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Bacterial meningitis is an inflammation of the meninges which covers and protects
the brain and the spinal cord. Such inflammation is mostly caused by blood-
borne bacteria that cross the blood-brain barrier (BBB) and finally invade the brain
parenchyma. Pathogens such as Streptococcus pneumoniae, Neisseria meningitidis,
and Haemophilus influenzae are the main etiological causes of bacterial meningitis. After
trafficking across the BBB, bacterial pathogens in the brain interact with neurons, the
fundamental units of Central Nervous System, and other types of glial cells. Although
the specific molecular mechanism behind the interaction between such pathogens with
neurons is still under investigation, it is clear that bacterial interaction with neurons and
neuroinflammatory responses within the brain leads to neuronal cell death. Furthermore,
clinical studies have shown indications of meningitis-caused dementia; and a variety
of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and
Huntington’s disease are characterized by the loss of neurons, which, unlike many other
eukaryotic cells, once dead or damaged, they are seldom replaced. The aim of this
review article is to provide an overview of the knowledge on how bacterial pathogens in
the brain damage neurons through direct and indirect interactions, and how the neuronal
damage caused by bacterial pathogen can, in the long-term, influence the onset of
neurodegenerative disorders.

Keywords: bacterial infection, neuronal damage, meningitis, Streptococcus pneumoniae, dementia

INTRODUCTION

The incidence of neurological and neurodegenerative diseases has continuously increased
worldwide in the last decades, with an expected rise in the coming years due to the aging of
the world population. Dementia, which currently affects more than 50 million people globally,
is expected to expand its incidence to over 135 million by 2050 (McManus and Heneka, 2017).
However, even though genetic and/or environmental factors have been described in many of such
diseases, direct causality has not been clearly established: several genetic mutations are associated
with dementia, but the reasons why the pathogenesis occurs, when, and how it does, remain unclear
(Patrick et al., 2019). In this regard, the interplay between neurological damage, dementia and
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pathogenic infections has been increasingly assessed during the
last years. Indeed, infectious disease burden seems correlated
with neurological damage and neurodegenerative progression
(Strandberg et al., 2004; Katan et al., 2013). Bacterial meningitis,
the inflammation of the meninges caused by infection of
the brain parenchymal tissue due to several infectious agents,
remains among the leading infectious diseases worldwide
(Van De Beek et al., 2016). Streptococcus pneumoniae (the
pneumococcus) and Neisseria meningitidis (the meningococcus)
are the main causes of acute bacterial meningitis in Europe
and the USA. Depending on the geographical region, mortality
rates range between 20–51% and 3–10% respectively, and up to
50% of survivors present long-term neuronal sequelae, including
cognitive impairments and hearing loss (Lucas et al., 2016).
Haemophilus influenzae type b was the leading cause of bacterial
meningitis worldwide before the introduction of vaccination;
due to lack of vaccination in developing countries, it is still an
important cause ofmeningitis in these regions (Wahl et al., 2018).
On the other hand, the introduction of vaccination programs for
certain serotypes ofmeningococci and pneumococci has dropped
the incidence of bacterial meningitis in recent years. At the same
time, bacterial meningitis due to serotypes that are not included
in the vaccine is increasing (McIntyre et al., 2012). Furthermore,
the case fatality rate remains high and the clinical outcomes are
highly dependent on good health care systems (Swartz, 2004;
Thigpen et al., 2011).

In this mini-review article, we will focus on how the three
main etiological causes of bacterial meningitis induce both direct
and indirect neuronal damage and promote neuroinflammation.
Finally, we will show its burden on the population, in terms of
neurological disorders and increased risk of dementia, as well as
the current efforts and strategies to prevent brain damage and,
ultimately, reduce the risk of neurodegenerative diseases.

