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Abstract

Objectives

The aim of this study was to examine the concurrent validity of the HUMAC Balance System

(HBS) and Balance Trainer BTG4 (BTG) in comparison to a laboratory-grade force platform

(FP) for postural control (PC) and vertical jump performance (VJP) assessment. In addition,

reliability of the three devices was measured for PC.

Methods

Overall 22 participants (age = 37.8 ± 13.3 years; gender = 9 male, 13 female; height = 174.1

± 10.5 cm; body mass = 75.3 ± 17.6 kg) were recruited to participate. Double and single leg

standing balance tests with eyes open or closed and counter movement jumps (CMJ) were

performed on two separate occasions. Reliability and concurrent validity for COP parame-

ters and VJP were examined using intraclass correlation coefficients (ICC), Bland-Altman

plots (BAP), standard error of measurement (SEM) and minimum detectable change

(MDC).

Results

COP path length test-retest reliability was predominantly good to excellent for all three

devices (ICC = 0.80–0.95). SEM and MDC values were high for all plates (SEM% = 8.0–

15.2; MDC% = 22.8–44.5), with the HBS MDC values higher than the KIS and BTG in three

of the four trials. ICC scores for concurrent validity were good to excellent for the BTG (ICC

= 0.76–0.93) and moderate to good for the HBS (0.49–0.83). Band-Altman plots revealed a

systematic bias for the HBS towards higher COP path length values under all conditions and

for the BTG in two out of four trials towards lower values. Validity of VJP was excellent for

the BTG (ICC = 1.0) and poor for the HBS (0.34), with a systematic bias towards lower

values.

Conclusion

The comparative analysis of PC and VJP revealed reliable and valid results for the BTG

in comparison to a laboratory-grade force plate. The HBS showed reliable results for PC
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assessment with restrictions regarding its validity. Results of VJP showed that the HBS

revealed deficits in the assessment of activities that require rapid, high force movements

such as jumping and running. Due to the variable results of all three devices, it is recom-

mended not to use them interchangeably.

Introduction

The postural control system guarantees the maintenance of balance and body orientation in

the standing position. It is a complex construct that depends on the functions of the nervous,

sensory and motor systems [1]. Vertical jump performance (VJP) is used for the assessment of

complex motor performance and the lower limb muscle strength/power, especially for the leg

extensor chain. Both motor functions are essential for the performance of sports and even

activities of daily living. Assessment of postural control (PC) and VJP has been shown to pro-

vide valuable information in a variety of situations. Fields of application are e.g. the prediction

of falls, quantification of non-specific low back pain, ankle instability and further issues in

physical therapy, medicine or engineering [1–3].

But the inherent complexity of the close interaction between sensory perception and motor

output makes the comprehensive evaluation of PC very complicated [4]. A large number of

different qualitative and quantitative methods for the assessment of PC and VJP have been

developed [4]. The qualitative methods use clinical tests, e.g. the Romberg-test or the Berg’s

balance test for PC assessment and the jump and reach test for VJP. They show to provide

valuable information, but suffer from limitations including subjectivity of scores and the ceil-

ing effect and may thus not differentiate subtle changes [5]. Detailed evaluation of PC or VJP

and associated strategies require the use of instrumented tests with several materials to enable

kinetic, kinematic, and electrophysiological analysis [6]. Of this quantitative methods force

platforms (FP) are the most widely used devices in assessing postural function or VJP [6–8].

FP typically measure ground reaction forces and moments, which are used to calculate

force development and position of the center of pressure (COP) [9]. The COP is the origin of

all ground reactionary forces in the transverse plane and reflects the neuromuscular response

to movements in the center of gravity (i.e. the vertical projection of the center of mass) [4,9]. It

is the most frequently used parameter from which various variables can be calculated to assess

PC [6]. Most common variables are total COP path length (PL), 95% COP area and COP

velocity. PL is defined as the total distance traveled by the COP over the course of the trial

duration and is known to be a reliable and valid measure of standing balance [10,11]. 95%

COP area is the smallest ellipse containing about 95% of the COP points. COP velocity is the

COP excursion divided by the time of the trial and represents the efficiency of the postural

control system (the smaller the velocity, the better the PC) [6]. Latter is considered to be the

variable with the greatest reliability among trials [1,6].

