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An essential element of goal-directed decision-making in social contexts is

that agents’ actions may be mutually interdependent. However, the most

well-developed approaches to such strategic interactions, based on the

Nash equilibrium concept in game theory, are sometimes too broad and at

other times ‘overlook’ good solutions to fundamental social dilemmas and

coordination problems. The authors propose a new theory of social decision-

making—virtual bargaining—in which individuals decide among a set of

moves on the basis of what they would agree to do if they could openly bar-

gain. The core principles of a formal account are outlined (vis-à-vis the

notions of ‘feasible agreement’ and explicit negotiation) and further illustrated

with the introduction of a new game, dubbed the ‘Boobytrap game’ (a modi-

fication on the canonical Prisoner’s Dilemma paradigm). In the first empirical

data of how individuals play the Boobytrap game, participants’ experimental

choices accord well with a virtual bargaining perspective, but do not match

predictions from a standard Nash account. Alternative frameworks are

discussed, with specific empirical tests between these and virtual bargain-

ing identified as future research directions. Lastly, it is proposed that

virtual bargaining underpins a vast range of human activities, from social

decision-making to joint action and communication.
1. Introduction
A crucial challenge for the theory of goal-directed decision-making in social con-

texts is that the results of an agent’s actions may depend on the actions of other

agents. Where this is so, it appears that, to determine whether any particular

action will successfully achieve an agent’s goals depends on inferring what the

other agents will do. Yet a moment’s reflection reveals that inferring the likely

actions of other agents appears problematic. Any of the agents may reasonably

wonder: ‘How can the other agents possibly infer what I’m going to do, when

I don’t yet know myself?’ There seems to be the danger that each agent may be

‘lost in thought’ forever, attempting to puzzle out what the others will do.

One way out of this puzzle is to abandon the attempt to think in terms of goals

at all. So, for example, it is widely assumed that many aspects of group behaviour

in animals emerge from the application of algorithmic rules, partially determining

the action of a given animal, based on the actions of nearby animals. For instance,

a variety of models of flocking show that a coherently moving flock may emerge

from very simple local rules for adjusting the flight of each bird in the light of the

movements of neighbouring birds [1–3]; and many aspects of human and non-

human animal behaviour have been modelled as arises from herding, a tendency

to copy the behaviour of neighbours (causing, for example, stampedes, and

perhaps, stock market runs and riots) [4,5].

But if our focus is the theory of goal-directed behaviour, then a different

approach is required. We need to face, squarely, the question of how several

agents may attempt to pursue their own goals, in the knowledge that the con-

sequences of their actions may be mutually interdependent. By far the most

well-developed approach to this problem stems from the notion of Nash

equilibrium and best-reply reasoning, developed in game theory.
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(a)

C D

C 2, 2 0, 3

D 3, 0 1, 1

(b)

H T

H 1, 0 0, 1

T 0, 1 1, 0

(c)

H T

H 1, 1 0, 0

T 0, 0 1, 1

(d)

H L

H 2, 2 0, 0

L 0, 0 1, 1

(e)

A B

A 10, 9 0, 0

B 0, 0 1, 11

( f )

A B

A 10, 1 0, 0

B 0, 0 5, 5

Figure 1. Various games represented in normal form matrices. The ‘Row’ player decides between strategies delineated by rows and the ‘Column’ player decides
between strategies delineated by columns. Ordered values in cells represent pay-offs to Row and Column players, respectively, for each possible interdependent
outcome. (a) PD game, with strategies of C (Cooperate) and D (Defect). (b) Matching Pennies game, with strategies H (Heads) and T (Tails). Row ‘wins’ if both
players choose identically (i.e. Heads – Heads or Tails – Tails); Column ‘wins’ otherwise. (c) Simple coordination game, where players obtain a pay-off if they make
the same move. (d ) Hi – Lo coordination game. The equilibrium (H,H) yields higher pay-offs for both players than another pure strategy equilibrium of (L,L) (or even
a mixed strategy equilibrium in which both players choose L with probability 2/3). (e) Battle-of-the-Sexes game. Players must coordinate between one equilibrium
that is preferable for the Row player and another that is preferable for the Column player. (The game’s name comes from an imagined couple, one of whom prefers,
say, ballet, whereas the other prefers football. They must independently decide which event to attend; both will be utterly miserable if they do not make the same
choice.) Here, (A,A) is fairly good for both players, whereas (B,B) is very bad for the Row player. ( f ) Coordination game, unsolvable by maximizing summed pay-offs.
Intuition suggests that players will have common knowledge that, if faced with a choice agreeing to the pay-offs (10, 1) and (5, 5), the latter will prevail.
(Both players know that the Column player will never agree to such an outrageously asymmetrical split.) Of course, if the players could redistribute resources
after the bargain is complete, and can perfectly trust each other to do so, then they will always choose the equilibrium of the greatest summed pay-offs, to
maximize the ‘spoils’ to be divided. We will not consider such post-bargain trading here.
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In a Nash equilibrium, each agent makes a ‘best response’

to the action of the other agent—where ‘best’ is determined

entirely by the agents’ own pay-offs. For example, in a social

interaction with the structure of the canonical Prisoner’s

Dilemma (PD; figure 1a) game, there is just one Nash equili-

brium of (D,D) in which both players ‘Defect’, even though it

would be better for both players to attain (C,C) by playing

‘Cooperate’. Mutual cooperation (C,C) is not a Nash equili-

brium because either player can unilaterally switch from C to

D and gain an improved pay-off (3 rather than 2). But (D,D)

is a Nash equilibrium, because neither player can unilaterally

improve their pay-off by switching (indeed, a player who

unilaterally switches from D to C obtains 0 rather than 1).

So far we have considered ‘pure’ Nash equilibria, but many

games also have ‘mixed strategy’ equilibria, where one or more

players choose their actions probabilistically, rather than deter-

ministically. For example, consider the Matching Pennies game

(figure 1b). Each player must choose between Heads and Tails.

