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ABSTRACT

Chemical and biochemical processes generally suffer from extreme nonlinearities with respect to internal states,
manipulated variables, and also disturbances. These processes have always received special technical and sci-
entific attention due to their importance as the means of large-scale production of chemicals, pharmaceuticals,
and biologically active agents. In this work, a general-purpose genetic algorithm (GA)-optimized neural network
(NNARX) controller is introduced, which offers a very simple but efficient design. First, the proof of the controller
stability is presented, which indicates that the controller is bounded-input bounded-output (BIBO) stable under
simple conditions. Then the controller was tested for setpoint tracking, handling modeling error, and disturbance
rejection on two nonlinear processes that is, a continuous fermentation and a continuous pH neutralization
process. Compared to a conventional proportional-integral (PI) controller, the results indicated better perfor-
mance of the controller for setpoint tracking and acceptable action for disturbance rejection. Hence, the GA-
optimized NNARX controller can be implemented for a variety of nonlinear multi-input multi-output (MIMO)

systems with minimal a-priori information of the process and the controller structure.

1. Introduction

Chemical and biochemical processes are among some of the most vital
and yet nonlinear modern industrial processes under technical and sci-
entific considerations. A variety of chemicals and active biological agents
are produced in such systems [1, 2], while they are operated under
extreme working standards to comply with stringent production regula-
tions and a competitive global market.

Control of chemical and biochemical processes is a challenging task
due to nonlinearities associated with their internal states, manipulated
variables, and also disturbances [3] as well as their time variability [2],
which is inherent to many chemical and biochemical systems [4, 5].

The controller design for nonlinear processes has been studied in
numerous works. Fernandez et al. [6] studied a simple but efficient
technique for tracking optimal profiles with error minimization for
nonlinear biochemical processes, which was based on linear algebra for
the calculation of control actions. The performance of the designed
controller was tested through simulations by adding parametric uncer-
tainty and perturbations in the initial conditions.

Aguilar-Lépez et al. [7] introduced an uncertainty-based observer
with a polynomial structure capable of estimating the unknown modeling
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error of a continuous bioreactor coupled to a linear input-output
controller. In Mailleret et al. [8], a nonlinear adaptive control and the
global asymptotic stability of closed-loop system were investigated for a
bioreactor with unknown kinetics. They verified their approach on a
real-life wastewater treatment plant.

Artificial neural networks (ANNs) are general-purpose modeling tools
that can be used for various applications, including static and dynamic
modeling, clustering, and pattern recognition [9, 10, 11, 12]. ANN is
useful in particular when modeling with fundamental governing equa-
tions is costly, time-consuming or both [13, 14].

Naregalkar and Subbulekshmi [15] proposed a novel approach using
NARX (nonlinear auto-regressive with exogenous input) model and
enhanced moth flame optimization (EMFO) for pH neutralization of
wastewater. They evaluated their method in terms of integral squared
error (ISE), integral absolute error (IAE), mean squared error (MSE),
settling time, and peak overshoot.

del Rio-Chanona et al. [16] utilized an ANN model for dynamic
modeling and optimization of a 15-day fed-batch process for cyano-
bacterial C-phycocyanin production. To generate additional datasets,
they artificially introduced random noise to the original dataset. They
also chose the change of state variables as training data output.
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The lack of online information on some bioprocess variables and the
presence of model and parametric uncertainties are important challenges
for the control of such processes. To address these issues, Romoli et al.
[17] proposed an online state estimator based on a Radial Basis Function
(RBF) neural network that feeds information to a controller, which was
derived via a linear algebra-based design strategy.

Intelligent methods can also be used to control nonlinear chemical
and biochemical processes. These approaches can compensate modeling
errors, tackle the occurrence of disturbances, and advise optimal opera-
tion scenarios as control actions. Unal et al. [18] reviewed different as-
pects of using artificial intelligence and evolutionary algorithms i.e.,
genetic algorithm (GA) and ant colony (AC) for PID controller tuning on
real-time experimental setups. The performances of these three tech-
niques were compared with each other using the criteria of overshoot,
rise time, settling time, and root mean square (RMS) error of the tra-
jectory. It was observed that the performances of GA and AC are better
than that of Ziegler-Nichols technique.

