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Abstract 

Background: Blood parasites have been studied intensely in many families of avian hosts, but corvids, a particularly 
cosmopolitan family, remain underexplored. Haemosporidian parasites of the common raven (Corvus corax) have not 
been studied, although it is the largest, most adaptable, and widespread corvid. Genetic sequence data from para-
sites of ravens can enhance the understanding of speciation patterns and specificity of haemosporidian parasites in 
corvids, and shed light how these hosts cope with parasite pressure.

Methods: A baited cage trap was used to catch 86 ravens and a nested PCR protocol was used to amplify a 479 bp 
fragment of the haemosporidian cytochrome b gene from the samples. The obtained sequences were compared with 
the MalAvi database of all published haemosporidian lineages and a phylogenetic tree including all detected raven 
parasites was constructed. An examination of blood smears was performed for assessment of infection intensity.

Results: Twenty blood parasite lineages were recovered from ravens caught in a wild population in Bulgaria. The 
prevalence of generalist Plasmodium lineages was 49%, and the prevalence of Leucocytozoon lineages was 31%. Out 
of 13 detected Leucocytozoon lineages six were known from different corvids, while seven others seem to be specific 
to ravens. A phylogenetic reconstruction suggests that Leucocytozoon lineages of ravens and other corvids are not 
monophyletic, with some groups appearing closely related to parasites of other host families.

Conclusions: Several different, morphologically cryptic groups of Leucocytozoon parasites appear to infect corvids. 
Ravens harbour both generalist corvid Leucocytozoon as well as apparently species-specific lineages. The extraordi-
nary breeding ecology and scavenging lifestyle possibly allow ravens to evade vectors and have relatively low blood 
parasite prevalence compared to other corvids.
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Background
Haemosporidian parasites of the genera Plasmodium, 
Haemoproteus and Leucocytozoon are widely distributed 
among birds worldwide and can cause substantial health 
and fitness reduction to infected hosts [1–4]. Blood para-
site prevalence varies greatly among the different families 
of songbirds Passeriformes, and among different species 
of the same family [5, 6]. Inside the family of warblers 
(Sylviidae), the highly-parasitized members of the genus 
Acrocephalus share similar habitats with their relatives of 

the genera Locustella and Cettia in which haemosporid-
ian infections are of very low prevalence or even absent 
in some populations [7–9]. Such differences among the 
bird taxa are difficult to explain. In some cases, they can 
correlate with different capacities of the host immunity to 
defend itself against specific parasite infections [10, 11] 
or with the ecology, habitat preferences and behaviour of 
the hosts [12–14]. According to studies on different cor-
vid species, such as crows, magpies and jays, the avian 
family of Corvidae seems to harbour a great amount of 
haemosporidian parasites [15–18]. However, ravens may 
be less infected than their relatives due to their specific 
ecological niche.

The common raven (Corvus corax) is the largest song-
bird and most widely distributed corvid with a range 
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covering nearly the entire Holarctic [19, 20]. Ravens 
are typical scavengers, often feeding on carrion, with 
breeding biology resembling vultures and other rap-
tors [21–23]. They breed very early in spring, nesting 
mostly on rocks in river canyons and mountains, or on 
trees in lowland and low mountain forests [19]. Particu-
larly in the latter environment they are well exposed to 
blood parasite vectors—various groups of dipterans. It is 
hypothesized that scavenging birds are subject to strong 
parasite-mediated selection on immune defenses, which 
is supported by the finding that they have larger spleens 
and higher blood total leukocyte concentrations than 
non-scavengers [24].