During vertical jump, the body is pushed upwards against gravity by powerful ground reac-

tion developed as a result of muscular contraction. Jump performance is quantified by the

jump height achieved, which can be calculated from the measured ground reaction forces of

the FP. Possible formulas are the flight-time-method or the impulse-momentum-method [12].

Most common used jumps are the counter movement jump (CMJ), squat jump or drop jump,

which are considered to be reliable and valid in measuring VJP [13].

Based on their objective quantification, force plates are generally considered as the “gold

standard” in assessing PC and VJP [6–8]. The HUMAC Balance System (HBS), originally
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being part of a video game device (Wii Balance Board (WBB)) is increasingly applied as an

inexpensive, portable and widespread available force plate in the rehabilitation and assessment

of PC and VJP [14–18]. Several studies reported that the WBB is a valid and reliable tool capa-

ble of objectively assessing postural stability and VJP [7,19–21]. However, other studies suggest

that the WBB may be useful for low-resolution measurements, but should not be considered as

a replacement for laboratory-grade force plates [22,23]. To the best of one’s knowledge, there

is only one study of Yamamoto et al. [20], which investigated the WBB in connection with

assessment of jumps. However, they did not measure jump height instead they only measured

peak ground reaction force. In addition VJP data of the HBS were partly unsatisfactory.

For further research another measurement device, the 2001 Balance Trainer BTG4 (BTG)

was acquired. To date, there are no known evaluation studies for this device.

The purpose of the current study was to explore reliability and concurrent validity of the

HBS and BTG compared to an applied valid laboratory-grade force platform (Kistler) to test

PC and VJP.

Materials and methods

Participants

Twenty-two participants (10 sports science students; 12 adults between the age of 40–60;

age = 37.8 ± 13.3 years; gender = 9 male, 13 female; height = 174.1 ± 10.5 cm; body mass =

75.3 ± 17.6 kg) were recruited to participate. In order to exclude any health impairments, all

subjects underwent a general anamnesis prior to the start of the study. Potential participants

were asked by the investigator regarding current and previous injury history. None of the par-

ticipants reported any medication intake, current pain, current balance problems, vertigo and

orthopedic or neurologic health impairments (e.g. hip or knee endoprothesis, ankle sprain,

hearing loss or equilibrium organ dysfunction) that may affect single or double limb standing

balance and VJP.

The study was approved by the Ethikkommission (EKS) of the Faculty of Sport Science,

Ruhr-University Bochum and was conducted in accordance with the Declaration of Helsinki.

All participants were informed verbally and in writing of the procedure and purpose of this

study, as well as possible risks such as ankle sprains or falls. Prior to their participations all vol-

unteers provided informed written consent.

Testing equipment

The HUMAC Balance System (CSMI Solutions, Inc., Stoughton, MA), which has a usable sur-

face of 45 cm x 26.5 cm, is mechanically based on the Wii Balance Board (Nintendo, Kyoto,

Japan), but differs regarding its communication interface and a manufacturers corresponding

software [4]. While the data exchange of the WBB occurs via Bluetooth, the HBS uses a USB

connection, which ensures higher sampling frequency and stable data transfer [4]. The 2001

Balance Trainer BTG4 (HURLABS, Tampere, Finland) is a balance testing and training plat-

form, which measures 96 cm x 68.5 cm in size and has four strain gauge-based load sensors,

located in the corners, like the HBS. On the other hand, the 60 cm x 50 cm Kistler (KIS) force

platform (Kistler 9260AA6, Kistler Instrumente AG, Winterthur, Switzerland) consists of four

piezo-electrical transducers, also placed in the four corners of the device, which are able to

measure ground reaction forces in medio-lateral (x), anterior-posterior (y) and vertical (z)

planes. In contrast to the KIS, the BTG and HBS merely measure vertical ground reaction

forces. However, to compare the data, COP calculations for KIS only took the forces along the

z-axis into account.
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The Kistler force plate has a sampling rate of 1000 Hz. With 100 Hz, the frequency of the

HBS is vastly lower than that of the KIS, but sufficiently accurate in COP measurements,

where 40 Hz are the minimum recommendation for recording COP in postural sway [24].

The BTG COP data was acquired at a sampling frequency of 100 Hz as well, but the vertical

jump height was sampled at 1200 Hz due to the determination by the manufacturer’s software.