Latha et al. [19] used particle swarm optimization (PSO) algorithm
for tuning of a proportional-integral-derivative (PID) controller for a class
of time-delayed stable and unstable process models. The dimension of the
search space was only three tuning parameters of conventional PID
controllers. They tested their approach in real-time on a nonlinear
spherical tank system. The real-time result with PSO-tuned PID offered
better results for reference tracking, multiple reference tracking, and
disturbance rejection problems.

More recently, intensive studies have been conducted for designing
the NARX network architecture to enhance modeling accuracy and
versatility. In this regard, various methods have been proposed for acti-
vation function selection and network weights and biases tuning via
optimization by different algorithms. Liu et al. [20] considered NARX
neural networks for analysis and identification of noisy nonlinear mag-
netorheological (MR) damper systems. The accuracy of their results
supports the use of this modeling technique for identifying irregular
nonlinear models of MR dampers and similar devices. Rankovic et al.
[21] developed a nonlinear model predictive control (NMPC) scheme,
with the assumption that the object model is unknown. Therefore, they
used a digital recurrent network (DRN) model instead to predict the
future evolution of the system, which is essential for model predictive
control. From their framework, one can infer that designing the network
structure is crucial and complex.

Combination of NARX models with genetic algorithm has been used
for forecasting, which subsequently can be used for decision making. Han
et al. [22] utilized a NARX network for bitcoin price forecasting and
concluded that genetic algorithm was effective to decide the architecture
of the NARX neural network better than some other information criteria.
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In a similar study to our work, Hernandez-Alvarado et al. [23] used a
neural NARX network to optimize PID controller gains for an underwater
remotely operated vehicle in simulation and also in a real-time manner.
They took into consideration two criteria to assess the performance of the
controllers: position tracking error and energy consumption, leading to
the conclusion that the proposed method obtained the best performance
with less energy.

In this work, we propose a general-purpose neural network-based
NARX controller, which does not rely on a predefined form of any con-
ventional controller, but can emulate a PI action. We will show that the
controller can be tuned on some simple data sets, and hence might be
tuned in an online manner similar to Ziegler-Nichols closed-loop tuning
procedure [24]. We evaluated the controller performance on a contin-
uous fermentor model as a nonlinear single-input single-output (SISO)
process. Furthermore, as the importance of pH in chemical and
biochemical processes cannot be overemphasized, it has also been taken
into consideration in this study as a highly nonlinear multi-input mul-
ti-output (MIMO) system.

After introducing the controller structure and elaborating on its sta-
bility conditions, the tuning procedure is described, which was done
using genetic algorithm optimization of the network weights. In the re-
sults section, the performance of the controller is tested for setpoint
tracking, modeling error, and disturbance rejection scenarios, and
compared with a conventional PI controller.

2. NARX formulation

The nonlinear autoregressive model with exogenous input (NARX) is
a time series model, which is represented as a function of the model
output and one or more independent inputs all at several past time steps.
In the predictive form, a NARX model can be represented by:

yk+1)=fyk), -, y(k—n), uk), utk-1), ulk—m))
yi)=y; i=0, 1, -, n @
uf)=y j=0,1, -, m

where y is the network output, u is the network input, and f can be any
linear or nonlinear analytic function.

3. Neural network structure

Artificial neural networks appear in a variety of architectures [11].
Specifically, the feedforward ANNs can be readily extended to the NARX
networks with the introduction of tapped delay lines at the network input
or even between layers, as shown in Figure 1. In this regard, the new

Output Layer
N

Figure 1. General structure of a NNARX feedforward neural network with tapped delay lines.
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architecture is called a neural NARX or NNARX network. In addition,
such networks may have one or more feedback lines from outputs or
hidden layers enclosing several layers of the network, which are not
shown in Figure 1 since such feedback lines are not included in our
NNARX approach. This structure offers several interesting characteristics
including time series prediction and nonlinear input-output realization of
dynamic systems.