A bird host can utilize two main strategies to cope with 
an infection—parasite suppression and clearance (resist-
ance), or withstanding the infection, while paying a low 
fitness cost (tolerance) [25, 26]. In scavenger hosts with 
particularly potent immunity, parasites may not be able 
to develop at all. In such species, a very low prevalence of 
parasites or even their complete absence can be expected. 
Accordingly, some scavenging birds, such as griffon vul-
tures (Gyps fulvus) have very low prevalence of blood 
parasites [27; own unpublished data]. Other species, such 
as corvids, harbour a high number of parasites without 
developing visible illness, corresponding more to a toler-
ance strategy. Several recent studies have detected high 
prevalence and high diversity of Leucocytozoon parasites 
in corvids [17, 18, 28]. These studies were completed on 
close relatives of ravens—crows, jays and magpies, which 
despite the common incorporation of carrion in their 
diet are less specialized scavengers compared to ravens. 
Nevertheless, the phylogenetic relationship between 
these species allows us to expect similarly high Leucocy-
tozoon prevalence in raven populations. Thus, ravens may 
be expected to have high infection prevalence of blood 
parasites and low infection intensity.

Until now no haemosporidian genetic lineages from 
ravens have been studied or are included in MalAvi, a 
database that includes all published lineages of avian 
malaria and related blood parasites [29]. The present 
work, aims to study the prevalence of haemosporidian 
parasites and their lineage diversity in ravens from a wild 
population and infer the strategy of ravens to avoid detri-
mental fitness effects of these parasites.

Methods
A total of 86 fully grown, adult and immature ravens 
were sampled in Bulgaria (Dolno Ozirovo, Vratsa district, 
43.2393 N, 23.3513 E) between March and September of 
the years 2013–2016. Ravens were captured in big cage 
nets baited with carrion, measured and ringed with an 
ornithological steel ring and a colour ring in order to pre-
vent double sampling. Blood samples were taken from 

the brachial vein and stored in absolute ethanol. Two 
blood smears were prepared for each bird and fixed in 
methanol for 5  min. Smears were stained with Giemsa, 
10,000 blood cells scanned and infection intensity score 
noted according to Valkiūnas [1].

DNA was extracted following a standard phenol–chlo-
roform protocol. For the detection of the blood parasites 
nested PCR and light microscopy were used. Molecular 
identification of infections was performed with nested 
PCR with the primer pairs NaemNFI/NR3, followed by 
a second reaction with the primers HaemF/R2 and Hae-
mFL/R2L, following the protocol of Hellgren et  al. [30]. 
The PCR amplicons were visualized on a 2% agarose 
gel with ethidium bromide under UV light. All ampli-
cons from positive samples were purified with ExoSAP 
and bidirectionally sequenced on an ABI 3730 Analyzer 
with BigDye Terminator. The cytochrome b sequences 
were edited and aligned with Geneious 8.1.9 and blasted 
against the MalAvi database, state 16.07.2017 [29].

Phylogenetic analyses was performed on a dataset 
of 40 lineages, 20 detected in ravens and close BLAST 
hits downloaded from the MalAvi dataset. The align-
ment was trimmed to 464  bp. Trees were constructed 
using a MrBayes v3.2.6 [31] with a GTR+G model and 
two Markov chains, run simultaneously for 10 million 
generations with a subsampling every 200 generations 
resulting in 50,000 trees. Posterior probabilities were 
calculated after discarding 25% of burn-in trees. Boot-
strap support for individual branches was calculated 
using 1000 replicates in RAxML [32]. Any sequence dif-
fering by one or more nucleotides from other sequences 
was considered to be distinct. Distinct lineages should 
not be automatically interpreted as species [18]. Names 
of the already described parasite lineages are taken from 
the MalAvi database, while new lineages were desig-
nated names CCORAX1–7 (GenBank accession nos. 
MG209762–MG209768).

