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Abstract

Rationale: Due to the invasive nature of the procedures involved, most studies of Mycobacterium tuberculosis (Mtb)-specific
immunity in humans have focused on the periphery rather than the site of active infection, the lung. Recently, antigens
associated with Mtb-latency and -dormancy have been described using peripheral blood (PB) cells; however their response
in the lung is unknown. The objective of this report was to evaluate, in patients prospectively enrolled with suspected active
tuberculosis (TB), whether the latency antigen Rv2628 induces local-specific immune response in bronchoalveolar lavage
(BAL) cells compared to PB cells.

Material/Methods: Among the 41 subjects enrolled, 20 resulted with active TB. Among the 21 without active disease, 9
were defined as subjects with latent TB-infection (LTBI) [Quantiferon TB Gold In-tube positive]. Cytokine responses to
Rv2628 were evaluated by enzyme linked immunospot (ELISPOT) assay and flow cytometric (FACS) analysis. RD1-secreted
antigen stimulation was used as control.

Results: There was a significantly higher frequency of Rv2628- and RD1-specific CD4+ T-cells in the BAL of active TB patients
than in PB. However the trend of the response to Rv2628 in subjects with LTBI was higher than in active TB in both PB and
BAL, although this difference was not significant. In active TB, Rv2628 and RD1 induced a cytokine-response profile mainly
consisting of interferon (IFN)-c-single-positive over double-IFN-c/interleukin (IL)-2 T-cells in both PB and BAL. Finally, BAL-
specific CD4+ T-cells were mostly effector memory (EM), while peripheral T-cell phenotypes were distributed among naı̈ve,
central memory and terminally differentiated effector memory T-cells.

Conclusions: In this observational study, we show that there is a high frequency of specific T-cells for Mtb-latency and RD1-
secreted antigens (mostly IFN-c-single-positive specific T-cells with an EM phenotype) in the BAL of active TB patients. These
data may be important for better understanding the pathogenesis of TB in the lung.
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Introduction

Tuberculosis (TB) is commonly thought to have a simple binary

distribution, active disease and latent infection. Although latent

TB infection (LTBI) is generally associated with bacterial

containment in some inactive form in the granuloma [1], the

current definition of LTBI includes a diverse range of individuals,

from those who have completely cleared, to those who are

incubating actively replicating bacteria in the absence of clinical

symptoms [2,3]. On the other side, active TB in humans and non-

primate animals is characterized by diverse pathological presen-

tations, ranging from sterile tissue to caseous hypoxic lesions

containing variable numbers of bacteria, to liquefied cavities with

a massive load of replicating organisms [2,4]. Based on this, M.
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tuberculosis (Mtb) infection may therefore be better viewed as a

continuous spectrum ranging from sterilizing immunity, to

subclinical active disease, to fulminant active disease with

conventional designations of LTBI, and active disease correspond-

ing to partially overlapping regions of biological heterogeneity

[4,5].

Due to the invasive nature of the procedures involved, most

studies of Mtb-specific immunity in humans have focused on

peripheral blood (PB) rather than the site of active infection, the

lung [1,6–9]. However, tissue-specific mucosal immunity in the

lung, as measured e.g. in bronchoalveolar lavage (BAL), may differ

significantly from the periphery and may yield more relevant clues

about the mechanisms and immune components of protection and

disease.

During LTBI, the tubercle bacilli contained within granulomas

[1] are thought to be subjected to nutrient and oxygen deprivation

[10,11]. As part of the Mtb-adaptive response to hypoxia,

expression of the DosR regulon is observed. The functions of

most DosR-regulon-encoded proteins, hereafter referred to as

latency antigens, are still mostly unknown [12,13]. Recently, we

described that interferon (IFN)-c responses to Mtb latency antigens

Rv2628c [14] are associated with LTBI and that within the CD4+

T-cells the response to Rv3133c, Rv1733c and Rv2029c is mainly

associated with cytokine mono-functional expression [15-18]. It

would be important to evaluate the immune response to these

antigens at the site of TB because as reported above, not all lesions

in the human lung are active during the disease [4,5]. Thus these

latency antigen-specific T-cells may be present in the TB-affected

lung in association with silent lesions, but this has not been

evaluated yet.