It is worthy of attention that this network is fully connected, which
means there is a connection between every input and every neuron in
each layer. The importance of these connections is controlled by the
weight parameters, while bias parameters shift the network output to a
suitable position. Typically, all weights and biases are regulated by any
convenient optimization algorithm.

It must be also noted that Figure 1 refers to a specific structure of
NARX networks that do not directly receive y output(s) as their inputs. In
our case, y as the controller output (manipulated variable) is resolved in
the closed-loop response of the process and does not directly appear as
the network input.

In fact, many control schemes are a stable subset of linear or nonlinear
dynamic systems. Therefore, a NNARX model can be utilized as a
nonlinear parametric controller. As we will see in the results section, this
structure may add integral effect to the control action, while it acts as an
efficient nonlinear predictor. When combined together, these effects can
be considered an inverse model controller with integral effect.

3.1. Proof of BIBO stability

According to the Gronwall Lemma [25], if f;, g, hn are real nonneg-
ative sequences for n > 0

n-1

h, <fo + nghk 2
k=0

Then
n—1 n—1

b <fo+ > &k exp< > gj> ()
k=0 jr)

Theorem 1. The system (1) is bounded-input bounded-output (BIBO)
stable with the initial conditions y(p) =y, < o forp =k, ...,k + nif it is
Lipchitz with the constants L; , L; andi =0,..,n,j =0,...m.

Proof.

Consider yi = y(k) and u, = u(k) for simplification. Hence:
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From the Gronwall Lemma we have
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Since we supposed that the initial condition is bounded, we easily
obtain

k
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which according to the assumptions all terms are bounded, and this
yields the required result.

4. NNARX controller tuning

Genetic algorithm (GA) is a heuristic optimization method inspired by
the so-called evolution process in nature [26, 27] as it mimics the
evolutionary operators: selection, crossover, and mutation to achieve a
fitter population of solutions (individuals) over iterations (generations).
The main advantages of this algorithm are that GA does not require
calculating any derivatives. Hence in the case of the current problem, any
sort of network topology and transfer function can be used without
a-priori assumption on their exact formulations, which otherwise were
needed for differentiation. On the other hand, as there are no derivates
involved, the controller structure is not significantly affected by the noise

GA
Optimizer
x
Ysp e y Yy
— DAL t—p| Process p}
Controller

Ym

Measurement |q—

Figure 2. General closed-loop structure of the control scheme with the GA-optimized NNARX.
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Table 1. Step response test parameters, regression results, and PI controller tuning parameters.

Parameter Fermentation Process Neutralization process (Level) Neutralization process (pH)
Step size -0.01 (Dilution rate) +5 ml/s (Acid) +5 ml/s (Base)

Sample time 0.1h 1s 1s

Process gain (k) -31.9 0.92 0.60

Process time constant (7) 5.24 h 196.2 s 33.2s

Process time delay (tp) 0.1h 1s 1s

MSE 1.15 x 104 1.50 x 10°° 1.76 x 103

Proportional gain (k.) -0.274 53.2 13.9

Integral time (z;) 2.4 16 16

Derivative time (zp)

effects if implemented on an actual process. Moreover, the error term(s)
can be arbitrarily defined as a function of closed-loop response as utilized
in this work. It must be emphasized that for higher-order systems (more
delays and/or MIMO systems), the solution space grows tremendously,
rendering classical gradient-based optimization methods inefficient.