Results
The total prevalence of haemosporidian infections in 
fully grown ravens determined by molecular meth-
ods was 62.8% (Table  1). The prevalence of Plasmo-
dium, Leucocytozoon and Haemoproteus was 48.8% 
(42/86), 31.4% (27/86) and 2.3% (2/86), respectively. 
Mixed infections were detected in 16 occasions (29.6% 
of all infections found; 18.6% of all sampled birds), 15 
of them were Plasmodium/Leucocytozoon and one was 
Haemoproteus/Leucocytozoon. A total of 20 haematozoan 
lineages were detected—Plasmodium—5, Leucocyto-
zoon—13, and Haemoproteus—2. Seven of the Leucocyto-
zoon lineages have not been reported until now and have 
close similarity to other corvid lineages. These lineages 
have been designated CCORAX1–7 (Table 1).
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Phylogenetic relationships (Fig.  1) show two main 
clades inside Leucocytozoon—one of them includ-
ing COCOR02 and CCORAX3, as well as some non-
corvid lineages. A second clade contains CCORAX2 
and GAGLA06, as well as two Leucocytozoon lineages 
known from blue tits. A third and fourth tentative clades, 
include CCORAX5, COCOR09, COCOR11, and EUSE1 
as well as the lineage STRORI03, known from Oriental 
turtle doves, respectively. These clades may represent dif-
ferent species of Leucocytozoon infecting mostly corvids 
but also other passerines and doves. A branch including 
CCORAX1, CCORAX4, CCORAX6 and CCORAX7, 
recorded in the ravens, as well as COLIV05, COR-
MAC03, COCOR16 recorded by other authors had low 
support (0.81 posterior probability and 55% bootstrap 
support) and could not be verified as a separate clade on 
the bases of the sequenced cytochrome b region. Several 
lineages represented in ravens and other corvids such as 
COCOR12, COCOR13, CORMAC03, CYACOO03 and 

PICPIC01 do not clearly cluster within any of the distinct 
clades.

All microscopically detected infections showed very 
low intensity, below 0.5 parasites/10,000 erythrocytes. 
Leucocytozoon infections were more common during the 
summer (June–September, 44.9%, 22/49) compared to 
the spring period (March–May, 18.5%, 5/27, χ2 = 5.289, 
p =  0.021). Plasmodium prevalence did not show such 
seasonal variation.

Discussion
Ravens in Bulgaria showed relatively low prevalence of 
blood parasites compared to other studied corvid popula-
tions [17, 18, 33, 34]. Although all corvids are scavengers 
to a different degree, ravens have a very strong expression 
of this trait. This suggests that ravens may have a particu-
larly potent immunity. Scavengers may have a stronger 
humoral immune response, potentially effective against 
malaria-like parasites, but not a stronger cell-mediated 

Table 1 Summary of haemosporidian parasite lineages detected in ravens in Bulgaria (n = 86)

For lineages described for the first time in this study closest BLAST hit to any lineage from the MalAvi database and % similarity are indicated

GenBank no. Lineage name Nr infected % prevalence Closest BLAST hit % match

Plasmodium lineages

 AF495571 SGS1 30 34.8

 DQ368381 GRW06 4 4.7

 AY831748 GRW11 3 3.5

 AY831749 SYAT24 3 3.5

 DQ847258 PBPIP 1 1.2

Total Plasmodium 41 47.7

Haemoproteus lineages

 CIRCUM05 1 1.2

 GAGLA05 1 1.2

Total Haemoproteus 2 2.3

Leucocytozoon lineages

 MG209762 CCORAX1 8 9.3 COCOR16 99.6

 KJ128991 COCOR13 7 8.1

 MG209765 CCORAX4 2 2.3 COCOR16 99.4

 JX867111 COCOR02 1 1.2

 JX867112 COCOR03 1 1.2

 KY768841 PICPIC01 1 1.2

 KJ488810 GAGLA06 1 1.2

 JX507218 EUSE1 1 1.2

 MG209763 CCORAX2 1 1.2 GAGLA06 99.8

 MG209764 CCORAX3 1 1.2 COCOR02 97.9

 MG209766 CCORAX5 1 1.2 COCOR09 99.8

 MG209767 CCORAX6 1 1.2 COCOR16 99.0

 MG209768 CCORAX7 1 1.2 CORMAC06 99.8

Total Leucocytozoon 27 31.4

Total infected 54 62.8

Not infected 32 37.2
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immune response [24, 35]. A scavenging lifestyle has 
also enabled ravens to breed much earlier in spring than 
crows and magpies, which may allow them to evade the 
peak of vector emergence [19]. Additionally, raven nests 
on cliffs are very common at the sampling site and may 
be less accessible to vectors compared to the nests of 
other corvids.