One player wins if both choose identically; the other player

wins if both choose differently from each other. No set of

deterministic choices constitute a Nash equilibrium in this

game, because the losing player is clearly not responding

best to the other’s move; indeed, the losing player can unilater-

ally switch to become the winner by changing their response.

But Matching Pennies does have a mixed strategy Nash

equilibrium: each player chooses Heads and Tails with 50%

probability, literally by spinning a coin.

Nash [6,7] famously showed that for a very wide class

of interactions between players, the ‘game’ had at least one

Nash equilibrium (whether ‘pure’ or ‘mixed’). Indeed, many

interesting games have several such equilibria. Consider, for

example, a simple ‘coordination game’ (figure 1c) in which,

unlike PD or Matching Pennies, the players’ interests align,

rather than conflict. Here, there are two ‘pure strategy’ equili-

bria of (H,H) and (T,T) (and, in fact, a further ‘mixed strategy’

equilibrium, where both players choose by spinning a fair coin).

In social interactions that can be modelled as a game

with multiple equilibria, producing predictions about what

players should choose requires selecting one equilibrium

among others. The notion of a Nash equilibrium needs to

be ‘refined’, to pick out one such equilibrium over the others.

The virtual bargaining account of social interaction that

we propose and outline below provides one theory of how
to select between equilibria. The idea, as we shall see, is

that agents should prefer the equilibrium that they would

select if able to openly bargain, by sending messages back

and forth between them (even though we assume they do

not actually send such messages—it is in this sense that the

bargaining is ‘virtual’). To provide some initial motivation

for this approach, consider another coordination game, Hi–

Lo (figure 1d; [8]), where agreement on one option is clearly

better than agreement on the other. According to the virtual

bargaining perspective, the reason that H is clearly preferred

to L is that it is obvious to both agents that, were they in a

position to explicitly bargain with each other to determine

what to do, they would immediately agree on (H,H).

We will consider how this can be modelled more formally

below. But for now, let us provide some intuitions favouring

the virtual bargaining approach. In particular, note that the

account presumes that factors that would influence actual

bargaining will tend to influence the virtual bargaining,

which might involve the ‘mental simulation’ of an actual bar-

gaining process. In real bargaining, for example, consider

how one would react when faced with the two pure strategy

equilibria in the ‘Battle-of-the-Sexes’ game (figure 1e). That is,

imagine players who have to bargain concerning whether

they should choose an option which has mutually good

pay-offs (9 and 10 units) or one which has very asymmetrical

pay-offs (12 and 1 units). Both players know that it is very

unlikely they would mutually agree to choose the second,

as the disadvantaged player will never concur. Thus, accord-

ing to virtual bargaining, both players in this Battle-of-the-

Sexes game will know that this is true, know that the other

knows it, etc.; and hence both will spontaneously choose A,

not B, alighting on the (A,A) equilibrium.

So far, one might wonder whether, rather than engaging

in bargaining, both players are simply choosing the equili-

brium of the greatest summed pay-offs. For example, rather

than seeing the players as bargaining to achieve a solution,

we might consider the players to reason instead as part of a

‘team’ whose objective is to maximize the total pay-off to

the team members (see [8,9]). However, consider figure 1f,
which provides an example where the summed pay-offs are

so unfairly divided that they would not be agreed by real bar-

gainers. The virtual bargaining account accordingly predicts

that this equilibrium would not be selected.



(a) (b)Column player

cooperate defect boobytrap

cooperate 30, 30 10, 40 30, 29

defect 40, 10 20, 20 –100, 9

boobytrap 29, 30 9, –100 29, 29
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C D B

C R, R S, T R, R-c

D T, S P, P I, S-c

B R-c, R S-c, I R-c, R-cPl
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Figure 2. (a) A specific pay-off structure for the Boobytrap game. The ordinal relationships among values in the top-left inner quadrant of the matrix, comprising
the outcome pay-offs for the strategy-subset cooperate and defect, are the same as those for PD (as illustrated previously in figure 1a). The Boobytrap game modifies
a standard PD game by symmetrically adding the third strategy of boobytrap. (b) Generalized structure of the Boobytrap game. R, S, T and P are pay-off variables
that follow standard inequalities of a PD game: T . R . P . S. If one player plays C (‘cooperate’) and the other plays D (‘defect’), then the cooperator obtains a
low pay-off (S), and the defector a high pay-off (T ). If both cooperate, they both receive a fairly good pay-off (R); but if both defect they receive the fairly bad pay-
off (P). This is the standard structure in the well-known PD game. The ‘impact’ pay-off I occurs to a player who plays D when the other plays B (‘boobytrap’); I , R.
The ‘cost’ (reduction in pay-off ) of playing B is represented by c, which is positive-valued.
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The virtual bargaining account, as developed here, makes

predictions based on the ‘goodness’ of virtual bargains, not

how such bargains are arrived at. Thus, it is a type of equili-

brium explanation, in the tradition of the Nash equilibrium

and its refinements. But understanding the psychological

processes that lead to a particular virtual bargaining outcome

remains an important challenge. Indeed, a process-model

may turn out to have important implications for the equili-

bria attained. For example, in games where people are

rewarded when they independently choose the same item

(e.g. the same place, time, colour; [10,11]), common mental

processes may themselves be important clues concerning

the ‘best’ item on which to virtually agree. Consider, for

instance, two people who will receive a prize if they indepen-

dently choose the same car brand. If Ford is the first brand of

cars that comes to mind (presumably as a result of aspects of

memory retrieval processes), then this may be a particularly

natural suggestion for the ‘virtual agreement’ equilibrium

[10]. Thus, combining processing factors with virtual bargain-

ing may help explain why some equilibria serve as so-called

‘focal points’. We shall, however, set aside issues concerning

multiple equilibria below.
2. Virtual bargaining solutions in social
interactions

Thus far, it has appeared that the notion of a Nash equilibria is

too broad. Interesting social interactions often have multiple

Nash equilibria and require additional constraints for selecting

one equilibrium above the others. Virtual bargaining provides

one way to do this, among many others (e.g. trembling hand

and subgame perfect Nash equilibrium [12], pay-off and risk

dominance [13], ‘proper equilibria’ [14], Mertens-stable equili-

brium [15], perfect Bayesian equilibrium [16] and sequential

equilibria [17]).

