greater than a system giving diagnostic doses, constituting a

17 times difference in DLP75kg for localisation/characterisation. In the case of SPECT/

CT, up to 27 times difference in DLP75kg was seen for AC only CT scans in lung

SPECT/CT, with a system giving AC only doses four times greater than the suggested

NDRL for localisation/characterisation, as shown in Fig. 2d. On comparing scan proto-

col settings for the maximum and minimum dose protocols (for the same examination

and clinical purpose of CT) in Table 3, variations in kV, effective mAs, scan length, and

reconstruction algorithm were found to be key contributors to dose differences. Such

findings thus demonstrate the importance of optimising CT scan protocol settings to

provide image quality that is specific to the clinical purpose of the CT scan, and apply-

ing available dose optimisation features where appropriate.

PET/CT oncology gives one of the greatest CT radiation burdens of all MI examina-

tions, whether performed for diagnostic or localisation/characterisation purposes, as

shown in Fig. 1. It is therefore not surprising that it has been the most widely investi-

gated MI examination in terms of CT radiation dosimetry, with several national CT

dose surveys published in the literature, namely from France [10], Bulgaria [11], USA

[12, 13], Korea [14], UK [2], Switzerland [15], and Australia and New Zealand [16]. Ex-

cessive variation in dose between facilities was also noted for PET/CT oncology exami-

nations in France [10], Korea [14], the UK [2], and Australia and New Zealand [16],

suggesting great scope for optimisation globally. This Nordic data presents the lowest

localisation/characterisation CT doses for PET/CT oncology examinations published in

the literature, with third quartile DLP75kg less than half the value published for France

[10]. This highlights the importance of using DRLs which are country- or region-

Table 3 Comparison of key protocol settings contributing to dose differences between maximum
and minimum DLP75kg systems

Examination Clinical
purpose of CT

Max/
min
DLP75kg

Max or min
DLP75kg
protocol

Scan
length
(cm)

Summary of main protocol differences
contributing to variation in DLP75kg

PET/CT
brain

Localisation/
characterisation

16.8 Max 18 Exceptionally high effective mAs for
localisation/characterisation (images originally
intended for diagnostic use)

Min 23

PET/CT and
SPECT/CT
cardiac

AC only 19.6 Max 29 High effective mAs for AC only; long scan
length

Min 16 Attempted to optimise for AC only with low
effective mAs (low mA, high pitch) and low kV;
use of IR

SPECT/CT
lung

AC only 27.4 Max 32 High kV; high effective mAs for AC only

Min 36 Attempted to optimise for AC only with low
effective mAs (low mA, high pitch); use of IR

Localisation/
characterisation

4.2 Max 32 Higher kV and effective mAs than minimum
DLP75kg protocol

Min 33 Low kV and effective mAs

SPECT/CT
bone

Localisation/
characterisation

10.0 Max 106 Three times greater scan length, higher kV and
effective mAs than minimum DLP75kg protocol

Min 37 Use of IR

SPECT/CT
parathyroid

Localisation/
characterisation

7.8 Max 28 Much higher effective mAs (but lower kV) than
minimum DLP75kg protocol

Min 24
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specific. The large dose differences with France could reflect that the data for this study

was gathered 6 years later, during which time scanners with more sophisticated dose

saving technologies may have been utilised, and there may have become a greater

awareness of the need for optimisation. This highlights the need to revise NDRLs every

3–5 years [18]. The slightly lower doses compared with the UK may be a result of the

Nordic data being weight-derived for a 75-kg person, whilst the UK study did not apply

a weight restriction or a weight-derivation due to lack of submitted data on patient

weights.

A possible barrier to facilities performing diagnostic CT scans on hybrid systems

could be a concern that scanner technologies could be inferior on hybrid systems to

those in the radiology department and doses may be higher. Yet, this study demon-

strated that diagnostic CT performed as part of PET/CT oncology examinations is

common in the Nordics, and that the third quartile CTDIvol,75kg (12.5 mGy), which

comprises data mostly from Danish facilities, is within the third quartile NDRL set by

the Danish radiation protection authority (Sundhedsstyrelsen, Statens Institute for Strå-

lebeskyttelse (SIS)) in 2015 for thorax/abdomen examinations (17 mGy) [24]. Diagnos-

tic CT doses for PET/CT oncology presented in this study are not suggested NDRL CT

doses, as the countries’ already existing NDRLs for standalone diagnostic CT should be

used.