Compared to other passerine families, ravens and other 
corvids have high blood parasite prevalence and are hosts 
of a number of specific Leucocytozoon lineages. This is in 
accordance with the data presented for three species of 
North American corvids (Corvus brachyrhynchos, Pica 
nuttalli and Cyanocitta stelleri) in which high infection 
prevalence of Leucocytozoon infections was reported, and 
19 different lineages were found [18].

Almost all microscopically observed infections were of 
very low intensity, possibly chronic or even latent infec-
tions. This suggests that even immature ravens may be 
past the acute stage of high infection intensity, which 
most probably occurs in nestlings before fledging. This 
is the common case in raptors with similar breeding 
biology, where parental feeding may partly alleviate the 
risk of starvation during peak infection [1, 36, 37]. The 
low parasitaemia also suggests that the development of 
a strong immune response suppresses the blood para-
sites as ravens get older. Low intensity of infection has 
been shown to indicate good immune control in several 
bird species, such as Hawaian amakihi and Seychelles 
warblers [38, 39]. During the breeding season the para-
site suppression may weaken, enabling a relapse, and 
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transmission to new raven hosts [1]. Therefore, both 
resistance and tolerance are probably dynamic in time.

Among the Plasmodium lineages found in the stud-
ied ravens, SGS1 (lineage of Plasmodium relictum) and 
GRW6 (lineage of Plasmodium elongatum) are wide 
generalists found in large numbers of hosts [29, Malavi 
Database 2017]. GRW11 (lineage of P. relictum) is also 
a generalist and can infect a rather wide spectrum of 
hosts—mostly passerines from different families [6]. It 
has been found to infect corvids in Asia—Eurasian jays 
(Garrulus glandarius) in Armenia [40], jungle crows 
(Corvus macrorhynchos) in Japan [41] and hooded crows 
(Corvus cornix) in Israel [42]. In Bulgaria GRW11 has 
been detected in passerines of four families—Ploceidae, 
Fringillidae, Sylviidae and Laniidae [43–45]. The lineage 
SYAT24 until now was found only in blackcaps (Sylvia 
atricapilla) migrating through Spain [46, 47]. Blackcap 
is a common breeding and migrating bird in the area of 
the raven’s samples origin for the present study (Dolno 
Ozirovo). Probably SYAT24 has been transmitted from 
blackcaps to the local ravens in Bulgaria. Similarly, the 
lineage PBPIP1 occurs mostly in African birds (local resi-
dents) and European long distance migrants—tree pipits 
(Anthus trivialis) and collared flycatchers (Ficedula albi-
collis), wintering in Africa (Malavi Database 2017). Since 
these migratory species regularly pass through the study 
area, most likely the lineage has been transmitted locally 
in Bulgaria to the ravens. Thus, some local mosquitoes 
are probable competent vectors for this Plasmodium 
lineage.

Plasmodium prevalence in corvids appears to follow a 
latitudinal gradient. This can be expected for parasites of 
non-migratory species, which depend on suitable climatic 
conditions for their vectors [1, 48]. Plasmodium was not 
found in crows of two species (Corvus corone, C. mac-
rorhynchos) in Hokkaido, Japan [28]. Most probably this 
northern island lacks suitable conditions for competent 
vectors. However, another study from southern Japan 

showed 17% prevalence of Plasmodium/Haemoproteus in 
the same two species [33]. A population of carrion crows 
in Germany had a Plasmodium prevalence of 29.5% [17]. 
A high prevalence of 59.6% Plasmodium/Haemoproteus 
infections has been reported for hooded crows (C. cor-
nix) in Italy [34], which is even higher than the 48.8% 
Plasmodium prevalence for ravens in Bulgaria.