But as a theory of goal-directed social interaction, the Nash

equilibrium has a second drawback: many social interactions

may not be Nash equilibria at all. There has been more than

a half-century discussion of the fact that people frequently

cooperate in PD [18–21]. This raises the possibility that

people are, for example, concerned not only about their own

pay-offs, but about the pay-off of the other player, and might

be guided by feelings of altruism or norms of fairness, although

there are also many other possible explanations [22–27].

Rather than add to this discussion here, though, we

focus on a different source of additional possible ‘virtual
bargains’, which can arise irrespective of whether partici-

pants in a social interaction have any altruistic feelings or

sense of fairness.

We illustrate this type of case by introducing a new game,

which we call the ‘Boobytrap game’ (shown in figure 2a), and

which we will explore experimentally below. The Boobytrap

game is a modification of PD, in which an additional ‘move’

is added: the ‘boobytrap’. If a player chooses Boobytrap (B),

their pay-offs will be precisely the same as if they had

chosen Cooperate (C), except for a small reduction in each

pay-off that can be conceptualized as the cost of ‘buying’

the boobytrap. Moreover, playing B is the same as playing

C with respect to its effect on the other player’s outcomes,

with one crucial exception: if the other player chooses

Defect (D), then that player receives a steep negative pay-off.

The Boobytrap game has just one Nash equilibrium of

(D,D). The cost of ‘buying’ the boobytrap means that B

yields a slightly lower pay-off than C, regardless of the

action of the other player. Therefore, no pair of strategies

involving B from either player can possibly be a Nash equili-

brium, because switching from B to C will always be a better

response to the other’s move—whatever that move might be.

By this logic, the players can infer that neither of them will

choose B; and hence the game collapses back into a standard

PD game, with the usual suboptimal (D,D) equilibrium.

But there is a better ‘bargain’ to be had: (B,B). Consider,

for a moment, that the players can bargain face-to-face. They

can immediately see that (B,B) is a better outcome than

(D,D). Now (C,C) is better still, but the problem is that it is

unenforceable. Assuming no altruism or similar, each player

knows that, if they go through with their side of the bargain,

the co-player may exploit them by Defecting—that is, the

other player will be able to profit at their expense. But no

such exploitation is possible for (B,B). Each player knows that

if they go through with their side of the bargain, playing B,

then no exploitation is possible; if the other plays D, then this

will be mutually damaging. If the other plays B or C, then

the first player obtains a good pay-off in either case.

So, there is a possible, non-exploitable bargain that has better

pay-offs for both players than the Nash equilibrium. By playing

B, a player deters the other from playing D. And hence the social

interaction works to the benefit of both players. As both players

know that this bargain is mutually advantageous, they can play

it without having to explicitly bargain.

Here, then, the virtual bargaining account diverges

sharply from most accounts which assume the Nash equili-

brium as a starting point; in this game, a good virtual
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bargaining solution may not be a Nash equilibrium at all.

We shall examine how people actually play the Boobytrap

game presently.

The possibility of virtual bargaining between antagonists

marks the division between the virtual bargaining account

and an important set of related ideas developing the notion

of ‘team-reasoning’ [8] and the related notion of ‘we-thinking’

[28,29]. Team reasoning allows the possibility for teams of

people, not just individuals, to be viewed as agents—and

that individuals who are members of a team may choose to

behave in a way that fits their ‘role’ in that team. It is natural

to think of teams as having common objectives (as in, for

example, sports teams). Virtual bargaining can be viewed as

providing a link between individual beliefs and values and

the behaviour of the ‘team’—by viewing the preferences of

the team as resulting from what ‘the team’ would agree, if its

members had the opportunity to bargain. From this perspec-

tive, we can see the goals of the team as arising naturally

from the goals of its members: the theory of virtual bargaining

provides the crucial link.
0487
3. A sketch of a formal theory of virtual
bargaining

The theory of virtual bargaining can be made precise in a

numberof different ways. Here, we provide a sketch of the struc-

ture of such a theory, leaving technical developments and

alternative analyses for future research. There are two core

ideas. First, the notion of a feasible agreement picks out a set of

possible ‘virtual bargains’, from which the players choose. The

second step is the claim that, except in unusual circumstances

which we shall not consider here, virtual bargaining is governed

by the same principles that govern explicit negotiation.

The rudiments of a formal account can be encapsulated as

follows, for the case where there are two agents. (A more gen-

eral mathematical formulation is given in the electronic

supplementary material.)

(i) A pair of strategies (whether ‘pure’, i.e. consisting of a

single move; or ‘mixed’, consisting of a probability distri-

bution over several moves) is feasible, if neither player can

exploit the other to their own advantage. That is, given the

strategy of the other, neither player can, by varying their

strategy, gain advantage for themselves, to the disadvantage

of the other.

Note that the set of feasible strategies is weaker than, and

contains all, Nash equilibria. At a Nash equilibrium, neither

player can unilaterally change their strategy to their own

advantage in any way at all; this immediately implies, of

course, that neither player can unilaterally change their strat-

egy to exploit the other (i.e. so that the player benefits, to the

disadvantage of the other).