The objective function for tuning is defined as the weighted sum of
the mean squared errors (MSE) of the tracking tasks over time as:

MSE=5EL k=t (8)

ei(k) = Yspi (k) = ymi(k). ©

where ¢; is the tracking error and y;,; and y,; are the i measured output
and its respective setpoint. w;s are arbitrary weights, which regulate the
importance of the error terms. They are set to unity in this work.

|

]

NNARX
Controller

It must be emphasized that e; is the input to the NNARX controller,
while the manipulated variables are the network outputs. On the other
hand, the GA-optimizer receives MSE values for every individual, and
returns the NNARX weight (and bias) values (x in Figure 2) to the
network. The overall scheme of the closed-loop diagram is shown in
Figure 2. Hence, the optimizer calls the closed-loop system model for a
sufficiently large number of times until it concludes that no better solu-
tion can be found.

5. PI controller tuning

For the sake of comparison, a PI controller is selected and tuned by
model parameters. In this regard, a first-order plus time delay (FOPTD)
model is fitted to the open-loop step response of the selected processes.
The tests data and the results are given in Table 1. The regression was
implemented via the sequential quadratic programming (SQP) approach
to minimize MSE, which is defined similar to Eq. (8) but without the

T X,S,P

Figure 3. Fermentation process diagram. X is the cell-mass concentration (measured variable), S is the substrate concentration, and P is the product concentration.



B. Medi, A. Asadbeigi

Heliyon 7 (2021) e07846

Table 2. The nominal parameter values for the continuous fermentation process
[29].

Table 3. The nominal parameter values for the continuous pH neutralization

process [29].

Parameter Value Unit Parameter Value Unit

D 0.202 1/h A 207 cm?

K; 22 g/1 Cy 8.75 ml/cm/s

Kn 1.2 g/1 PK; 6.35 -

P 19.14 g/l PK> 10.25 -

P 50 g/1 War 3x1073 M

S 5.0 g/l 7 3x1072 M

Sy 20.0 g/l Was -3.05 x 103 M

X 6.0 g/l Wag -4.32 x 1074 M

Yays 0.4 8/8 Wh1 0 M

a 2.2 g/g Wha 3 x 1072 M

B 0.2 1/h W3 5x107° M

Hm 0.48 1/h W 5.28 x 107* M
q1 16.6 ml/s

weight parameters. It must be emphasized that only process gain and 2 0.55 g

time constant are fitted as the process time delay is considered to be equal i 15.6 e

to one sample time, which is a reasonable assumption, considering the hH ;‘:)'0 e
p ] :

response time of the measurement sensors.
According to the Skogestad's SIMC PID tuning rule [28], the following
formulas are suggested based on the FOPTD model parameters:

1 T
kC :g (Tc + tD) (10)

7 =min(z, 4(z. +tp)) 1n

where kj, 7, and tp are process gain, time constant, and time delay,
respectively. Also, k. and 7 are controller proportional gain and integral
time, respectively. It is apparent that the suggested controller is in the PI
mode. Hence the derivative mode is deactivated (zp = 0).

On the other hand, 7, is the desired closed-loop time constant and the
only tuning degree of freedom. Skogestad [28] suggests that a good trade-off
can be obtained by choosing 7. equal to process time delay. Hence, the
values of 0.1 h and 1 s were initially used for the closed-loop time constant of
the continuous fermentation and pH neutralization processes, respectively.
However, these settings make the closed-loop response of both processes
unstable. Hence, these values were modified to 0.5 h and 3 s as the
closed-loop time constants of the studied processes, respectively.

Table 4. NNARX structural parameters.

Parameter

Fermentation process

Neutralization Process

Number of hidden layers

Number of input delays

Number of hidden layer neurons

Hidden layer transfer function
Output layer transfer function
Preprocessing function
Postprocessing function

Sample time

1

4(0:3)

2

tansig

purelin
mapminmax
mapminmax_reverse
0.1h

1

3(1:3)

2

tansig

purelin
mapminmax
mapminmax_reverse
1s

6. Modeling

We have considered two typical nonlinear chemical and biochemical
processes. The first process is a continuous fermentor in which the
biomass (cell-mass) concentration in g/1 is the controlled variable (plant

' NMARX
Controller

G4 s Wiy

Figure 4. Continuous pH neutralization process diagram.
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Table 5. GA-Optimization parameters.