Figure 1 shows that other MI examinations can give CT radiation doses in the same

range as PET/CT oncology localisation/characterisation scans. Yet, there are still lim-

ited CT dose surveys for other PET/CT and SPECT/CT examinations, with national

surveys having only been conducted for other examinations in the UK [2], Switzerland

[15], and Bulgaria [17]. Iball et al. noted large variations in CT doses for other PET/CT

and SPECT/CT examinations in the UK [2] suggesting a need for optimisation. It is

therefore important to also survey CT doses in other PET/CT and SPECT/CT exami-

nations, and all ionising radiation exposures should be optimised in keeping with the

ALARA principle.

For PET/CT and SPECT/CT cardiac, median and third quartile CTDIvol,75kg values in

this Nordic study are comparable with those in UK [2] and Swiss [15] studies, as is

median DLP75kg. Yet third quartile DLP values in the Nordic study are considerably

greater, representing a greater spread in CT scan length where mean and maximum

scan lengths were 23 cm and 33 cm as shown in Table 2, compared with 18 cm and 24

cm in the UK study [2]. Presented dose values represent one CT scan, although

patients may have two CT scans as part of the complete test (stress and rest).

Nordic main body doses for SPECT/CT bone scans are in broad agreement with UK

data [2], although a tendency for a longer CT scan length is noted in the Nordics. Bone

SPECT/CT examinations can cover any body region depending on the patient’s clinical

indications. Data were therefore categorised into main body, head, and extremities. It

would have been ideal to categorise main body data further according to the specific

body part as done in the Swiss survey [15], but the amount of submitted data was in-

sufficient for this. For SPECT/CT parathyroid, Nordic doses are in general agreement

with those from the UK [2] and Switzerland [15]. However, a greater CT scan length is

noted for Nordic protocols, giving slightly higher DLP75kg than other published values.

This is the first study to suggest NDRL CT doses for PET/CT brain and SPECT/CT

lung and thus, there are no reliable published dose values for comparison. It is also the
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first study to suggest NDRL CT doses for PET/CT infection/inflammation. However,

the results from this survey showed that the vast majority of facilities used the same

CT protocol as for PET/CT oncology, thus suggesting that facilities outside of the Nor-

dics wishing to evaluate their local DRL CT doses for PET/CT infection/inflammation

could use their NDRLs for PET/CT oncology as a reference, in the absence of NDRL

CT doses specifically for PET/CT infection/inflammation.

In this study, reported AC only radiation doses had the greatest variation in dose.

Good image detail is not required for AC only; therefore, very low dose settings can be

used to provide enough information for a reliable CT-based attenuation map. Hence,

very low dose scans are used in some facilities for AC only, whereas standard diagnostic

scanner protocols which have not been optimised for AC only have been used in other

facilities. Thus, dose variations tend to reduce from AC only purposes through to diag-

nostic purposes, with the highest maximum/minimum dose difference of 27 times be-

ing for AC only in lung SPECT/CT, and the lowest maximum/minimum dose

difference of 2.1 times being for diagnostic PET/CT oncology.

Collecting information on CT protocol settings allows further investigation of dose dif-

ferences between systems. Table 3 shows that the factors contributing to the 27 times dif-

ference in dose for AC only lung SPECT/CT include a higher tube voltage and effective

mAs for the protocol providing the maximum DLP75kg, compared with a low effective

mAs (afforded by low mA and high pitch factor) and use of iterative reconstruction in the

lowest dose protocol. A 21 times difference in dose for AC only cardiac PET/CT and

SPECT/CT protocols was generated by a very high effective mAs and very long scan

length for the heart, in the protocol providing the maximum DLP75kg, compared with a

low kV, low effective mAs (comprising low mA and high pitch factor), and use of iterative

reconstruction in the lowest dose protocol. For PET/CT brain, the main contributor to

the 17 times difference in localisation/characterisation dose was an extremely high mAs

from the maximum dose protocol compared with other localisation/characterisation

protocols, as it was reported that images were originally intended for fully diagnostic

purposes, but following a change in circumstance, the images were only being used for

localisation in practice. Further protocol comparisons are made in Table 3.