How can the ‘goodness’ of a bargain be evaluated? In the

absence of a well-developed formal theory of explicit nego-

tiation (and perhaps with the expectation that such theory

may not be possible), we should similarly not expect a com-

plete formal theory of virtual bargaining. Nonetheless, we

shall see that existing formal accounts of explicit bargaining,

such as Nash’s theory of bargaining [30], while incomplete,

are nonetheless useful as a starting point for the analysis of

virtual bargaining. Hence, we shall provisionally use
(ii) The goodness of a feasible bargain is, following Nash’s

theory of bargaining, the product of the utility gains to

each player (relative to a no-agreement baseline) of adher-

ing to that agreement (Nash showed that this particular

goodness measure follows from very simple and natural

axioms concerning bargaining).

Let us illustrate these steps by considering PD and then

its modification, the Boobytrap game. For conventional PD,

consider cases in which both players agree to adopt strategies

with a non-zero probability of C. Then each player can exploit

the other by not going through with their side of the bargain,

but by playing D with probability 1. So no such pairs of

strategies are ‘feasible’. Conversely, all strategies in which

one player plays D with probability 1 are feasible, including

the pure strategies (C,D), (D,C) and, of course, the Nash

equilibrium (D,D).

Note that, by choosing D, each player can guarantee a

pay-off of 20 units. But any bargain in which one player

chooses D, but the other has a non-zero probability of playing

C, will have a negative expected pay-off for the second player

compared with the ‘baseline’ of also playing D. So the product
of utility gains of the pair of players for any such bargain will

be negative. The bargain (D,D) will have a 0 gain over this

default option (because (D,D) is the default option for each

player). So the ‘best’ feasible option is (D,D). So bargaining

does not lead to an improved outcome: the theory of virtual

bargaining does not, directly at least, help explain why

people so frequently cooperate in one-shot PD.

Now let us consider the Boobytrap game. The game also

has a single (D,D) equilibrium, which we shall take as the

default outcome, where no bargaining occurs. In the specific

Boobytrap game in figure 2a, the pay-offs are (20,20). Can

bargaining lead to a better outcome? It turns out that this is

possible. Suppose each player ‘buys’ a Boobytrap for certain.

The pay-offs are now (29,29), and this is a feasible bargain, as

neither player can exploit the other. To be sure, if one player

knows that the other will play Boobytrap, then the first player

can simply cooperate, thereby saving the ‘cost’ of the Booby-

trap (and obtaining a pay-off of 30, rather than 29). But this

leads to no disbenefit to the other player, who obtains pay-

off 29 nonetheless. So (B,B) is a feasible bargain (albeit not

a Nash equilibrium), and it is a better bargain for both

players than that achieved by the Nash equilibrium.

Indeed, the players can do even better. They just need to

buy the Boobytrap sufficiently often that the other player has

no incentive to Defect. It turns out that the best possible bargain

for each player in the specific boobytrap game we are consider-

ing is achieved when each player plays B with probability

(infinitesimally above) 1/14; and otherwise plays C. This

figure is obtained simply by considering the fraction of Bs

required of a B/C mixture such that the co-player’s pay-off

by playing D (i.e. 40p 2 100(1 2 p), where p is the probability

of playing C) is less than from playing C (i.e. 30), so that

there is no incentive to play D. Simple algebra reveals that

this holds when p , 13/14, and hence the probability of play-

ing B is at least 1/14. Under this solution, expected pay-offs for

each player are very nearly 30, and far better than the (20,20)

pay-offs obtained in the Nash equilibrium.

Virtual bargaining predicts, then, that the players can find

a bargain in which neither can exploit the other, but which

is significantly better than the Nash equilibrium. Recall,

though, that while intuitively natural, no solution involving



Matrix 1: Matrix 2:

Matrix 3:

Matrix 5:

Matrix 4:

C B

C 30, 30 30, 29
B 29, 30 29, 29

C D

C 30, 30 10, 40
B 29, 30 9, –100

C D

C 30, 30 10, 40
D 40, 10 20, 20

C B

C 30, 30 30, 29
D 40, 10 –100, 9

C D B

C 30, 30 10, 40 30, 29
D 40, 10 20, 20 –100, 9
B 29, 30 9, –100- 29, 29

Figure 3. Experimental games consisting of four decomposed matrices (Matrix
1 – 4) and one full matrix (Matrix 5) corresponding to the Boobytrap game.
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playing B is predicted on standard game-theoretic analysis.

While the Boobytrap is a potential deterrent against the co-

player choosing D, it is a non-credible deterrent under

Nash reasoning, because whatever the other player does,

each player will always do better choosing C over B. The cru-

cial empirical question is, therefore: how do people behave

when confronted with the Boobytrap game?
4. Preliminary experimental test of virtual
bargaining

We report below the first empirical data on how people play

the Boobytrap game.

(a) Methods ( participants, materials and procedure)
Eighteen undergraduate and postgraduate students (13

women; age: M ¼ 21.4, s.d. ¼ 2.1) were recruited from the

University of Warwick through an online participant recruit-

ment panel. Participants were paid £5, in addition to any

earnings (potential range from £0 to £7) determined propor-

tionally from their pay-offs in one randomly selected game.

The specific pay-off values from the Boobytrap game

matrix in figure 2a were used for the experiment (as repro-

duced in figure 3, bottom). To reduce the complexity of the

matrix and to isolate participants’ preferences for different

strategies within different contexts, the 3 � 3 ‘full’ matrix was

also decomposed into a set of 2 � 2 matrices with the same

pay-off values per included cells, as shown in figure 3. The

first 2 � 2 matrix (figure 3, top-left) is a simple symmetric

game in which both players choose between C and B strategies.

Matrix 2 (figure 3, top-right) is another symmetric game with

choices between C and D; this instantiates the standard PD

game and provides a baseline rate for participants’ defection

without the option of B. Matrix 3 and Matrix 4 (figure 3,

centre) each cross the options of C and B for one player against

the co-player’s options of C and D. Crucially, for Matrices 3

and 4, a virtual bargaining account predicts a mixture of ‘CC’

and ‘CB’ outcomes (i.e. (C,C), (C,B) and (B,C) equilibria) over

games, whereas Nash equilibrium theory predicts the ‘CD’ out-

come (i.e. (C,D) or (D,C) equilibria; see also discussion below).