Taking into consideration the static noise, the sampling frequency of the Kistler were down-

sampled at 100 Hz and the raw data for each individual sensor were filtered by a second-order

Butterworth low-pass filter and a cutoff frequency of 5 Hz following measurement. The results

for HBS were processed by the manufacturer’s software using a single-pole low-pass filter. The

BTG contains four sigma-delta AD7730 A/D converters, which include two filters, a low pass

(sin/x)3 and a 22-tap low pass filter. HBS and BTG data were not processed secondary and

were taken directly into analysis.

Prior to the examination, the validity of static COP measurement was verified. For static

evaluation, a known load was placed at five different positions (P1-P5) on the surface of each

device. Positions were determined according to the reference point P5, which was the center of

each respective force plate. P1 to P4 were located at the edges, close to the respective corner

points. The COP position coordinates were measured over a time interval of 5 seconds and

were repeated three times.

Procedure

The investigation took part in the Department of Sports Medicine and Sports Nutrition of the

Ruhr-University Bochum. Environmental conditions such as lighting and noises were kept

stable. The three platforms were set up next to each other on a flat and rigid laboratory floor

according to the manufacturer’s installation requirements.

Participants were tested on two occasions (T1, T2) within 5–8 days (see Fig 1). For postural

stability assessment, four standing balance tasks were chosen based on their varying degrees of

difficulty and common use in previous literature. These balance tasks were: (1) double limb

stance with eyes open (DLEO), (2) double limb stance with eyes closed (DLEC), (3) single limb

stance with eyes open (SLEO) and (4) single limb stance with eyes closed (SLEC). Unilateral

stance was performed using the preferred leg. The order of (a) standing balance tasks and (b)

testing device were randomly assigned for each subject. Participants completed three 30-sec-

ond trials of each task on each of the three devices, for a total of 36 trials. However, for the

elder cohort, duration of the SLEC task was 10 seconds due to the difficulty. All participants

were instructed to standard procedure to stand barefoot with their heels and big toes on desig-

nated marks, place the hands on the hips, bend the knees slightly and stand as still as possible

while focusing a marked point at the nearby wall (distance: 2 m, height: 1.75 m). A trial was

considered invalid if participants displaced their standing leg or touched the floor with the

contralateral leg during the unilateral stance. Participants received 15 seconds of rest between

successive trials within each balance task and 60 seconds of rest when switching between the

conditions or devices. Trials were averaged within each condition such that a single value for

each task per force plate was obtained. Calculated COP parameters were total COP path length

[mm], 95% COP area (95% confidence ellipse) [mm2] and COP velocity [mm/s]. Given that

the trials were for a fixed time interval, PL and COP velocity are analogous for DLEO, DLEC

and SLEO.

VJP of each participant was evaluated by using the counter movement jump (CMJ). To

enable simultaneous measurement of data and to eliminate within subject variability, the three

devices were placed on top of each other [9,20]. Due to the different sizes, the KIS was placed

on top of the BTG and the HBS on the top of the KIS. Whilst each participant performed the
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standing balance tasks, CMJs are, for security purpose, performed by sport science students

only. Vertical jump height was measured for three CMJs per participant and every jump took

into account the comparison. The recommended overload capacity was 150 kg for the WBB

and 300 kg/sensor for the BTG. Hence, the subjects were instructed to perform submaximal

jumps in order to not exceed the loads and occur damage to the measurement devices. Thus,

the results of this section are mainly representative for the observed data and comparable to

similar flight times/jump heights. Jump height was calculated using the flight-time-method.

Prior to every test day the participants were asked to fill in the SRSS questionnaire (Short

Recovery and Stress Scale for Sport) to evaluate the acute recovery and stress state.

Statistical analysis

A two-way, random-effects, single measure intraclass correlation coefficients (ICC (2,1))

model was used to assess reliability and concurrent validity. Point estimates of the ICCs were

interpreted as follows: poor (0–0.39), moderate (0.40–0.74), good (0.75–0.89) and excellent

(0.90–1) [5].

Bland-Altman plots (BAP) were used for descriptive evaluation of the concordance of the

results from two devices. Specifically, this was performed by plotting the difference for ana-

lysed variables between two instruments against the mean results [25]. The BAP shows a possi-

ble systematic bias in the differences of the measurements and their mean values. Limits of

agreement (LoA) can be calculated by multiplying the standard deviation (SD) of the mean dif-

ference of the scores by 1.96 and can predict the difference value of any other measurement by

the two devices (with 95% certainty).