NEURONAL DAMAGE IN BACTERIAL
MENINGITIS

The bacterial colonization of the nasopharynx is usually an
asymptomatic event (Aniansson et al., 1992; Mook-Kanamori
et al., 2011); however, the bacteria can penetrate the mucosal
epithelium and basal membrane causing invasive disease (Leib
and Täuber, 1999). Meningitis develops if the bacteria enter the
systemic circulation, penetrate the blood-brain barrier (BBB),
and infect the brain, causing inflammation of the parenchyma
and meninges (Iovino et al., 2016). Neuroinflammation may
promote neuronal damage, which might have an unrepairable
effect on neuronal circuits due to the post-mitotic state of
neurons (Herrup and Yang, 2007).

Direct Damage Caused by S. pneumoniae
Infection
Among the bacterial effectors responsible for neuronal damage,
the cytotoxin of S. pneumoniae pneumolysin (Ply) is one of
the best characterized. Ply is a 53 kDa protein expressed by
the majority of clinically-isolated S. pneumoniae and exhibits
both cytolytic and immunomodulatory effects (Kalin et al.,
1987). Upon release from the bacterium, Ply subunits interact

in a cholesterol-dependent manner with the cell membrane
causing the generation of a pore ∼300 Å in diameter, which
is cytotoxic to the cell (Mitchell and Dalziel, 2014). In patients
suffering from pneumococcal meningitis, Ply was detected in the
cerebrospinal fluid (CSF). Furthermore, non-surviving patients
had increased Ply levels in the CSF 48 h after hospitalization
compared to survivors, indicating the potential deleterious role
of this protein on mortality (Wall et al., 2012). Although one
early report on the role of Ply in meningitis affirmed that rabbits
infected with a Ply deficient S. pneumoniae strain showed similar
meningeal inflammation pathogenesis compared with rabbits
infected with wild-type S. pneumoniae strain (Friedland et al.,
1995), several other studies disagree with these results. In guinea
pigs inoculated with S. pneumoniae, Ply was shown to cause
cochlear damage and consequently hearing impairment (Winter
et al., 1997). Additionally, both in vitro and in vivo studies
affirm the cytotoxicity of Ply, as exposure of Ply to neurons
caused cellular damage; and Ply deficiency, reduced virulence
of the bacteria (Braun et al., 2002, 2007; Wellmer et al., 2002;
Robert et al., 2008; Reißet al., 2011). The mechanism behind
the Ply-induced neuronal death in vitro has been shown to
be due to, at least in part, the increased intracellular levels of
Ca2+, resulting in a disruption of the mitochondrial function
and activation of apoptosis-induced factors (Braun et al., 2002;
Stringaris et al., 2002).

Ply also mediates indirect pathological effects on brain fitness
(Braun et al., 2002; Stringaris et al., 2002). First, it damages ciliary
ependymal cells in the ventricles, which then reduces the ciliary
beating frequency (Mohammed et al., 1999; Hirst et al., 2000).
Fully functional ciliary beating is crucial for controlling the CSF
volume, transportation of macromolecules, and removal of waste
(Olstad et al., 2019). Thus, non-functional ciliary cells most likely
contribute to the neuropathological effects in pneumococcal
meningitis. Second, it interacts with immune cells in a toll-like
receptors 4 (TLR 4)-independent fashion, promoting the release
of pro-inflammatory cytokines (McNeela et al., 2010); and third,
it induces astrocytic shrinkage, impairing synaptic functionality
but also mediating easier spread of bacteria and toxins in brain
regions (Förtsch et al., 2011; Hupp et al., 2012).

It was recently shown that Ply might facilitate the
internalization of the pneumococcus into neurons together
with the pilus-1, a protein complex with adhesin activity,
exposed outside the cell wall, which has been associated with the
capacity of pneumococci to interact with and invade different
types of host cells (Iovino et al., 2020). More specifically, both the
pilus-1 component RrgA and Ply interact with β-actin exposed
on the neuronal plasma membrane. This interaction caused
disruption of the β-actin filaments with consequent neuronal
cell death; an intact actin cytoskeleton was previously reported
to inhibit the activation of Ca2+ influx, the finding of Ply and
RrgA enhancing intracellular Ca2+ levels in neurons was likely
due to the disruption of β-actin filaments (Rosado and Sage,
2000; Tabusi et al., 2021). In the case of RrgA, the, to this
date, unknown mechanism behind this process may involve its
D3-domain, which has been shown to exhibit an integrin-like
fold and may directly interact with β-actin filaments, altering
their structure. Furthermore, the co-localization of β-actin and
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the pneumococcus, even after internalization, suggests that the
bacteria use the neuronal cytoskeleton to become internalized
(Tabusi et al., 2021).