Therefore, these ‘reduced’ versions of the Boobytrap game
capture relevant dimensions of interest in the full Boobytrap

version, while also making contrasting predictions from

Nash and virtual bargaining perspectives.

Using the Z-TREE (Zurich Toolbox for Readymade Economic

Experiments) software [31] to present the five experimental

matrices over 18 networked computers, participants played

the various games during one group session in the same labora-

tory. Prior to play, participants were instructed on how to ‘read’

game matrices (i.e. understand what rows, columns and cells

indicate), and then viewed the games in matrix form on their

computer screen. Each participant was randomly and anon-

ymously matched with a new partner for each game, and

played in one of two possible roles (Row or Column player)

throughout the experiment.

The four 2 � 2 matrices were each presented 20 times, in

random order, for a total of 80 games. This was then followed

by 10 presentations of the full 3 � 3 matrix. To make the pay-

offs easier to read, some minimal text was added within cells

(e.g. ‘Row gets 40’, ‘Column gets 10’). To control for position

effects, the locations of strategies in the 2 � 2s were random-

ized and counterbalanced for each subject, so that on any

given trial, each subject saw a different configuration of the

same matrix. To avoid label effects, participants did not see

strategy labels (e.g. C, D) for any matrices, but instead clicked

on unlabelled buttons alongside each column or row to indi-

cate their selection. Participants made their choice without

knowledge of the other player’s decision and received feedback

on their screen regarding the outcome of their joint decision

after each game.
(b) Results and discussion
The mean rates for choosing the various strategies per game

were calculated for each participant and then averaged to

obtain the group means displayed in figure 4. For compara-

tive purposes, because matrices 3 and 4 were asymmetric

(each involving different strategy options per role) and

largely identical (i.e. with the same strategies, but reversed

by role), choice frequencies were combined across these

two matrices with respect to participants’ paired options

(i.e. C or B; C or D). Specifically, the observed rates

at which the Column player chose a given strategy for

Matrix 3 (i.e. C or D, in the context of the co-player choosing

C or B) were grouped with the rates for which a Row player

chose between the same strategies in the same context for

Matrix 4 (again, C or D, when the other player may choose

C or B). Similarly, Row’s choices for Matrix 3 were averaged

with Column’s analogous choices for Matrix 4 (i.e. C or B,

when the other chooses C or D).

As displayed in figure 4, participants overwhelmingly

chose the cooperative strategy C (99.7%) in Matrix 1 when

confronted with a decision between C or B. Because C

should clearly be the preferred choice in this context, partici-

pants’ selections provide a basic check that they understood

how to interpret the abstract matrices. For Matrix 2, partici-

pants chose the Defect, over Cooperate, strategy a vast

majority of the time (92.5%); thus, without the Boobytrap

strategy, the baseline rate of defection for the standard PD

game is very high. For the reduced versions of the Boobytrap

game in Matrix 3 and 4, this preference reverses; when decid-

ing between C or D in the context of the other’s C or B,

participants chose Cooperate 86.1% of times. Further, when

deciding between C or B in the context of the other’s C or
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D, participants chose Boobytrap about a third of the time

(32.5% B, 67.5% C).

To check whether potential learning during the exper-

iment may have influenced results, we recomputed the

means displayed in figure 4 for the first and second halves

of the experiment (involving the 2 � 2s), as well as for the

first and last half of presentations of the 3 � 3 matrix. For

the reduced Boobytrap games, a difference across experimen-

tal halves occurs for participants’ choices when constrained

to choose between C or D: defection decreases from 23% to

7%, with a concomitant increase in cooperation (t17 ¼ 2.79,

p ¼ 0.01); but the mean rate of boobytrapping does not

differ ( p ¼ 0.21). There are no significant changes evidenced

for the other game matrices, including the full 3 � 3 Booby-

trap game. Thus, even with the change noted above,

performances in boobytrap games do not conform to stan-

dard Nash predictions throughout (more on this below).

Importantly, for the boobytrap matrices, defection is low

and boobytrapping is present from the onset (i.e. while 72%

defection is observed for the first presentation of standard

PD, defection is below 25% for the first presentation of

Matrix 3 and 4, and boobytrapping begins at the rate of 1/9).

As none of the individual choice patterns in this section

change when considering experimental halves separately, we

report subsequent analyses across the whole of the experiment.

Accordingly, the overall distribution of choices in the full,

symmetric version of the Boobytrap game (Matrix 5) also

shows a high proportion of Cooperate and Boobytrap strat-

egies relative to Defect: 69.4% C, 21.7% B and 8.9%

D. Individuals’ selection rates for each of these strategies

did not differ from their rates for the strategies’ counterparts

in the reduced Boobytrap games shown in figure 4 (with

cooperation rates averaged), matched-pair comparisons: all

ps . 0.05. This resulted in similar group frequencies to the

reduced versions (Matrix 3: 78.6% C, 14.4% B, 6.9% D;

Matrix 4: 75% C, 18.1% B, 6.9% D) and indicates that neither

the mere availability of a third option as such, nor the added

complexity of the matrix in 3 � 3 form are principally driving

participants’ results. Yet, there was a significant difference in

defection across Boobytrap games (reduced and full versions)

and PD games in figure 4 (one-way repeated measures

ANOVA: F2,34¼ 199.59, p , 0.001), with planned comparisons

revealing a dramatic reduction in the proportion of defection

from PD to that in the reduced Boobytrap game (when con-

strained to choices C and D), CI95 ¼ 0.66 to 0.92, p , .001,

and from PD to the full Boobytrap game, CI95 ¼ 0.70 to 0.98,

p , 0.001.
Following §3, virtual bargaining predicts a mixed strat-

egy of ‘cooperative’ choices (C and B) in which B is played

sufficiently frequent so as to deter the other player from

D. For example, consider Matrix 3. Row should only

need to play the Boobytrap strategy with some probability

infinitesimally above 1/14 to rationally deter the Column

player from Defect. As boobytrapping increases above

this frequency, the expected utility to the Column player

from choosing D decreases and defection becomes increas-

ingly disadvantageous. The same holds true for Matrix 4,

but with roles reversed. And indeed, in our experimental

Boobytrap games, participants did choose B at rates well

above the threshold of �7%. Strategy D was correspond-

ingly chosen the least often, at rates representing more

than a 75% decline from those in the standard PD game.