To quantitatively describe the within-device test-retest reliability, the standard error of

measurement (SEM) and the minimum detectable change (MDC) were calculated. The SEM

is the standard deviation of all errors in one measure and represents the absolute reliability.

Fig 1. Procedure. BTG = Balance Trainer BTG4; HBS = HUMAC Balance System; KIS = Kistler; DLEO = double limb eyes open; DLEC = double limb

eyes closed; SLEO = single limb eyes open; SLEC = single limb eyes closed, CMJ = counter movement jump; T1 = day 1, T2 = day 2.

https://doi.org/10.1371/journal.pone.0222502.g001
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MDC defines the limits within a change in the measurement score that could be attributed to

measurement error [26]. SEM was calculated by dividing the standard deviation of the mean

differences between the two measurements by the square root of two (SD differences/
p

2).

SEM% and MDC were calculated using following formulas:

SEM% ¼ ðSD�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ICC
p

�
1

mean
Þ � 100

MDC ¼ 1:96� SEM �
ffiffiffi
2
p

In the descriptive approach, the data are expressed as mean value and standard deviation

and differences are described as percentage of the deviation. The Kolmogorov-Smirnov test

was used to check the normality of the distribution. Correlations between the devices were cal-

culated using Spearman’s rho (rs). Odds ratios are reported with 95% confidence intervals. Sta-

tistical significance was defined as a p value�0.05.

Results

Static measurement

The results of the static COP measurement are presented in Table 1.

Postural control

One participant was unable to successfully complete three trials of single limb balance and

another one did not turn up at T2. Consequently, test-retest statistical analysis for PC was per-

formed on the data for 21 participants, except for the single limb trials, which included data of

20 participants. VJP data of one participant for T2 was excluded due to a measurement error.

Thus, 57 jumps were considered in statistical analysis.

Due to similar results, the focus of the analysis is on the outcomes of the total COP path

length. Results of COP area and COP velocity are represented in the appendix (App. A-C).

In general, all three devices showed good to excellent COP path length test-retest reliability

(Table 2), except for the HBS under SLEO condition (ICC = 0.72).

The SEM (BTG range = 8.0–12.9%, HBS range = 10.1–15.2%, KIS range = 8.8–11.9%) and

MDC (BTG range = 22.3–31.7%, HBS range = 28.8–44.5%, KIS range = 25.4–34.7%) values for

COP path length were reasonably high for all three devices, with the HBS MDC values higher

than the KIS and BTG in three of the four trials.

ICCs for concurrent validity of total COP path length showed good to excellent scores

for BTG (0.76–0.93), except for the SLEO condition (0.66). Results of HBS were moderate

(ICC = 0.49–0.71) with only good scores for SLEC (0.83) (Table 3).

Table 1. Mean error and SD for the static condition in x- and y-direction.

Device P1 [mm] % P2 [mm] % P3 [mm] % P4 [mm] % P5 [mm] %

X BTG -5.1 ± 0.1 2.0 -5.2 ± 0.8 2.0 3.6 ± 0.3 1.3 -18.4 ± 3.3 7.1 1.3 ± 0.0 1.2

HBS -13.0 ± 0.1 6.9 -18.7 ± 1.9 9.9 -10.3 ± 1.2 5.4 -16.5 ± 0.1 8.7 9.3 ± 0.1 9.3

KIS -32.2 ± 5.9 12.8 -37.2 ± 9.0 14.9 35.7 ± 3.6 14.3 28.2 ± 6.1 11.3 8.7 ± 2.0 8.7

Y BTG -17.1 ± 0.1 8.1 21.2 ± 5.4 10.1 -12.1 ± 0.1 5.8 -10.4 ± 2.9 5.0 -9.1 ± 0.1 9.1

HBS -10.4 ± 0.2 9.2 -7.5 ± 0.1 6.6 -8.7 ± 0.2 7.7 -7.2 ± 0.1 6.4 -6.9 ± 0.7 6.9

KIS -13.4 ± 3.2 6.7 -17.3 ± 1.6 8.7 -15.9 ± 2.6 8.0 -18.4 ± 4.0 9.2 -6.1 ± 1.5 3.1

BTG = Balance Trainer BTG4; HBS = HUMAC Balance System; KIS = Kistler; P = position; X = x-direction; Y = y-direction.

https://doi.org/10.1371/journal.pone.0222502.t001
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Fig 2 and Bland-Altman plots (Fig 3) demonstrated a systematic bias for the HBS under all

conditions towards higher total COP path length values and for the BTG among DLEO and

SLEO towards lower values. LOA showed larger variation in the unilateral trials than the bilat-

eral trials.