Parameter

Fermentation Process

Neutralization Process

Number of optimizing parameters
Population size

Crossover fraction

Crossover function

Elite-count

Selection operator

Lower bound on weights

Upper bound on weights

Termination criteria

10

50

0.15
crossovertwopoint
2

Tournament

-1

1

Average distance

16

50

0.15
crossovertwopoint
2

Tournament

-2

4

Average distance

2, 2
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Figure 5. Evolution of weights, change in fitness (objective function) values, and change in average distance between individuals (solutions) for the fermentation
process (a, ¢, and e) and neutralization process (b, d, and f).
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Figure 6. Setpoint tracking results for: (a) fermentation process, (b) neutrali-
zation process.

output), while the manipulated variable (plant input) is the dilution rate,
representing a nonlinear SISO system.

A rather simplified but general form of the process is shown in
Figure 3 and represented by the following equations [29]:

| W (2D x 100H-P2) | N(10Pk-PH) _ 10(PHPk2)))

g =log(10) x <10@H’”)

DZ
X= —DX +uX 12)
. 1
S=D(S—-S) ——uX (13)
Yx/s
P= —DP+ (au+p)X 14)
_ ”m[l — (P/Pm)]s (15)

K +S+(S2/K)

where D is the dilution ratio, X is the cell-mass concentration, S is the
substrate concentration, which is consumed by the microorganism, and S¢
is the substrate concentration in the feed stream. P is the product con-
centration and Pr, is the product saturation constant. Y,/ is the cell-mass
yield. @ and p are kinetic parameters of the fermentation reaction. y is the
growth rate and y, is the maximum growth rate. K, and K; are substrate
saturation and inhibition constants, respectively [29]. The nominal
parameter values are given in Table 2.

Heliyon 7 (2021) e07846

The second example is a neutralization process in which the liquid
level of the tank and the effluent pH are the controlled variables, while
acid and base flow rates are the manipulated variables. It is clear that this
system is a MIMO process, as shown in Figure 4.

The governing equations are given as follows:

1
hzz(‘h +q2+¢s — Cvh®®) 1e6)
. 1
Wy ~Ah (War — Waa) @1 + (Waz — Waa)q2 + (Waz — Waa)g3) an
. 1
W :H((Wbl — Wha)q1 + (Wi — Wia )G + (W — Wha)q3) 18)

where h is the liquid level in the neutralization tank, and A is the tank
cross-section. Cy is the outlet valve discharge coefficient, which is a
constant in this work. q, g2, and g3 are acid, buffer, and base flow rates,
respectively. Wy; to Wy and Wp; to Wy are reaction invariants as
described in Hu and Rangaiah [29].

The relation of pH with other variables is given by the following
implicit algebraic equation [29]:

1+ 2 x 10°HPk

— -pH _
17 100 P 1 107 10 =0 (19)

Was +10°771% 4 Wiy

However, to circumvent the solution of such a nonlinear algebraic
equation, the first derivative of Eq. (19) was calculated and simplified
with respect to the derivative of pH. In this regard, another differential
equation was added to the set of state equations:

. 1/.. .
pH= —g(Wa4+(N/D)Wb4) (20)
where:
N=1+2 x 10PH-P) 21
D=1+ 10Pa-#H) 4 10bH-k) (22)

+ 10(*PH)> (23)

The nominal parameters for the neutralization process are given in
Table 3.

7. Simulation

The preliminary NNARX network structure was constructed by the
Neural Network Toolbox-Simulink code generation facility [30]. The
network was then modified in Simulink to suit the design required as a
MIMO controller. The overall network structural parameters are given in
Table 4. As shown in this table and earlier in Figure 1, several delays were
introduced at the input layer. It is worthy of attention that this network is
fully connected, which means there is a connection between every input
and every neuron in each layer. As mentioned earlier, the importance of
these connections is controlled by the weight parameters, which are
regulated by the GA-optimizer. On the other hand, as the controller is
designed around the steady state conditions for which e = 0, and in order
to reduce the number of optimizing parameters, all bias parameters were
permanently set to zero.