Alternatively, Nash equilibrium theory predicts the CD
outcome in the reduced boobytrap matrices; C dominates B

for the player with these available strategies (i.e. C provides

better pay-offs to B irrespective of what the other player

chooses), whereas the other player’s best reply to their

opponent’s expected C is D. So when constrained between

C and B, a standard Nash account predicts that one always

chooses a pure strategy of C; when constrained between D

and C, a Nash account predicts that D should always be

chosen. However, this is not observed in participants’ choices

from figure 4. When deciding C or B, participants did choose

C with a high frequency, but B was still observed one-third of

the time, significantly more than zero (t17 ¼ 4.41, p , 0.001).

And when deciding D or C, participants chose C significantly

more than D (t17 ¼ 9.34, p , 0.0001), in direct contrast to the

Nash equilibrium prediction.

Table 1 displays the outcomes observed for each game.

For PD, participants’ high defection rate results in a

mere 1% of outcomes that are mutually cooperative and

86% of outcomes with mutual defection. For the reduced

boobytrap matrices, consistent with the above reporting of

individual choice, we observe that participants converge

on the Nash equilibrium outcome—(C,D) or (D,C)—a

minority of times (11 and 8%), whereas the virtual bargain-

ing predicted outcomes ((C,C), (C,B), (B,C)) are the most

frequent (ranging from 61 to 26%). Similarly, in the case of

the full Boobytrap game, results accord with the virtual

bargaining account: combinations of cooperation and booby-

trap strategies constitute 82% of game outcomes, with

unilateral defection constituting the small remainder. Nota-

bly, under these conditions, the Nash equilibrium of (D,D)

was never attained.



Table 1. Proportion and number of game outcomes per game matrix. PD, Prisoner’s Dilemma; BT, Boobytrap game. Column headings represent players’ joint
outcomes, arising from choice combinations among the strategies C, B and D. Greyed cells indicate unattainable outcomes for a given matrix’s strategies.

(C,C) (C,B)/(B,C) (B,B) (D,B)/(B,D) (C,D)/(D,C) (D,D)

Matrix 1 0.99 (179) 0.01 (1) 0.00 (0) — — —

Matrix 2 (PD) 0.01 (1) — — — 0.14 (25) 0.86 (154)

Matrix 3 (2 � 2 BT) 0.61 (109) 0.26 (46) — 0.03 (6) 0.11 (19) —

Matrix 4 (2 � 2 BT) 0.56 (100) 0.31 (55) — 0.06 (10) 0.08 (15) —

Matrix 5 (3 � 3 BT) 0.48 (43) 0.30 (27) 0.04 (4) 0.04 (4) 0.13 (12) 0.00 (0)

C D B

C 30, 30 10, 40 30, 29

D 40, 10 20, 20 25, 9

B 29, 30 9, 25 29, 29

Figure 5. A variation of the Boobytrap game. See text for explanation.
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5. Alternative frameworks for understanding the
Boobytrap game

We have focused on the contrast between our virtual bar-

gaining account of the Boobytrap game and the standard

Nash equilibrium in the game: (Defect, Defect). But there

are, of course, many other models in game theory that

might be applied to the Boobytrap game.

One approach is to enrich the agent’s utility functions to

include ‘social preferences’ [32] by assuming that players

attend not just to their own pay-offs, but also to the pay-offs

of the other player. This would provide a possible explanation

for playing B rather than C, even though the pay-offs to oneself

are always greater when playing C. That is, there might be an

additional ‘boost’ to one’s utility on observing that the

other’s pay-off is low or, perhaps crucially, substantially

lower than one’s own.

If this is correct (e.g. if a player prefers to receive ‘29’

while the other receives ‘2100,’ rather than both players

receiving ‘30’), then the decision to choose the Boobytrap

can also be maintained if the choice of the other player is

randomly determined. Specifically, suppose that in the full

3 � 3 Boobytrap game, the co-player’s move is determined by

flipping a coin, such that the co-player chooses C or D with

probability 1/2 and is constrained to not play B. If it is the

outcomes received by each player that matter, then the process

by which those outcomes are achieved should not be impor-

tant. If the first player sufficiently prefers the (29,2100)

outcome to the (30,30) outcome (enough to offset the small

cost of ‘buying’ the Boobytrap), then that player will choose

B rather than C.

By comparison, though, completely different results

are expected from a virtual bargaining viewpoint. A player

cannot form a virtual bargain with a second player whose

behaviour is being determined by a random device, as

the second player is in no position to implement any vir-

tual agreement. Hence, other things being equal, the virtual

bargaining account would predict that the frequency of

the non-random player deciding to choose B would be sub-

stantially reduced under these circumstances. This contrast

in predictions thus provides the basis for a strong empirical

test between the present virtual bargaining account and

accounts based purely on outcomes, which awaits future

experimental work.

A second alternative way to explain the choice of B

in the Boobytrap game is as a result of ‘noise’ in the choice

process. For example, a popular generalization standard

Nash equilibrium is so-called Quantal Response Equilibrium
(QRE [33]), according to which players do not, at equilibrium,

deterministically choose the best response (i.e. the response

yielding the maximum expected utility), given the probability

distribution over the other’s moves. Rather, players are more

likely to choose a response to the extent that it has a high

expected utility. Depending on a free parameter, which deter-

mines the noisiness of responding, QRE’s predictions range

from completely random responding (with each response

having a probability of one-third for both players) to collap-

sing back to the Nash equilibrium as the level of decision

noise tends to zero.