Vertical jump performance

Jump heights of VJP were similar between BTG (19.27 ± 4.27 cm) and KIS (19.23 ± 4.26 cm),

but differ a lot to the HBS (12.37 ± 3.18 cm) (see Fig 4). So ICCs for concurrent validity showed

an excellent value for the BTG (1.0) and a poor value for the HBS (0.34) (see App. D). BAPs

(Fig 5) demonstrated no systematic bias for the BTG and a bias towards lower values for the

HBS. The differences increase with jump height for HBS.

Table 2. Reliability analysis of total COP path length (mm) measures during each of the four standing balance trials.

BTG HBS KIS

DLEO

T1 [mm] 204.1 ± 45.4 293.7 ± 76.8 222.3 ± 54.2

T2 [mm] 199.1 ± 45.6 322.8 ± 101.3 229.3 ± 63.1

Mean Diff [mm] -4.8 ± 23.2 25.9 ± 43.2 5.9 ± 32.3

ICC (95% CI) 0.87 (0.72, 0.95) 0.85 (0.60, 0.94) 0.85 (0.68, 0.94)

SEM [mm] (%)� 16.4 (8.0) 30.5 (10.1) 22.8 (9.4)

MDC [mm] (%)� 45.5 (22.3) 84.5 (28.8) 63.2 (28.4)

DLEC

T1 [mm] 277.2 ± 74.1 445.6 ± 169.4 302.2 ± 91.8

T2 [mm] 277.6 ± 75.4 463.4 ± 175.4 318.7 ± 112.0

Mean Diff [mm] 1.0 ± 38.9 13.7 ± 101.3 14.6 ± 50.9

ICC (95% CI) 0.87 (0.71, 0.95) 0.84 (0.64, 0.93) 0.88 (0.72, 0.95)

SEM [mm] (%)� 27.5 (9.6) 71.6 (15.2) 35.9 (10.5)

MDC [mm] (%)� 76.2 (27.5) 198.5 (44.5) 99.5 (32.9)

SLEO

T1 [mm] 902.7 ± 187.4 1216.5 ± 343.1 1030.4 ± 262.7

T2 [mm] 857.2 ± 193.5 1101.0 ± 257.5 1026.4 ± 262.6

Mean Diff [mm] -55.0 ± 114.3 -123.5 ± 208.4 -9.8 ± 133.7

ICC (95% CI) 0.80 (0.53, 0.92) 0.72 (0.35, 0.88) 0.88 (0.72, 0.95)

SEM [mm] (%)� 80.8 (9.3) 147.4 (14.9) 94.5 (8.8)

MDC [mm] (%)� 224.0 (24.8) 408.6 (33.6) 261.9 (25.4)

SLEC

T1 [mm] 1468.5 ± 775.1 1750.3 ± 887.1 1422.1 ± 640.1

T2 [mm] 1368.2 ± 766.0 1739.2 ± 875.5 1428.9 ± 676.8

Mean Diff [mm] -136.9 ± 237.3 -54.6 ± 293.9 3.6 ± 251.5

ICC (95% CI) 0.94 (0.82, 0.98) 0.95 (0.87, 0.98) 0.93 (0.83, 0.97)

SEM [mm] (%)� 167.8 (12.9) 207.8 (11.3) 177.8 (11.9)

MDC [mm] (%)� 465.1 (31.7) 576.0 (32.9) 492.8 (34.7)

DLEO = double limb eyes open; DLEC = double limb eyes closed; SLEO = single limb eyes open; SLEC = single limb eyes closed; BTG = Balance Trainer BTG4;

HBS = HUMAC Balance System; KIS = Kistler; Diff = difference; ICC = intraclass correlation coefficient; CI = confidence interval; SEM = standard error of

measurement; MDC = minimum detectable change

�expressed as a percentage of the Day 1 mean value

https://doi.org/10.1371/journal.pone.0222502.t002
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Correlations between both devices to the KIS were significant (p<0.001), with spearman’s

rho for the BTG (rs>0.99) higher than for the HBS (rs>0.89). Fig 6 demonstrated a variance

for HBS jump heights and the regression line visualise the underestimation of the jumps.