B. Medi, A. Asadbeigi

Heliyon 7 (2021) e07846

1
(a)

3 05 -
=
(@)
g 0 -'P i , i
(=]
= ——— NNARX
o -0.5 1
© -===-P|

_1 1 1 1 1

0 20 40 60 80 100
Time (s)

200
2 100
=
s
S 0 : |
(@) n?
5 -100 v i ! Y
= 200 NNARX-Acid  {
-~ NNARX-Base !

[ ]

S 300 4 -----pPlLAcid y

_400 ecaa. PII—Base I" :

500

1000 1500 2000

Time (s)

Figure 7. Variations in the controller outputs for the setpoint tracking problem for: (a) fermentation process, (b) neutralization process.
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Figure 8. Results of including a modeling error in the fermentation pro-
cess model.

Using one hidden layer is conventional in working with artificial
neural networks [31] unless problem complexity necessitates adding one
or more hidden layers [32]. The number of neurons is selected based on

some trial and error. The number of delays is also selected based on the
complexity of the process. It must be emphasized that the poles and zeros
of the controller in the linear analogy are allocated by these delays, while
they can generate integral and derivative actions, for which at least three
delayed instances of the error are required.

It must be noted that this network requires just a few neurons in the
hidden layer to obtain satisfactory results. This feature makes the opti-
mization task faster and more efficient. The completed closed-loop
structure was implemented and simulated in Simulink.

The MATLAB Global Optimization Toolbox was used for the opti-
mization task [33]. The optimizer parameters are given in Table 5. For
optimization and simulation, MATLAB and Simulink 2014a on a laptop
with an Intel Core i5-3380 M (2.90 GHz) CPU with 6 GB RAM were
used. It is worthy of attention that the number of optimizing parameters
equals the weights of the designed NNARX controller. The lower and
upper bounds on the optimizing parameters were set by some trial and
error.

The summary of the optimization results is given Figure 5. For the
continuous fermentation process, the optimization has terminated in
exactly 50 generations (iterations) with the criterion that the average
change in the fitness (objective function) values has fallen below a
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Figure 9. Results of including a disturbance as an unmeasured change in the buffer flow rate (-50% of the nominal value) for the neutralization process: (a) process

variables, (b) controller outputs.

Table 6. Integral absolute error (IAE) values for all the case studies.

Process Case study IAE (NNARX) IAE (PD)

Fermentation process Setpoint tracking 4.926 6.688
Modeling error 21.25 1.62

Neutralization process Setpoint tracking (Level) 248.5 764.2
Setpoint tracking (pH) 323.4 1095
Disturbance rejection (Level) 9.962 0.1639

Disturbance rejection (pH) 8.398 0.0544

predefined limit (1079). Similarly, for the neutralization process, the
variations in the fitness values have reached a minimum in about 50
generations. However, the termination criterion (average change in the
fitness values) has been satisfied after 88 generations. The variations in
most of the weights have also dropped in about 50 generations. Careful
tuning of genetic algorithm parameters (e.g., population size, selection
function, crossover, and mutation operators) helps in finding at least the
area in which the global optimum is expected to be found, and this is
sufficient as long as the controller performance is concerned.

8. Results

In this section, the performance of the NNARX controller is assessed
on the two nonlinear systems mentioned earlier. As for the case studies,
first, setpoint tracking is investigated on both processes. Further, a
modeling error is introduced to the formulation of the fermentation
process. Finally, a disturbance in the form of an unwanted change in the
buffer flow rate (q) is introduced in the neutralization process. These

changes are introduced at time t = 0.
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8.1. Setpoint tracking

For the first analysis of the controller performance on the continuous
fermentor, a square pulse train with a period of 50 h and amplitude of 0.5
g/l is introduced to the setpoint of cell-mass concentration with respect
to its steady state value, as shown in Figure 6a. As can be seen, the
tracking error is remarkably small, and the output (cell-mass concen-
tration) promptly follows the setpoint with a slight overshoot incompa-
rable to that of the PI controller.