Based on the expression of surface markers associated with cell

maturation [19], CD4+ T-cells can be phenotypically divided into

at least four different populations: naı̈ve (N) defined as CD62L+,

CD45R0-, central memory (CM) defined as CD62L+, CD45R0+,

effector memory (EM) defined as CD62L-, CD45R0+ and

terminally differentiated effector memory T-cells (EF) defined as

CD62L-, CD45R0-. In several infection models including TB, it

has been shown that effector T-cells are expanded during active

replication, whereas only memory cells are detectable after control

or eradication [20-22]. However, no characterization of the

phenotype of Mtb-specific cells during active disease simultaneous-

ly evaluated in blood and BAL has been performed yet.

It has recently been shown that the response to RD1 [early

secreted antigenic target (ESAT)-6 and culture filtrate protein

(CFP)-10] in BAL is associated with active TB [23–25]. However,

no characterization of the surface cell profile associated with cell

maturation after specific-Mtb stimulation has been performed

until now.

Millington et al. have shown a predominant profile of IFN-c-

secreting T-cells in the PB of active TB patients, whereas

interleukin (IL)-2-secreting cells appear in patients after successful

treatment and may be considered as a consequence of central

memory T-cells expansion, caused by the reduced Mtb antigen

load [26]. Similarly Biselli et al have shown that IL-2 secretion is

associated to LTBI after long-term stimulation with RD1 antigens

[27]. All together, these data indicate that the concomitant

evaluation of IFN-c and IL-2 may be instrumental in assessing the

different stages of TB.

Therefore, we prospectively enrolled patients with a high

suspect of active TB who were undergoing BAL, and used the

enzyme-linked immunospot test (ELISPOT) to investigate whether

the latency antigen Rv2628 induces local-specific immune

response at the site of infection. Responses to RD1 antigens were

evaluated as control [23,28]. Furthermore, we analyzed the

cytokines (IFN-c and IL-2) produced and the phenotype of

responding cells after specific antigen stimulation by flow

cytometry (FACS).

Results

Characteristics of the population
Forty-one subjects with suspected active pulmonary TB disease,

who had negative results in acid fast bacilli (AFB) smears from

sputa, and who had consequently undergone BAL procedure for

diagnostic purposes were enrolled. After enrollment, the diagnosis

was microbiologically confirmed in 10 and based on clinical

criteria in 10. Among the 21 subjects without active TB, 9 were

defined as LTBI because they tested positive to QuantiFERON

TB Gold-In tube (QFT-IT) (Cellestis Limited, Carnegie, Victoria,

Australia). Demographic characteristics, Bacillus Calmette et

Guérin (BCG) vaccination status, QFT-IT results and final

diagnosis are reported in Table 1.

Comparison of Rv2628- and RD1-induced cytokines
responses in circulating and BAL lymphocytes by
ELISPOT

In vitro analyses could be performed in most, but not all BAL

samples, due to cell constraints or due to being scored as

indeterminate or anergic (Table 2). Regarding the 12 patients with

lung diseases other than TB, although the majority was analyzable

(Table 2), no response to Rv2628 or RD1 was detected (data not

shown) and therefore these data were not included in the analysis

reported below.

We first used ELISPOT to analyze the response to Rv2628- and

RD1-antigens in active TB and LTBI subjects separately,

comparing BAL cells (BALC) and peripheral blood mononuclear

cells (PBMC) responses.

In the 16 patients with active TB who were tested, we observed

a significantly higher number of IFN-c-producing T-cells in

response to both Rv2628 (BALC median: 24 spot forming cells

(SFC)/106 cells, interquartile range (IQR): 4–148 SFC/106 cells;

PBMC median: 0 SFC/106 cells, IQR: 0–8 SFC/106 cells) and

RD1 antigens (BALC median: 140 SFC/106 cells, IQR: 4–442

SFC/106 cells; PBMC median: 30 SFC/106 cells, IQR: 10–70

SFC/106 cells) (p = 0.006 and p = 0.007, respectively) in BALC

than in PBMC (Figure 1 A, B).