Thus, with sufficient noise, QRE can predict B is

played fairly frequently—and where it is played frequently

enough to successfully deter D, then D will be suppressed,

as observed in our experiment. Note, though, that QRE

makes the very strong prediction that the frequency of C

responses must always be greater than the frequency of B

responses. This is because C has a higher pay-off than B

whatever the other player does; that is, C dominates B,

and frequencies are positive monotonic functions of

expected pay-off.

Now consider the Boobytrap game in figure 5. Here, the

‘boobytrap’ only causes a small amount of ‘damage’ to the

other player, reducing the defector’s pay-off to ‘25’, rather

than ‘2100’. Virtual bargaining predicts that B should be

played with a high probability and much greater than that

of C, under reasonable assumptions. This is because the boo-

bytrap will only have the appropriate ‘deterrent’ effect if it

is almost certain to occur, given that the harm it causes is

relatively slight.

By contrast, QRE predicts a very different pattern.

Because B is constrained to be less frequently chosen than

C, it cannot be chosen sufficiently often to be an adequate

‘deterrent’ to the choice of D. So D will be the most frequent

choice, followed by C, and finally B. Exploring what happens

when the boobytrap is less ‘potent’ is thus a critical test

between QRE (and noise-based models more broadly) and

the virtual bargaining account, and the natural topic for

future experimental work.
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6. Concluding remarks
In humans, whether we achieve our goals often depends not

only on our own actions, but on the actions of others. In such

cases, successful goal-directed behaviour often requires two or

more people to coordinate their actions successfully, whether

in passing each other in the corridor without collision, playing

a duet or a game of football, collaborating on a research project

or a business venture, or dividing up and carrying out tasks

within a family unit. The theory of virtual bargaining aims to

provide the starting point for an account of how this is possible.

We have considered virtual bargaining in cases where the

goals of the players may be diametrically opposed (as in PD,

the starting point for the Boobytrap game, wherein choosing

D rather than C is in each player’s interests at the expense of

the other). But virtual bargaining is also applicable in contexts

where players have common goals, but the challenge is to infer

how to coordinate their behaviour to achieve those goals.

Arguably, such problems of coordination are central to a vast

range of human activities, in which people must jointly

attend to the same information, jointly plan how to react to

that information and jointly engage in appropriate actions—

as exemplified in a range of activities including conversation,

collaborative musical or theatrical performance, many types

of improvised dance and collaborative projects from putting

up a tent to writing an academic paper.

As noted earlier, a particularly simple example of such

coordination games is the Hi–Lo game, in which players

must independently choose to respond H (‘Hi’) or L (‘Lo’).

Recall that if the players choose different options, neither

obtains any reward. However, if the players both choose

Hi, they both receive a large prize, and conversely, if they

both choose Lo, they both receive a small prize. Experiments

consistently show, as intuition would expect, that Hi–Hi is

overwhelmingly chosen [8].

A full evaluation of the virtual bargaining theory would, of

course, require a much broader review of the experimental litera-

ture on games, and this would go far beyond the scope of this

paper. We note, though, that the scope of the present account is

quite broad. Consider, for example, the Ultimatum Game. In

one version, Player 1 announces a ‘split’ of, say, $100; Player 2

announces a ‘minimum’ sum to which they will agree. If Player

1’s split is less than Player 2’s minimum, neither player gets any-

thing. Otherwise, the players receive the split as suggested by

Player 1. Under fairly natural symmetry assumptions, the best

bargain ( judged by Nash bargaining) will be a 50–50 split; and

virtual bargaining then suggests that this bargain will be

implicitly ‘agreed’ by the players. Indeed, the 50–50 split is the

modal outcome in many experiments. This provides an alterna-

tive, or perhaps complement, to standard economic accounts

based on fairness [34]. A natural test between the approaches

would be a version of the ultimatum game with three players:

Player 1 suggests a split between the three players; Player 2

specifies a minimum payment for both Player 2 and Player

3; Player 3 is a bystander. An account based purely on fairness

would presumably require even splits between the three

players; a virtual bargaining account might predict a greater

share demanded by, and given to, Player 2 rather than Player

3 (data from Güth & Van Damme [35] suggests that fairness

may play only a small role).

It is natural to view communication itself as a coordination

game of the type above, but where both sender and receiver of

a communicative ‘signal’ must coordinate on the same
interpretation of that signal, within the space of a vast number

of possible interpretations. Facial expressions, gestures and utter-

ances all, notoriously, hugely underspecify the content that is to

be communicated. Only by extremely complicated processes of

‘pragmatic enrichment’ is it possible to interpret a raised

eyebrow as, perhaps, expressing the implausibility of a specific

philosophical position, or to interpret a brief shudder as a request

to close a draughty window [36]. Communication involves pla-

cing a communicative action of some kind in common ground

between ‘sender’ and ‘receiver’; and communication succeeds

when, of the endless possible interpretations of the communica-

tive act, both sender and receiver coordinate on the same

interpretation. Such communication may be linguistic, or entirely

non-verbal, as in conducting an orchestra, where the complex

movements of the players should be coordinated by subtle

gestures from the conductor [37]. How far convergence on the

same interpretation involves explicit inference [38] or is a side-

effect of common processing mechanisms between speaker

and hearer [39,40] remains a key area for future research.