Discussion

The objectives of the current study were to investigate concurrent validity of the HBS and BTG

in comparison to a laboratory-grade force platform for PC and VJP assessment, and for PC to

additionally explore reliability of these devices. The ability to objectively assess standing bal-

ance and VJP using alternatives to expensive laboratory-grade FPs could provide numerous

benefits in sports science in terms of improving athletes or investigating impairments. Our

Table 3. Concurrent validity analysis of total COP path length measures during each of the four standing balance trials.

KIS vs. BTG KIS vs. HBS

Mean Diff [mm] Mean Diff [%] ICC (95% CI) Mean Diff [mm] Mean Diff [%] ICC (95% CI)

DLEO -24.1 ± 29.1 10.7 0.76 (0.32, 0.90) 82.2 ± 51.2 26.7 0.49 (-0.10, 0.80)

DLEC -32.9 ± 53.7 10.7 0.77 (0.49, 0.89) 144.0 ± 91.9 31.7 0.52 (-0.10, 0.81)

SLEO -147.4 ± 147.4 14.4 0.66 (0.08, 0.86) 133.0 ± 188.8 11.5 0.71 (0.34, 0.86)

SLEC -3.6 ± 267.4 0.4 0.93 (0.87, 0.96) 324.1 ± 343.6 18.4 0.83 (0.34, 0.94)

DLEO = double limb eyes open; DLEC = double limb eyes closed; SLEO = single limb eyes open; SLEC = single limb eyes closed; BTG = Balance Trainer BTG4;

HBS = HUMAC Balance System; KIS = Kistler; Diff = difference; ICC = intraclass correlation coefficient; CI = confidence interval

https://doi.org/10.1371/journal.pone.0222502.t003

Fig 2. Total COP path lengths (mean of T1 and T2) during each of the four standing balance trials. BTG = Balance Trainer BTG4; HBS = HUMAC

Balance System; KIS = Kistler; DLEO = double limb eyes open; DLEC = double limb eyes closed; SLEO = single limb eyes open; SLEC = single limb eyes

closed.

https://doi.org/10.1371/journal.pone.0222502.g002
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Fig 3. BAPs of total COP path length measures during each of the four standing balance trials. (A = DLEO; B = DLEC;

C = SLEO; D = SLEC) between the BTG (1) and HBS (2) to the KIS (___ = mean Diff, - - - = LoA). BAP = Bland-Altman plot;

BTG = Balance Trainer BTG4; HBS = HUMAC Balance System; KIS = Kistler; DLEO = double limb eyes open; DLEC = double limb

eyes closed; SLEO = single limb eyes open; SLEC = single limb eyes closed; LoA = limits of agreement. (�pay attention to the different

scaling between standing conditions).

https://doi.org/10.1371/journal.pone.0222502.g003
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findings suggest that the BTG is a reliable and valid measurement tool capable of assessing

PC and VJP. The HBS showed reliable results for PC measurement with deficits regarding its

validity but failed to measure VJP.

Static measurement

Results of the static conditions showed for all devices that the average margin of error were

largest near the corner points. Koltermann et al. [4] suppose that this phenomenon can be

attributed to the positions of the sensors being in each respective corner. The system limits

are exceeded by placing the known load directly on the edges of the device. This leads to an

increased rate of error at P1 to P4, whereas the error for P5 is lower. The Kistler force plate is

based on piezoelectric sensors and is therefore generally considered to manage dynamic condi-

tions well, but shows deficits under static conditions. The devices of the HBS and the BTG are

Fig 4. Average jump height between the devices. BTG = Balance Trainer BTG4; HBS = HUMAC Balance System; KIS = Kistler.

https://doi.org/10.1371/journal.pone.0222502.g004

Fig 5. BAPs of VJP between BTG (A) and HBS (B) in comparison to the KIS. BAP = Bland-Altman plot; BTG = Balance Trainer BTG4;

HBS = HUMAC Balance System; KIS = Kistler; LoA = limits of agreement. (___ = mean Diff, - - - = LoA) (�pay attention to the different scaling).

https://doi.org/10.1371/journal.pone.0222502.g005
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fitted with strain gauges, which register compressing or stretching deformations and, there-

fore, exceed the performance of the Kistler under purely static conditions [4].