It was previously shown that compared to those with pulmonary

TB, a low number of LTBI subjects had a sufficient number of

BALC to perform a comparative analysis of both compartments.

This is likely due to lower local cell activation and consequent

recruitment in the lung [24]. Here we confirmed this data (table 2).

Therefore, in the 7 subjects where the comparative analysis was

possible, no significant difference was found in terms of IFN-c-

producing T-cells of BALC compared to PBMC in response to

Rv2628- (BALC median: 41 SFC/106 cells, IQR: 0–42 SFC/106

cells; PBMC median: 41 SFC/106 cells, IQR: 0–43 SFC/106 cells)

and RD1-antigens (BALC median: 4 SFC/106 cells, IQR: 0–124

SFC/106 cells; PBMC median: 112 SFC/106 cells, IQR: 44–136

SFC/106 cells), (p = 0.8 and p = 0.6, respectively) (Figure 1 C, D).

To better characterize the response to Rv2628- and RD1-

antigens, we evaluated the magnitude of response to these antigens

in PBMC and BALC separately. The trend of the response to

Rv2628 in subjects with LTBI was higher than in active TB in

both PB and BAL, although this difference was not significant. In

PBMC, the RD1 frequency was significantly higher than Rv2628

in both active TB (p = 0.009) and LTBI subjects (p = 0.03)

(Figure 2A). Differently, in BALC (Figure 2B) the frequency of

Rv2628 Response at the Site of Tuberculosis
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RD1 response was significantly higher than Rv2628 only among

those with active TB (p = 0.004).

As previously shown for the RD1-secreted antigens [23,24],

these results show a significantly higher frequency of Mtb-specific

responses to Rv2628 at the site of TB disease than at the periphery

in patients with active TB. The magnitude of the response to RD1

is significantly higher than what reported for the antigen of

latency. Moreover, the trend of the response to Rv2628 in subjects

with LTBI is higher than in active TB in both PB and BAL,

although this difference is not significant.

Comparison of Rv2628- and RD1-induced cytokine
responses in PB and BAL by FACS analysis

We analyzed separately the response to Rv2628- and RD1-

antigens in active TB and LTBI subjects in PB and BALC by

FACS analysis.

FACS analysis was performed simultaneously in 14 patients to

evaluate T-cell multiple cytokine production (IFN-c and/or IL-2).

Among them, in line with results from the ELISPOT assay, we

found a significantly higher number of multiple cytokine

producing CD4+ T-cells in response to Rv2628 (BALC median:

0.14%, IQR: 0.04–0.90%; PB median: 0.01%, IQR: 0. –0.04%)

and RD1antigens (BALC median: 1.49%, IQR: 0.05–8.22%; PB

median: 0.04%, IQR: 0.01–0.19%) in BALC than in PB

(p = 0.001 and p = 0.001, respectively) (Figure 3 A, B). Regarding

the CD8+ T-cell specific response, we detected specific T-cell

response to RD1 antigen in only one of the 14 samples evaluated,

in both PB (2.31%) and BALC (8.50%).

Regarding the LTBI subjects, among the 5 subjects where

sufficient cell numbers were available (table 2), no significant

difference was found in the CD4+ T-cell response to Rv2628- and

RD1-antigens (data not shown). No CD8+ T-cell response to

Rv2628- and RD1-antigens was found (data not shown).

Altogether these FACS results confirm the data generated by

ELISPOT.

Cytokine profile in response to Mtb-specific antigens in
active TB patients

To further assess the functional capacity of Mtb-specific T cells

in active TB subjects, we analyzed the proportion of each cytokine

subset contributing to the total RD1 and Rv2628 responses by

FACS.