Note that, in the current framework, communication requires

common knowledge that the action to be interpreted is commu-

nicative: both sender and receiver aim to infer the same
interpretation as each other. This contrasts with animal signal-

ling such as ‘stotting’ where a gazelle’s jumps in the presence

of lions may signal its fitness [41] and hence that the lion

should not expend energy in futilely chasing it; or exaggerations

of normal human movements (e.g. a goal-keeper conspicuously

looking at a defender to indicate where he will pass the ball). In

these cases, transfer of information still occurs whether or not the

receiver recognizes the intention behind the action—the lion can

infer the futility of the chase and the defender can infer the likely

direction of the pass from the movements themselves (only fast

gazelles can jump; goalies normally kick in the direction they

are looking). By contrast, the goalie pointing to a defender only

gives information about the likely pass if the point is interpreted

by the defender as communicative (so the goalie and defender

must agree on the likely referent of the pointing action), rather

than, say, as a random wave of the arm. Empirically clarifying

the boundary between cases where signal is sent intentionally,

which can be very intricate [42], and those which require

common knowledge of the intention of the signal is an important

topic for future work. The present approach can be viewed as

a step towards providing a formal underpinning for the theory

of psychological communication developed by Clark and

co-authors [40,43,44] and in pragmatic theory [36].

We see the foundations of understanding human communi-

cation as a particularly rich area for the application of the theory

of virtual bargaining. Moreover, if we are right, then virtual bar-

gaining underpins the ability to bargain explicitly, using

linguistic or other modes of communication; without virtual

bargaining, we suggest, communication, and the complex

cultural structures built upon it, would not be possible.

Acknowledgements. We would like to thank the editors and two anon-
ymous reviewers for valuable comments contributing to this
manuscript. The account developed here has its origins in conversa-
tions with the late Michael Bacharach and has benefitted from
discussions with, among many others, Bob Sugden, Jens Madsen,
Tigran Melkonyan, Ramsey Raafat and Hossam Zeitoun.

Funding statement. J.M. and N.C. were partially supported by ERC grant
295917-RATIONALITY; N.C. is partially supported by the ESRC
Network for Integrated Behavioural Science, the Leverhulme Trust,
Research Councils UK Grant EP/K039830/1 and the Templeton
Foundation.



9
References
rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130487
1. Couzin I. 2007 Collective minds. Nature 445, 715.
(doi:10.1038/445715a)

2. Reynolds CW. 1987 Flocks, herds and schools:
a distributed behavioral model. Comp. Graph. 21,
25 – 34. (doi:10.1145/37402.37406)

3. Sumpter DJT. 2006 The principles of collective
animal behaviour. Phil. Trans. R. Soc. B 361, 5 – 22.
(doi:10.1098/rstb.2005.1733)

4. Hurley S, Chater N (eds). 2005 Perspectives on
imitation: from neuroscience to social science,
vol. 1. Mechanisms of imitation and imitation in
animals. Cambridge, MA: MIT Press.

5. Raafat RM, Chater C, Frith C. 2009 Herding in
humans. Trends Cogn. Sci. 13, 420 – 428. (doi:10.
1016/j.tics.2009.08.002)

6. Nash J. 1950 Equilibrium points in n-person games.
Proc. Natl Acad. Sci. USA 36, 48 – 49. (doi:10.1073/
pnas.36.1.48)

7. Nash J. 1951 Non-cooperative games. Ann. Math.
54, 286 – 295. (doi:10.2307/1969529)

8. Bacharach M. 2006 Beyond individual choice: teams
and frames in game theory (eds N Gold, R Sugden).
Princeton, NJ: Princeton University Press.

9. Sugden R. 2003 The logic of team reasoning.
Phil. Explor. 6, 165 – 181. (doi:10.1080/10002003
098538748)

10. Bardsley N, Mehta J, Starmer C, Sugden R.
2010 Explaining focal points: cognitive
hierarchy theory versus team reasoning. Econ.
J. 120, 40 – 79. (doi:10.1111/j.1468-0297.2009.
02304.x)

11. Schelling TC. 1960 The strategy of conflict.
Cambridge, MA: Harvard University Press.

12. Selten R. 1975 Reexamination of the perfectness
concept for equilibrium points in extensive games.
Int. J. Game Theory 4, 25 – 55. (doi:10.1007/
BF01766400)

13. Harsanyi J, Selten R. 1988 A general theory of
equilibrium selection in games. Cambridge, MA: MIT
Press.

14. Myerson R. 1978 Refinement of the Nash
equilibrium concept. Int. J. Game Theory 7, 73 – 80.
(doi:10.1007/BF01753236)

15. Kohlberg E, Mertens J-F. 1986 On the strategic
stability of equilibria. Econometrica 54, 1003 – 1037.
(doi:10.2307/1912320)

16. Fudenberg D, Tirole J. 1991 Perfect Bayesian
equilibrium and sequential equilibrium. J. Econ.
Theory 53, 236 – 260. (doi:10.1016/0022-
0531(91)90155-W)

17. Kreps DM, Wilson R. 1982 Sequential equilibria.
Econometrica 50, 863 – 894. (doi:10.2307/1912767)

18. Dawes RM, Thaler RH. 1988 Anomalies: cooperation.
J. Econ. Perspect. 2, 187 – 197. (doi:10.1257/
jep.2.3.187)

19. Flood MM. 1958 Some experimental games.
Manage. Sci. 5, 5 – 26. (doi:10.1287/mnsc.5.1.5)

20. Hargreaves-Heap SP, Varoufakis Y. 2004 Game
theory: a critical introduction, 2nd edn. London, UK:
Routledge.

21. Sally D. 1995 Conversation and cooperation in social
dilemmas: a meta-analysis of experiments from
1958 to 1992. Ration. Soc. 7, 58 – 92. (doi:10.1177/
1043463195007001004)

22. Bacharach M. 1999 Interactive team reasoning: a
contribution to the theory of co-operation. Res.
Econ. 53, 117 – 147. (doi:10.1006/reec.1999.0188)

23. Chater N, Vlaev I, Grinberg M. 2008 A new
consequence of Simpson’s paradox: stable
cooperation in one-shot prisoner’s dilemma from
populations of individualistic learners. J. Exp.
Psychol. Gen. 137, 403 – 421. (doi:10.1037/0096-
3445.137.3.403)
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