Postural control

Due to the complexity, balance assessment is not perfectly reliable [2]. But in line with previous

studies [2,9,27,28], present ICC results indicated a high degree of agreement between test ses-

sions for all devices (BTG = 0.8–0.94, HBS = 0.72–0.95, KIS = 0.85–0.93). Clark et al. [7] com-

pared COP PL of a WBB with a laboratory-grade FP (AMTI Model OR6-5) with the same

balance tasks and reported similar reliability (WBB = 0.66–0.91, FP = 0.79–0.94). Clark et al.
[9] confirmed these results in a review that examined twelve studies regarding reliability of the

WBB related to other force plates. The majority of the included studies revealed predominantly

moderate to excellent reliability.

The MDC of the BTG and HBS in percentage was relatively high in the current study, but

in accordance with previous studies [7,11,26,28,29], and was similar to that of the KIS. These

findings demonstrated that reasonably large variations in balance assessment were necessary

in test-retest studies to reveal a significant change in performance. Values in excess of 20%

indicate that low magnitude changes in PC performance would not be statistically detected by

either the KIS, BTG or HBS force plates [7].

In order to exclude the influence of the physical condition on the performance between the

measurement dates, the SRSS questionnaire was collected. Results revealed no significant cor-

relation between changes in performance and current recovery-stress state in eleven out of

twelve cases (see App. E), so it can be concluded that reliability was not substantial affected.

With regards to concurrent validity, ICC point estimates of the BTG showed good to excel-

lent values except for SLEO. The HBS only received moderate values for DLEO, DLEC, SLEO

(0.49–0.71) and a good value for SLEC (0.83). The amount of agreement appears to depend on

task complexity. Double limb stance with opened eyes can be regarded as the easiest task and

single limb stance with closed eyes (no visual feedback) as the most complex. Thus, lower ICC

scores were observed for the easy tasks during bipedal stance and ICCs increased with higher

complexity of the task.

Examination of the Bland-Altman plots revealed a systematic bias for the HBS towards

higher COP values under all conditions and for the BTG towards lower values in two of the

four trials. As discussed in previous studies [7,30,31] it is probable that the different values

received between the BTG, HBS and KIS are the result of device-specific factors, such as

Fig 6. Correlations between jump heights of BTG (1) and HBS (2) to the KIS. BTG = Balance Trainer BTG4;

HBS = HUMAC Balance System; KIS = Kistler; CMJ = counter movement jump.

https://doi.org/10.1371/journal.pone.0222502.g006
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differences in size, surface texture and hardness or the sensitivity and accuracy of the sensors.

Qualitative feedback from participants supports this argument, as several subjects stated that

they felt kinesthetically ‘less stable’ on trials performed on the HBS in comparison to those that

were performed on the BTG or KIS. This could be related to the fact that the HBS has a much

narrower surface than the BTG or KIS (26.5 cm versus 68.5 cm and 50 cm), and its plastic shell

being less rigid [30]. The over-estimation of the HBS is consistent with the results of previous

studies [5,7,32–35] and appears to be a typical feature of uniaxial force plates [6]. It cannot be

safely explained why the BTG underestimates the COP data. It is important to emphasise that

we did not analyse the data on the same raw and filtered data level, respectively. Whereas sam-

pling frequencies (100 Hz) were identical between devices after downsampling KIS data, it

seems reasonable to assume that HBS and BTG system-immanent raw-data processing may

account for the observed COP path length differences.

With regards to the other COP parameter, overall COP area received slightly lower ICC

values for reliability and validity, except for the validity of HBS, which increased. Especially

reliability analysis of HBS was lower for double limb trials with only poor to moderate ICC

values (0.15–0.50). COP velocity showed similar results in comparison to COP PL. Results

indicate that COP values do not differ much, but it is important to know which measures

are most sensitive to the changes occurring in PC assessment. The parameters used are the

most common in the literature and are described as reliable and valid in measuring postural

stability.

Vertical jump performance

Results of VJP indicate that the HBS is not capable of measuring the jump height precisely.

The mean difference was 35.8% lower compared to the FP and validity was poor (ICC = 0.34).