Based on the cut-off (see MATERIALS and METHODS

section), a robust analysis of cytokine profiles and CD4+ T-cell

phenotypes in response to Rv2628 antigens was possible in 11

BAL samples and 2 PB samples of active TB patients. We found

that the cytokine profile of response to Rv2628 was homogeneous

and predominantly consisted of IFN-c single-positive cells (PB

median: 100%, IQR: 99–100%; BALC median: 100%, IQR:

85.71–100%). Interestingly, the single IL-2- and double IFN-c/IL-

Table 1. Demographic and clinical characteristics of the subjects enrolled in the study.

Active TB No active TB Total p value

With LTBI No LTBI

N (%)

20 (48.8) 9 (22.0) 12 (29.3) 41(100.0)

Median Age (IQR) 33.5 (27.7–44.5) 46.0 (32.50–63.50) 37.5 (30.5–57.2) 36.0 (29.5–52.5) 0.185

Female gender 8 (40.0) 5 (55.6) 4 (33.3) 17 (41.5) 0.324

Origin 0.986

Eastern Europe 12 (60.0) 3 (33.3) 5 (41.7) 20 (48.8)

Western Europe 4 (20.0) 4 (44.4) 5 (41.7) 13 (31.7)

Asia 3 (15.0) 1 (11.1) - 4 (9.8)

Africa 1 (5.0) 1 (11.1) 2 (16.7) 4 (9.8)

BCG 0.915

Vaccinated 14 (70.0) 4 (44.4) 6 (50.0) 24 (58.5)

Unvaccinated 6 (30.0) 5 (55.6) 6 (50.0) 17 (41.5)

QTF-IT ,0.0001

Positive 17 (85.0) 9 (100.0) - 26 (63.4)

Negative 3 (15.0) - 12 (100.0) 15 (36.6)

TB Diagnoses NA

Microbiological 10 (50.0) - - -

Clinical 10 (50.0) - - -

Lung Diseases other than TB NA

Pneumonia - 6 (66.7) 7 (58.3) -

Bronchitis and lung infiltrates - 1 (11.1) 1 (8.3) -

Pleural effusion - 1 (11.1) 1 (8.3) -

Lung Abscess - - 1 (8.3) -

Emphysema and lung infiltrates - 1 (11.1) 2 (16.7) -

Footnotes: TB: Tuberculosis; IQR: Interquartile range; BCG: Bacillus Calmette et Guérin; QTF-IT: QuantiFERON TB Gold in Tube; NA: not available.
doi:10.1371/journal.pone.0027539.t001
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2-producing cells were only present in BAL samples (IL-2 median:

0%, IQR: 0–7.69%; IFN-c/IL-2 median: 0%, IQR: 0–0.94%)

(Figure 4A).

Regarding the response to RD1-antigens, 11 BAL samples and

6 PB samples were further analyzed. We observed a homogeneous

cytokine profile that predominantly consisted of IFN-c single-

positive cells (PB median: 100%, IQR: 85.59–100%; BALC

median: 99.46%, IQR: 86.21–100%), with a smaller percentage of

single IL-2-producing cells (PB median: 0%, IQR: 0–6.07%;

BALC median: 0.18%, IQR: 0–1.39%), and double IFN-c/IL-2-

producing cells (PB median: 0%, IQR: 0–7.94%; BALC median:

0.36%, IQR: 0–12.07%) (Figure 4B).

Furthermore, we evaluated the phenotype of the total cytokine-

producing cells. EM cells constituted the main phenotypic

population in both PB (82%) and BAL samples (87%) in response

to Rv2628 antigen (p = 0.56). Moreover as shown in figure 5A,

there was only a small proportion of EF cells (11%) in BAL

samples whereas other phenotypic populations were also repre-

sented in PB samples (16% EF, and 2% N).

Among the RD1 responders, the proportion of EM cells was

almost significantly higher in BALC (96%) than in PB samples

(88%) (p = 0.06). Moreover, there was only a small proportion of

EF cells (4%) in BAL, whereas other phenotypic populations were

also present in PB (10% EF, 1% CM and 1% N) (Figure 5B).