Additionally, the reactive oxidative species hydrogen peroxide
(H2O2) is produced directly by the pneumococcus, and through
its secretion causes DNA damage and epithelial cell death
(Spellerberg et al., 1996; Rai et al., 2015). Indeed, primary
murine neurons suffered increased apoptosis when treating
them with H2O2, through inhibition of mechanistic target of
rapamycin (mTOR) signaling (Chen et al., 2010). H2O2 also
caused microglia apoptosis, possibly synergically together with
Ply (Braun et al., 2002). In human brain endothelial cells
(hBMECs), Ply and H2O2 caused apoptosis independently of
TLR2 and TLR4 signaling (Bermpohl et al., 2005).

N. meningitidis is also known to produce direct damage
and cell death to several cell types, but to our knowledge, no
studies have reported direct damage to neurons. Two of the most
important virulence factors in N. meningitidis are PorB and type
IV pilus. While the pilus mediates attachment to the plasma
membrane, both have been shown to trigger an influx of Ca2+

in epithelial cells; in the case of PorB, this has been directly
linked with apoptosis (Müller et al., 1999; Tzeng and Stephens,
2000). Due to the relevance of Ca2+ concentration in cells and, as
these processes are evolutionary conserved, we can hypothesise
that they may also mediate neuronal damage. However, direct
experimental data on neurons is required to confirm it.

Indirect Neuronal Damage:
Neuroinflammation in Bacterial Meningitis
In several neurodegenerative diseases, including dementia,
chronic neuroinflammation is associated with the disease and
is also importantly observed prior to neuronal degeneration
(Frank-Cannon et al., 2009). While, in the initial phases of
the disease, neuroinflammation and the following clearance of
unwanted pathogens or non-degradable proteins is desirable, it
also mediates harmful effects on the brain environment both in
the short and long-term. Neuroinflammation causes the release
of several cytotoxic compounds, including reactive oxidative
species and nitric oxide, which can stimulate the release of
pro-apoptotic compounds, ultimately leading to apoptosis of
neurons and other brain resident cells (Lyman et al., 2014).
Because neurons are in a post-mitotic state, this has potential
deleterious effects as it contributes to neuronal degradation
without future replacement of cells (Herrup and Yang, 2007). It
is known that bacterial meningitis-induced neuroinflammation
causes neuronal degradation (Kim, 2003). This has the potential
to be an increased risk factor for the development of neurological
diseases, including dementia.

The major players of neuroinflammation are the microglia,
themacrophages of the brain, and infiltrating peripheral immune
cells (Becher et al., 2017). The use of immunosuppressants
in therapy against meningitis has proven to be beneficial for
patients, indicating that the pro-inflammatory response itself
mediates some of the most pathological effects in the brain
(De Gans and van de Beek, 2002). The bacterial invasion of
the brain begins with the traversal through the protective BBB,
which is composed of brain microvascular endothelial cells,