Mattsson et al. [25] described how dose-saving features such as tube current modula-

tion, choice of x-ray spectra, iterative reconstruction, and new detectors have the po-

tential to reduce dose considerably. As the type and availability of these features differ

between systems, there will inevitably be dose differences. However, the technical cap-

abilities of the systems alone cannot account for all differences in dose seen in this

study. Table 3 demonstrates that no single parameter is causing the large differences in

dose for all examinations, and the large factors of difference are being generated

through some facilities having multiple parameters which they have tried to optimise

for clinical purpose, and other facilities having multiple parameters which are not opti-

mised for clinical purpose, and for some examinations may have selected standard diag-

nostic protocols for AC only and localisation/characterisation scans. Yet, even where

efforts have been made to optimise CT protocols for clinical purpose, there will in-

evitably be differences in reader preferences for noise and resolution, causing variability

in parameters and thus dose.

Differences in scan length for the same examination and clinical purpose of CT also

contribute to differences in DLP. CT scan lengths for PET examinations are generally
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standardised, due to the technical phenomenon that PET/CT systems require the at-

tenuation information gleaned from the CT data for the full PET FOV, in order to

allow AC of the PET images, because recorded PET photons are not collimated when

scanning in the conventional 3D mode [26]. However, given that recorded SPECT pho-

tons are collimated, the CT scan can be localised to the anatomical area of interest,

whilst still allowing AC SPECT reconstructions over that area [27]. Although scan

length does contribute to dose differences in all scans, it was not considered a major

contributor to DLP75kg differences for PET/CT oncology, PET/CT brain, and SPECT/

CT lung, contributing to less than 1.5 times difference in dose. However, Table 2 shows

that scan length differed markedly for some SPECT/CT examinations, with up to 2.4,

2.6, and 3.1 times difference in scan length for PET/CT and SPECT/CT cardiac (AC

only), SPECT/CT parathyroid (localisation/characterisation), and SPECT/CT bone (lo-

calisation/characterisation) scans respectively. The difference in cardiac SPECT/CT

scan length can be explained by some facilities restricting the CT scan to the heart,

whereas others scan a much greater area. Parathyroid adenomas are most commonly

located around the thyroid bed but can occasionally be ectopic (sublingual region down

to the heart) [28]. Therefore, some facilities localise the SPECT/CT scan to the thyroid

region whilst another scans 2 fields-of-view (FOV) to cover the full possible ectopic

area. For SPECT/CT bone, some facilities perform 3 FOV SPECT/CT scans (head to

thigh) as standard without planar whole body imaging, as SPECT/CT is known to have

greater sensitivity and specificity than planar imaging [29], whereas other facilities per-

form planar whole body gamma camera imaging as standard and supplement this with

SPECT/CT over areas of particular interest. The wide variations in scan length for

these three examinations are also consistent with the tendency for the Nordic scan

lengths shown in Table 2 to be greater than corresponding UK scan lengths [2]. These

findings suggest that scan length could be a focus area for optimisation efforts in

Nordic SPECT/CT examinations.

Design of a suitable method for reporting CT NDRL doses for CT in MI examina-

tions is essential to enable accurate data comparisons. Many methodological questions

arose during the preprocessing of collected data which were difficult to predefine be-

fore starting the study. One such source of variability is the clinical purpose of the CT

scan. The UK survey grouped data into 3 clinical purposes of CT (attenuation correc-

tion, localisation, and fully diagnostic) [2]. This study included a fourth category of

characterisation, which should in theory give more detail and thus a higher dose than

localisation, but less than diagnostic. However, some facilities communicated that they

were not familiar with this term and the data showed no clear distinction in dose be-

tween localisation and characterisation. Thus, localisation and characterisation pur-

poses were combined, thereby allowing a greater data pool for generating suggested

NDRL CT doses. Furthermore, the validity of these survey results is reliant on the cor-

rect clinical purpose of CT being recorded on the data capture form. It is expected that

this has been discussed between the relevant health professionals for each facility.