A similar test was carried out on the neutralization process in which a
square pulse train with a period of 1000 s and amplitude of unity was
introduced with respect to the steady state values of level and pH
(Figure 6b). It is apparent that here also, the controller response is quite
fast, and the offset is very small, while the overshoot is much smaller
compared to that of the PI controller.

It is important to note that this offset-free response may suggest the
integral action of the NNARX controller considering that an integral ac-
tion in the discrete form is very similar to the NNARX structure with a
linear transfer function.

The variations in the manipulated variables (controller outputs) for the
setpoint tracking problem are shown in Figure 7. The prompt setpoint
tracking action of the NNARX controller for the fermentation process has
come at the cost of aggressive changes in the manipulated variable (dilu-
tion rate in Figure 7a). However, for the neutralization process, the NNARX
controller offers even smoother controlling actions compared to the PI
controller, as can be seen in Figure 7b. Moreover, there is no sustained
fluctuation in the manipulated variables, which is a desired behavior.

8.2. Modeling error

For a test of modeling error, it is here assumed that the growth rate (x)
is wrongfully calculated from the following equation instead of Eq. (15)
based on which the NNARX controller was trained:

__HwS
Kn+8

H 29

The simulation results are given in Figure 8. From this figure, one can
infer that although the controller quickly reduces the tracking error,
there has remained a small offset over time. Hence, for this problem, the
PI controller is obviously superior.

8.3. Disturbance rejection

For another investigation, a disturbance in the form of an unmeasured
change in the buffer flow rate (g2) is applied at time t = 0. At this
moment, the buffer flow rate is reduced to 50% of its nominal value. It is
noteworthy that a decrease in buffer value in any neutralization process
increases process sensitivity, causing the controlling task more tedious.
The results are shown in Figure 9. It is apparent from Figure 9a that the
deviation from the setpoint value is small, but it must be admitted that
the integral effect is slightly compromised. The changes in the manipu-
lated variables (acid and base flow rates) are shown in Figure 9b, which
shows mild fluctuations. Based on these results, the NNARX controller is
able to tackle the relatively large unmeasured disturbance.

8.4. Quantitative analysis

A quantitative analysis was carried out based on the integral absolute
error (IAE) criterion:

IAE= /w|e(t)\ dt (25)
0

As given in Table 6, the IAE values for the proposed NNARX controller
are significantly smaller compared to the PI controller for setpoint

10

Heliyon 7 (2021) e07846

tracking, especially for the neutralization process. However, the IAE
values for modeling error and disturbance rejection are smaller for the PI
controller due to the perfect integral action of this controller.

9. Conclusion

In this work, a neural network-based nonlinear controller was tested
on two nonlinear chemical and biochemical processes. The controller
was tuned using genetic algorithm by running the closed-loop models for
a sufficiently large number of times. There are at least two advantages of
using GA as the training algorithm: 1) it does not require any knowledge
of the neuron transfer function properties as opposed to gradient-based
methods, which require exact derivatives of the transfer functions for
back propagation, 2) GA is heuristically a global optimization method,
and as we have seen in this problem, it is efficient in training dynamic
neural networks, which are generally hard to train to an acceptable level
of accuracy in a limited time.

The results indicated that the proposed NNARX controller enjoys a
relatively simple but versatile structure. Moreover, it can be readily and
quickly tuned with the minimum degree of richness in the information
provided to the tuning algorithm. In this regard, the authors believe that
the proposed method can be implemented in an online manner as well
[34, 35]. In other words, it is possible that the process is started up
without a-priori knowledge of the process, but the controller is tuned as
the real-time process is in operation.

The NNARX controller action was not perfect for disturbance rejec-
tion for significant modeling errors. However, we expect that with the
introduction of the measured disturbances as independent inputs to the
controller, and also real-time optimization of the controller as it “flies”,
the above-mentioned problems be alleviated.
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