astrocytes, and pericytes, and regulates the movement of active
agents, both molecules and cells, in and out the brain (Kim,
2008). Pathogens cross the BBB by three main mechanisms:
transcellular migration, para-cellular migration, and internalized
in macrophages in a ‘‘trojan horse’’ way (Barichello et al.,
2013). The high mortality rate in meningitis patients (even
after the introduction of antibiotic treatment) has been linked
to inefficiency in the clearance of the bacteria from the brain
and the infiltration of peripheral immune cells that cause
increased cranial pressure (Van De Beek et al., 2002; Liechti
et al., 2015). The microglial cells become activated in response
to the bacterial presence and induce a phagocytic response in
order to clear the infection. Additionally, bacterial components
are recognized, causing an inflammatory response and release
of chemo and cytokines. In synergy with chemoattractants
produced by other brain resident cells, this causes the infiltration
of peripheral immune cells (Barichello et al., 2016). On
hospitalization, bacterial meningitis patients present a leaky
BBB, a feature observed in other neurological diseases that
is known to be related to the infiltration of peripheral
immune cells and contributes to the neuroinflammation (Sharief
et al., 1992; Stolp and Dziegielewska, 2009). Although lack of
neutrophil infiltration was shown to cause more severe disease
in experimental bacterial meningitis, this was attributed to the
reduced clearance of the bacteria from the brain (Aust et al.,
2018). This points out the importance of the balance between
beneficial and deleterious neuroinflammation. While studies
on the role of peripheral immune cells in bacterial meningitis
is scarce, the role of microglia has been thoroughly reviewed
elsewhere (Barichello et al., 2016; Thorsdottir et al., 2019). In this
review article, we will focus on the mechanism behind the innate
immune response to the respective bacteria.

Among biological systems for immune response, TLRs are
known to recognize bacterial compounds such as lipoteichoic
acid, peptidoglycans, and lipopolysaccharides, but also other
bacterial components can interact with these receptors (Schröder
et al., 2003). While different TLRs expression varies between
brain cells, most of them use the same intracellular adapter
protein, myeloid differentiation factor 88 (Myd88), as a
transducer (Takeda et al., 2003; Kielian, 2009). This factor
interacts with receptor-associated kinase-4, which in turn
mediates the activation of the tumor necrosis factor (TNF)
receptor-associated factor family, the translocation of nuclear
factor (NF)-κB to the nucleus, and the activation of a
wide range of genes implicated in the elicitation of the
immune response, both in terms of lymphocyte activation and
in the production of cytokines and chemokines (Kawasaki
and Kawai, 2014). This mechanism has been observed in
innate immune cells, including microglia, but also in other
brain resident cells (Kopitar-Jerala, 2015). Lymphocytes, on
the other hand, have been shown to infiltrate the brain
tissues, thus contributing to the neuroinflammatory response
(Hoffmann et al., 2015).

Stimulation of peripheral blood mononuclear cells (PBMCs)
with S. pneumoniae, N. meningitidis, or H. influenzae caused a
significantly increased expression of NF-κB and the cytokines
interleukin (IL)-6, IL-8, and TNF-α compared to untreated
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PBMCs. Interestingly, N. meningitidis induced the highest TNF-
α expression (Mogensen, 2006). H. influenzae has been shown to
interact with both TLR2 and TLR4 (Wang et al., 2002; Galdiero
et al., 2004). Porin on the outer membrane of H. influenzae type
B activated monocytes by interacting with TLR2, dependently
on the co-expression of TLR2 and CD14 on the surface, and
the downstream signaling protein Myd88 (Galdiero et al., 2004).
Furthermore, lipooligosaccharides (LOS) activated TLR4, but
LOS with reduced acetylation activated TLR2, indicating that,
through slight modification, bacteria can interact with different
receptors (Lorenz et al., 2005).N.meningitidis LOS is also amajor
inducer of inflammation and a tenfold reduction in TNF-α levels
has been reported in LOS mutant compared to the wild-type
strain (Alison et al., 2001). Additionally, capsule polysaccharides
have been shown to cause the release of TNF-α, IL-6, IL-8, and
CXCL10, mediated through TLR2 and TLR4/MD-2 pathways
(Zughaier, 2011). Meningothelial cells release cytokines when
in contact with the meningococcus, with IL-6, CXCL10, and
CCL5 levels reduced by up to 90% in TLR4 knockouts (Royer
et al., 2013). PorB binds to TLR2/TLR1 causing increased
activation of NF-κB as measured by IL-8 induced levels (Massari
et al., 2006). Finally, S. pneumoniae Ply has been shown to
induce inflammation in a TLR4 dependent, but also independent
pathway, while lipoteichoic acid interacts with the TLR2 (Malley
et al., 2003; Schröder et al., 2003; McNeela et al., 2010).
Furthermore, TLR1/2 levels were increased upon S. pneumoniae
stimulation, and knockout of TLR9 caused mice to be more
susceptible to disease; implementing also these TLR receptors in
the innate immune sensing of S. pneumoniae (Schmeck et al.,
2006; Albiger et al., 2007).