Alkhybari et al. published recommendations for establishing PET/CT and SPECT/CT

NDRLs in 2018 [7] after this study had commenced, explaining that future PET/CT

and SPECT/CT NDRL data should include a minimum of 50 patients without weight

restriction, based on the current ICRP publication [18]. However, this study, similar to

that by Iball et al. [2], is limited by the quantity of data submitted. In both studies, data
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submissions from a facility for a scanner-examination combination were included if

there were data for ten or more patients. This is less than the number recommended

by the ICRP [18]. However, given that hybrid examinations have a much longer exam-

ination time than standalone CT and submitted data must be further subdivided ac-

cording clinical purpose, it is difficult to obtain as high a number of data submissions

compared with standalone CT. Given these limitations on patient numbers, data were

acquired in this study without weight restriction to obtain as much data as possible,

but since the data included a maximum of 30 patients per system, doses were then in-

terpolated to a 75-kg person to get a more fair comparison. Alkhybari et al. explained

that less than 2% difference in dose has been found between weight-restricted or non-

weight-restricted methods, meaning that non-weight-restricted methods are still valid

[7]. Data were commonly excluded in this study due to insufficient numbers of patients

(less than 10 for systems utilising tube current modulation) due to limited throughput

during the data collection period. Other reasons for exclusion included absence of pa-

tient body mass data meaning that the data could not be weight-derived, diagnostic CT

datasets which were additional to a low dose CT scan or where combined low dose and

diagnostic CT data were submitted and could not be separated, and cardiac PET/CT

datasets which were not for assessment of myocardial perfusion, such as multiple PET

FOV localisation scans for sarcoidosis.

Studies proposing NDRLs for MI examinations have either analysed data according

to dose information gathered from a population of systems (scanner types per facility)

[2, 11, 15, 17], or per facility (using a dose average across all scanners at a given facility)

[16]. This study analysed data according to systems as opposed to facilities, in keeping

with the methodology of the other studies covering a broad range of PET/CT and

SPECT/CT examinations [2, 11, 15, 17]. Lima et al. identified a possible limitation to

this approach, whereby there could be a bias towards facilities with a large number of

scanners, but on investigation, they found no significant influence on the distribution

of doses [17].

This study has some recognised limitations. Despite this study gathering a large

amount of data from 83 systems across 43 facilities, collected data were not sufficient

to suggest NDRL and achievable doses for PET/CT bone and SPECT/CT sentinel node,

thyroid post ablation, and octreotide/mIBG examinations. Furthermore, data were in-

sufficient to suggest NDRLs for all clinical purposes for all examinations. Details of all

CT acquisition parameters for PET/CT and SPECT/CT were collected with the

intention of exploring the protocol settings contributing to the greatest dose variations,

which in turn could inform dose optimisation strategies. A basic evaluation was under-

taken where possible, as shown in Table 3, but a full evaluation was not feasible, due in

part to differences in how scanner vendors define the reference image quality where

tube current modulation is applied. This study provides suggested Nordic NDRL data

for PET/CT and SPECT/CT scans. However, it is important to note that the data pre-

sented in this study are not official NDRLs, as they must first be ratified by the relevant

local radiation protection authorities.

Conclusions
This study suggests Nordic NDRL (75th percentile) and achievable dose (50th percentile)

values for the CT aspect of PET/CT and SPECT/CT examinations, which are specific to
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the clinical purpose of CT. NDRLs are suggested for PET/CT oncology, infection/inflam-

mation, brain and cardiac (myocardial perfusion), and SPECT/CT cardiac (myocardial

perfusion), lung, bone, and parathyroid examinations. Great variations in CT doses have

been identified for the same examination and clinical purpose of CT for all examinations,

demonstrating great scope for optimisation. Variation in scan length has been identified

as one key contributor to variation in dose for SPECT/CT examinations, and future dose

optimisation efforts could focus in part, on establishing optimal scan lengths. Future pub-

lications should further communicate sources of dose variations seen in clinical practice,

and how CT protocols can be optimised for PET/CT and SPECT/CT examinations. CT

radiation doses delivered from PET/CT and SPECT/CT scans should change over time,

for example with an increased awareness of the need for CT optimisation in MI and with

greater availability of advanced scanner technologies and dose saving features. The survey

should therefore be repeated in 3–5 years [18].
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