The Haemoproteus lineages GAGLA05 and CIR-
CUM05, which were detected during the present study 
in one raven each, have been reported from jays (G. 
glandarius) sampled in Portugal and Morocco [6]. In 
this case, despite not appearing closely related, both 
haemoproteid lineages infect birds belonging to two dif-
ferent genera of corvids, a pattern strongly expressed by 
Leucocytozoon.

The prevalence of Leucocytozoon found in ravens from 
Bulgaria was much lower compared to the other studied 
corvid species (Table 2). The phylogeny of raven-infecting 
Leucocytozoon suggests at least two distinct clades. The 
parasite lineages CCORAX3 and COCOR02 form a clade 
with the non-corvid lineages ZOMON02 and ZOBOR07 
of white-eyes (Zosterops). The majority of corvid Leucocy-
tozoon lineages do not cluster significantly in a clade. The 
lineage CCORAX2 is closely related to GAGLA06 which 
was reported from Eurasian jays (G. glandarius) sampled 
in Portugal [6]. Both lineages seem to be closely related to 
the lineages PARUS14 and PARUS84 infecting blue tits 
(Cyanistes caeruleus). Obviously, ravens share some hae-
mosporidian lineages with other European Corvus species 
but also with species of other corvid genera. However, a 
phylogeny based on this cytochrome b fragment does 
not suggest a single clade of purely corvid-infecting Leu-
cocytozoon. Although it was previously known only from 
blackfly vectors, the results of this study show that the 
lineage EUSE1 can infect ravens [49]. This lineage forms 
a clade with the Leucocytozoon lineage STRORI03, known 
from doves, rather than with other corvid lineages. The 
lineages COCOR3 and COCOR13 were found in hooded 

Table 2 Leucocytozoon parasites prevalence in different studied birds of family Corvidae (only results of molecular stud-
ies included)

Corvid species Location Prevalence N Source

Corvus corone Hokkaido, Japan 93.2 117 Yoshimura et al. [28]

Corvus cornix Italy 97.8 46 Scaglione et al. [34]

Corvus macrorhynchos Hokkaido, Japan 95.8 24 Yoshimura et al. [28]

Corvus corone Germany 85.3 85 Schmid et al. [17]

Corvus brachyrhynchos California, USA 57.4 258 Freund et al. [18]

Pica nuttalli California, USA 54.5 44 Freund et al. [18]

Cyanocitta stelleri California, USA 100.0 20 Freund et al. [18]

Corvus corax Dolno Ozirovo, Bulgaria 31.4 88 Present study
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crows (C. cornix) and domestic pigeons (Columba livia 
f. domestica) in Italy [16, 34]. In this case, the same leu-
cocytozoid lineage was found in birds of different orders 
living in similar habitat. Both latter cases suggest that cor-
vids and doves may have similar host characteristics, pre-
disposing for host switching. Indeed, Leucocytozoon have 
recently been shown to have high rates of co-speciation 
with their hosts but also high rates of host switching [50].

The present study shows that even in widely distrib-
uted scavenger hosts with relatively low prevalence, such 
as ravens, the variety of Leucocytozoon lineages is quite 
high. The results also show that although most Leucocy-
tozoon lineages in corvids are closely related, as pointed 
out by Freund et al. [18], they are represented by at least 
two distinct clades, both of which contain lineages prob-
ably specialized on corvids and other host groups, along 
with lineages tending toward a broader host spectrum.

Conclusion
Several distinct clades of Leucocytozoon parasites appear 
to infect corvids. Ravens harbour both generalist corvid 
Leucocytozoon as well as apparently species-specific lin-
eages. The extraordinary breeding ecology and scaveng-
ing lifestyle possibly allows ravens to evade vectors and 
have relatively low blood parasite prevalence compared 
to other corvids.
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