Bacterial compounds also elicit a cellular response
through intracellular mechanisms. In this regard, NOD-like
receptors are intracellular receptors whose major downstream
activating pathways are the NF-κB and the mitogen-activated
protein kinase (MAPK) pathways, resulting in increased
pro-inflammatory cytokine production (Chen et al., 2009).
Peptidoglycans expressed on the bacterial cell surface are
recognized by the intercellular receptor NOD2 (Sorbara and
Philpott, 2011). In mpneumococcal-induced meningitis,
both microglia and astrocyte recognize S. pneumoniae
components through the NOD2 receptor, causing increased
nuclear translocation of NF-κB and release of IL-6 and TNF-α
from both cell types. Furthermore, this has been associated with
elevated astrogliosis and demyelination in the corpus callosum
(Liu et al., 2010). Interestingly, this has also been reported in
N. meningitidis-induced meningitis (Chauhan et al., 2009).
Clearly, this indicates the central role of the NOD2 receptor in
the contribution to a deleterious inflammation response that
results in neuronal damage in bacterial meningitis. Monocytes
treated with LOS also show increased NOD2 expression (Choi
et al., 2014). Peptidoglycans released by meningococci are
detected by NOD1 and induce an inflammatory response to
these (Woodhams et al., 2013). Taken together these results
provide evidence for the role of NOD-like receptors in the
meningitis neuroinflammatory state. Three NOD-like receptor
protein families (NLRP1, NLRP3, and NLRC4) can assemble to
generate an inflammasome, leading to caspase-1 activation and

cleaving of the precursors of IL-1β and IL-18 into their active
counterparts (Gross et al., 2011). NLRP3 has been shown to be an
important factor in the pathology of meningitis (Hoegen et al.,
2011) In pneumococcal-induced meningitis, the production of
interferon (IFN)-γ was dependent on the protein ASC, which
is an adaptor protein for multiple inflammasomes (Mitchell
et al., 2012). Ply is also able to induce the expression of the
inflammasome, independently of TLR4 interaction (McNeela
et al., 2010; Hoegen et al., 2011).

In the extracellular milieu, cytokines modulate and regulate
the inflammatory response on target cells and are important
for the clearance of unwanted products, but also for inhibition
of excessive immune responses (Kany et al., 2019). In bacterial
meningitis, the cytokines released are dependent on the stimuli,
signaling receptor and cell type. It has been shown that IL-1β
and IL-18 levels are upregulated during bacterial meningitis and,
specifically, IL-1β levels are correlated with leukocyte levels in
the CSF and neuronal sequelae in patients (Mustafa et al., 1989;
Fassbender et al., 1999). TNF-α expression has been shown to be
upregulated in the brain after pneumococcal-induced meningitis
(Barichello et al., 2009). When comparing meningococcal-
induced bacteremia and meningitis in patients, TNF-α levels
were significantly higher in the latter (Waage et al., 1989).
Microglia, astrocytes and neurons express TNF-α receptors
(TNFR), with TNFR1 being the most abundant (Barichello et al.,
2009). Through this receptor, TNF-α can induce apoptosis of
cells in already stressed cells; therefore, an adjuvant therapy
against TNF-α could be relevant for treatment against bacterial
meningitis, and indeed this has been shown to attenuate neuronal
death in rats (Leib, 2001; Bhardwaj and Aggarwal, 2003).
hBMECs have increased IL-8 and IL-6 production compared
to peripheral endothelial cells when exposed to N. meningitidis.
These cytokines are important for the activation of the immune
system and indicate that the hBMECs themselves contribute to
the increased pro-inflammatory milieu in the brain (Dick et al.,
2017). Both direct and indirect mechanisms of neuronal damage
in bacterial meningitis have been summarized in Figure 1.