In contrast, the BTG showed very small differences (0.2%) and an excellent validity (1.0). One

reason for the failure of the HBS could be the sampling frequency. HBS frequency was much

lower (100 Hz) than that of the KIS (1000 Hz) or BTG (1200 Hz) and did not reach to the rec-

ommended 1000 Hz for recording CMJ [36]. Beside the low sample rate, the WBB has more

limitations compared to a FP like the unavailability of horizontal forces, a larger amount of

noise, an inconsistent sampling interval, occasional glitches in the data, and a manufacturer

advised maximum load of 1962 N [37,38]. Due to the limitations, Clark et al. [7] mentioned

that the WBB cannot be a direct replacement of a FP in activities that require rapid, high force

movements such as jumping and running. Yamamoto et al. [20] investigated the validity of a

jump training apparatus using the WBB and reported about nearly comparable data to those

of a FP when assessing jumping force. The outcome measure used in his study was the peak

vertical ground reaction force during the landing and jumping phase. However, Yamamoto

did no further research to determine the jump height. In the current study, jump height was

calculated using the flight-time-method. Due to Yamamoto’s results, jump height for KIS and

HBS was additionally calculated using the impulse-momentum method. ICC score showed a

moderate validity (0.55) and mean difference decreased to 14.9%. These findings indicate that

the impulse-momentum method provides better results, but still does not correspond to these

of the BTG or KIS. Yamamoto mentioned that the WBB cannot measure peak levels exactly in

situations involving strong forces in excess of 1800 N, however usually forces of a CMJ exceed

2500 N during landing [12]. One explanation could be the deformation of this device by the

shock of the landing, due to its plastic shell. Another explanation for the differences in the cur-

rent study compared to Yamamoto could be the data processing of the HBS in contrast to the

WBB. Fig 7 shows a comparison of a CMJ between the HBS and KIS. Curves were overlapped

and synchronised in relation to the first peak force. Additionally a moving average of 100 data
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points for KIS is plotted. Curves of moving average and HBS look very similar, so data process-

ing can be a solid explanation.

Methodical reflection

A limitation of this study is that asynchronous concurrent validity assessment was performed

for PC measurement. Clark et al. [9] reported that ICC or correlation scores with asynchro-

nous testing were typically lower than those measured with synchronous testing. This is to

be expected, as this form of concurrent validation also includes an aspect of within subject

variability.

Only validity is assessed for VJP and it would be interesting to see how the reliability of the

three different devices looks like. So further research is needed to explore this issue.

A further restriction is that the CMJ was just performed submaximal. According to the

findings, differences seem to increase with jump height, so validity would be influenced and

decrease further with maximal performance.

As mentioned earlier, it is important to note that it was not possible to get unfiltered data

for the BTG and HBS, due to previous system-immanent raw-data processing. Therefore we

were not able to do the analysis on the same raw and filtered data level, respectively, so this is

the most plausible explanation for the differences between the devices.

Conclusion

Force plates are useful diagnostic tools for the assessment of the kinetic characteristics of a

human’s movement. They provide information about the external forces involved in movement

Fig 7. Force-time curves of one identical jump measured from HBS and KIS, and an edited KIS curve with a moving average of 100 data points

(KIS (ma)). HBS = HUMAC Balance System; KIS = Kistler.

https://doi.org/10.1371/journal.pone.0222502.g007
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to qualitatively evaluate the human’s execution of a skill or physical development. In this

connection, PC and VJP are two areas of application where force plates are generally consid-

ered as the “gold standard”. However, they are often expensive, cumbersome to transport

and difficult to setup and therefore not feasible in a clinical setting. So alternatives to labora-

tory-grade force plates are wanted. Results of the present study indicate that the BTG is a reli-

able and valid measurement tool capable of assessing PC and VJP. The HBS may be useful

for measuring vertical ground-reaction forces and COP with limitations on accuracy and

precision. Rapid and high force movements as in VJP measurement are not able to be evalu-

ated sufficiently. Therefore HBS should not be considered to be equivalent to laboratory-

grade equipment. However, HBS may provide an estimate of force and COP measures that

could be useful for situations where lower accuracy and precision is acceptable. In summary,

also the data of the BTG vary from data of the KIS, thus measurements of the evaluated

devices should not be used interchangeably.
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Data curation: Robin Schäfer.
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