INFECTION BURDEN AND THE
EPIDEMIOLOGY OF DEMENTIA

As stated in the introduction, the relevance of the
infectious etiology has been increasingly stressed in several
neurodegenerative diseases, such as Alzheimer’s disease (AD;
Sochocka et al., 2017), Parkinson’s disease (PD; Brudek, 2019),
and Rapidly Progressive Dementia (Geschwind, 2016). However,
a clear relationship between dementia and infectious alterations
of normal physiology is difficult to establish for several reasons.
Sepsis, on the other hand, a grave condition which can be
caused by several pathogens, is known to produce severe BBB
dysfunction (Barichello et al., 2021), microglial activation (Li
et al., 2020), acute neuroinflammation, brain injury and cerebral
dysfunction (Meneses et al., 2019; Gu et al., 2021), and long-term
cognitive and functional impairments (Brown, 2019; Rengel
et al., 2019). This is also true for bacterial meningitis, especially
in the case of neonates (Heath et al., 2011) and young infants
(Hsu et al., 2018).
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FIGURE 1 | Proposed mechanisms for neuronal damage during bacterial meningitis. When the pathogens S. pneumoniae, N. meningitidis, and H. influenzae invade
the brain, both the action of their virulence factors and the elicited neuroinflammatory response cause neuronal damage and death. (A) Pores in the neuron plasma
membrane formed by pneumolysin (Ply), released by S. pneumoniae, result in the influx of extracellular Ca2+. At the same time, the interaction between β-actin,
exposed outside the plasma membrane, with Ply and RrgA causes the disruption of the actin cytoskeleton. This, coupled with the release of H2O2, oxidative
outburst, and subsequent mitochondrial and DNA damage, results in neuronal death. (B) Several pathogen-associated molecular patterns (PAMPs) are recognized
by microglia through receptors such as TLRs and NLRs, which results in the activation of nuclear factor (NF)-κB and the mitogen-activated protein kinase (MAPK)
pathway and the release of pro-inflammatory cytokines and other mediators, and the recruitment of inflammatory cells. The establishment of a neuroinflammatory
state inside the brain leads to neuronal death through different mechanisms such as tumor necrosis factor (TNF)-α overproduction or oxidative outburst. Ultimately,
neuronal death results in neurological sequelae and potential long-term dementia; something that may be prevented if current antibiotic treatments are coupled with
new therapeutic approaches based on immunomodulation and/or blockage of direct interaction between bacteria and cells.

In patients with AD both the onset and the progression of
the disease has been associated with a history of infection in
the patient’s life; in particular, the incidence of pneumonia,
as well as respiratory and urinary tracts infections, has been
shown to be higher in AD patients, traditionally considered a
consequence of the disease, but can also be related to its onset
(Kountouras et al., 2006; Natalwala et al., 2008; Miklossy, 2011;
Too et al., 2021). Delirium, on the other hand, often caused
by CNS infection, is correlated with an acceleration in the
progression towards dementia (McManus and Heneka, 2017).
Dunn and colleagues also found an association between dementia
and infectious disease in a case-control study (Dunn et al., 2005).
Bacterial periodontitis, a common ailment in the elderly, has
also been shown to correlate with cognitive decline and AD
(Ide et al., 2016). Eradication of Helicobacter pylori infection
has been hinted to be beneficial in hampering AD progression
(Kountouras et al., 2009). Leprosy has also been linked to
dementia (Su et al., 2012), though anti-leprosy drugs do not
appear to have an effect in the prevention of AD neurotoxicity
(Endoh et al., 1999). This relationship between the CNS and

microbiological agents does not restrict itself to infectious
pathogens, however. The gut microbiota now seems to play an
important homeostatic role in the brain, as shown both in human
(Paley, 2019) and mice, in which the Apolipoprotein E genotype
—the strongest prevalent risk factor for AD development— has
been sharply associated with specific gut microbiome profiles
(Tran et al., 2019). This has led to the definition of a brain-
gut-microbiota axis in which d-glutamate metabolized by the
gut may significantly contribute to or hamper the progression
of AD (Chang et al., 2020). Also, a 12-week supplementation
of Bifidobacterium breve A1 has shown a promising effect in
preserving cognitive function in elderly subjects with memory
loss complaints (Kobayashi et al., 2019).

Evidence of the relationship between infectious burden and
neurodegeneration is not restricted to AD. A case-control study
by Vlajinac and colleagues showed a correlation between PD
and several infectious agents such as H. pylori (Bjarnason
et al., 2005; Shen et al., 2017; Dardiotis et al., 2018). H. pylori
infection has also been associated with multiple sclerosis (MS),
as a putative protective factor (Jaruvongvanich et al., 2016; Yao
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et al., 2016). In MS, an infection by Chlamydia pneumoniae
is considered a risk factor (McKay et al., 2015). Lastly and
interestingly, the risk for schizophrenia is enhanced in offspring
exposed to microbiological infections (Brown and Susser,
2002), and in bacterial-infected pregnant women’s offspring
(Sørensen et al., 2008).

Bacterial meningitis is well known to potentially produce
neuronal damage even after pathogen clearance and good
prognosis. In 2002, Van de Beek and colleagues reported the
presence of long-term cognitive sequelae in patients who had
recovered well after pneumococcal meningitis; 27% presented
significative cognitive slowness (Van De Beek et al., 2002).
Indeed, a later study showed similar cognitive disabilities in
patients with moderate disability after bacterial meningitis than
patients with good recovery, hinting at a similar risk for further
long-term neurological damage (Weisfelt et al., 2006). Later
reports have confirmed the neuropsychological sequelae of
bacterial meningitis, specifically cognitive slowness, epilepsy, and
hearing loss, but also affected learning and memory functions,
poorer performance in executive functions, language, and verbal
tests (Schmidt et al., 2006; Hoogman et al., 2007; Christie et al.,
2017). The risk of at least one major sequelae (cognitive deficit,
bilateral hearing loss, motor deficit, seizures, visual impairment,
hydrocephalus) has been estimated at 13%, this percentage
rises to almost 25% in pneumococcal meningitis (Grimwood
et al., 1995; Edmond et al., 2010). Neonatal pneumococcal
meningitis leads to cognitive impairment in 30–52% of
surviving patients (Barichello et al., 2013). Furthermore, S.
pneumoniae-induced meningitis in childhood and adolescence
has been linked with long-term neurological damage. After
≥14 years of pneumococcal meningitis diagnosis and treatment,
patients showed significantly lower full scale and verbal IQ,
numeracy or school functioning; 14% of them presented
partial or profound hearing impairment (Christie et al.,
2011). Severe bacterial meningitis, which can cause cerebral
infarction, cerebritis, subdural empyema, cerebral abscess or
intracerebral bleeding, can lead to grave neurological sequelae
such as short-term (Naito et al., 2010) or even long-term
cognitive impairment (Singhi et al., 2007; Lucas et al., 2016),
epilepsy, and dementia (Kamei, 2016), with critically worse
prognosis in the case of neonatal bacterial meningitis (Baud
and Aujard, 2013). This epidemiological picture correlates
with brain injury observed in bacterial meningitis patients.
Vasculitis, intravascular coagulation, and reduced blood flow
cause ischemic, necrotic brain injury in the cortex; at the same
time, an apoptotic burst has been described in the dentate gyrus
of the hippocampus, as a result of a process which involves
multiple effects induced by bacteria, their components, and the
host immune response (Liechti et al., 2015).

TRANSLATIONAL APPROACHES TO
PREVENT INFECTION-DERIVED
NEURONAL DAMAGE

By means of direct interaction with cells and/or
neuroinflammation, infections in the brain have the potential

to provoke neurological sequelae, which may, in the long-term,
develop into dementia. Thus, clearance of the infection is not
enough to provide a full recovery to patients suffering from
different kind of illnesses; novel therapeutic approaches that
can either prevent bacterial invasion of the brain, or block
bacterial interaction with brain cells, especially neurons, must be
developed to reduce the chances of dementia onset in the elderly.
To begin with, it is important to clearly identify the bacterial
virulence factors that promote brain invasion, activation of the
immune system, and neuron cell death.

In pneumococcal meningitis, for instance, polymeric
immunoglobulin receptor (pIgR) and platelet endothelial cell
adhesion molecule (PECAM-1) has been identified as the
receptors on the BBB endothelial cells that mediate invasion of
S. pneumoniaeinto the brain (Iovino et al., 2016); a combination
of anti-pIgR and PECAM-1 antibodies with β-lactam antibiotics
have proven to minimize pneumococci invasion of the brain,
a proof of concept of a successful blockade of host-pathogen
interaction in vivo (Iovino et al., 2017, 2018). However, the
infection itself usually disrupts the integrity of the BBB, an
advantage for antibiotics to reach the brain but a problem if the
approach is to block pathogens crossing the barrier, as most
therapies will aim at the aftermath of an infection (Al-Obaidi
and Desa, 2018). An alternative may consist in the development
of so-called smart carriers, such as bioengineered extracellular
vesicles (Saint-Pol et al., 2020; Shahjin et al., 2020), modified
liposomes (Zhang et al., 2019) or synthetic nanoparticles
(Zhou et al., 2018).

With or without an efficient brain delivery device, biological
processes must be correctly targeted to prevent neuronal
damage. Among promising findings, brain-derived neurotrophic
factor and melatonin were thought to protect against brain
injury, improve hearing, and reduce neuronal death in
pediatric bacterial meningitis (Grandgirard and Leib, 2006).
In terms of modulating the neuroinflammatory process,
the anti-inflammatory and immunosuppressive effects of
corticosteroids have been well known for decades. In a meta-
analysis, corticosteroid administration in bacterial meningitis
patients has been shown to prevent hearing loss and short-
term neurological sequelae in high-income countries. This
effect, however, seems strain-specific and is not observed in
low-income countries (Brouwer et al., 2015). Reducing the
neutrophil recruitment to the brain, on the other hand, through
modulation of apoptosis may be a potential new way to reduce
neuronal damage (Principi and Esposito, 2020). Antibiotics
themselves contribute to the inflammatory response if they have
a bacteriolytic activity, which releases highly inflammatory lysis
products (Kietzman and Tuomanen, 2019). Using bactericidal
but non-bacteriolytic antibiotics such as daptomycin may bypass
this problem (Principi and Esposito, 2020). The adjunction
of daptomycin in the treatment of bacterial meningitis has
recently proven its therapeutic potential in vitro (Maldiney
et al., 2021) and it is the subject of an ongoing clinical trial
to improve the prognosis and survival of pneumococcal
meningitis (AddaMAP, NCT03480191). Finally, due to its
relevance in neuroinflammation and brain disease, and its
implication in neuron cell death, inflammasome modulation
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is considered a promising target in the context of bacterial
meningitis (Walsh et al., 2014) and neurodegenerative diseases
(Heneka et al., 2018).

Ultimately, targeting the direct interaction between
pathogenic agents and neurons maybe a third alternative, though
many of the molecular mechanisms involved in such interactions
are focused on immune cells or the BBB, poorly characterized,
or not known. In S. pneumoniae bacterial meningitis, we have
recently shown that the bacteria attachment and invasion of
the neuron is mediated through RrgA and Ply interaction
with exposed β-actin on the plasma membrane (Tabusi et al.,
2021). Preventing or blocking altogether this kind of direct
interactions between neurons and infectious agents may well
provide novel translational approaches to prevent brain damage
and dementia.

CONCLUDING REMARKS

While the deleterious effects of bacterial infections on
neurological function are now clear in several models of
disease, the sequelae of such infections, from hearing loss to
motor and cognitive dysfunctions remain highly prevalent.
In pneumococcal-induced meningitis, more systematic and

epidemiological studies are required in order to assess the
importance of different virulent factors such as RrgA or Ply,
whose mechanisms of action in neurons could explain much
of the short-term and long-term neuronal damage observed
in recovered patients (Tabusi et al., 2021). Additionally,
long-term epidemiological studies of survivors from bacterial
meningitis may clarify the relationship between brain infection
and the onset of dementia. Finally, treatments targeting
neuroinflammation and neuronal damage may prove useful to
prevent the development of neurodegenerative diseases.
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