Comparing the response to the different antigens in BALC, a

significantly higher number of EM cells responded to RD1 than to

Rv2628 (p = 0.02) (Figure 5 A, B).

Based on the fact that only few LTBI patients showed a

response to RD1 and Rv2628 (Figure 1C, D) in BAL, antigen-

specific T-cell frequencies in LTBI patients were too low to

comparatively assess cytokine profiles or T-cell phenotypes from

PB and BALC in a robust manner. Therefore, no further FACS

analysis was performed in this group.

Altogether these FACS results indicate that in patients with

active TB, a higher proportion of EM cells respond to RD1-

secreted antigens in BAL than in PB. In addition, in the BAL, a

higher proportion of EM cells respond to RD1 than to Rv2628.

Discussion

For the first time to our knowledge, we demonstrated

compartment-related differences in the frequency and phenotypes

of specific T-cell immunity for the Mtb-latency antigen Rv2628 in

active TB patients who were prospectively enrolled with suspected

active disease. Moreover, we also characterized the effector/

memory phenotype of the BALC responding to RD1-secreted

antigens, different from studies reported ex vivo or in pleural fluid

[28–30].

In particular, in this observational study, we showed a higher

frequency of CD4+ T-cells in BAL than in the PB of active TB

patients for a latency antigen, not only for RD1 as previously

shown [23–25]. Specifically, ELISPOT results, confirmed by

FACS analysis, show that there was a significantly higher

frequency of IFN-c-producing antigen-specific CD4+ T-cells in

BALC than in PBMC. The frequency of response to RD1 antigens

was significantly higher than what was reported for Rv2628 in

BAL and peripheral blood. Secondly, we showed that the cytokine

profile predominantly consisted of IFN-c single-positive cells over

double IFN-c/IL-2 positive T-cells, both in PB and BALC

samples, independent of the stimulus. Consistent with previous

observations [28-30], BAL-specific CD4+ T-cells presented

predominantly an EM phenotype, while peripheral T-cell

phenotypes were distributed among broader phenotypes (N,

CM, EM and EF). Moreover, a significantly higher proportion
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of EM T-cells responded to RD1 than to Rv2628 in BAL. Finally,

among the subjects with LTBI, the response to Rv2628 in BAL

was not significantly higher than in PB, as previously shown for

RD1 [23,24]. Altogether our data contribute to a better

understanding local immunity to Mtb in the lung.

We recently showed that the response to Rv2628-antigen in

blood is associated with protection [14]. In agreement with this

report, here we demonstrate that the trend of the response to this

antigen of latency in subjects with LTBI is always higher than in

active TB in both PB and BAL, although the difference is not

significant. Interestingly, in active TB patients we found that the

response to this antigen is also present at the site of infection and is

significantly higher than in the periphery. These data are in

agreement with those reported on HBHA [31–33], another

latency antigen, which showed that the response was significantly

higher in the lungs than in the periphery [34], where immune

suppression to this antigen is mediated by T-regulatory cells

[32–34].

Recent studies on patients with pleural TB showed that there is

a higher proportion of pleural cells (PFMC) with an EM

phenotype than other phenotypes in the periphery, both by ex

vivo analysis and after specific stimulation [30]. Moreover, a higher

proportion of poly-functional cells was found in PFMC than in

PBMC after specific in vitro stimulation and had an EM rather than

a CM phenotype [30]. On the contrary, in the present study we

found predominantly mono-functional cells (only IFN-c-producing

CD4+ T-cells) in both BAL and PB samples from active TB

patients. The reason for our different findings may be due to the

different compartments analyzed (BALC vs PFMC).

IFN-c-release assays on lymphocytes from BAL during

mycobacterial infections have been suggested as being a potential

new diagnostic tool for active TB [23,25,28]. In this study we

confirm that RD1 responses in the BAL are associated with active

disease. For the first time we show that the response to a latency

antigen is increased in BAL than the periphery of patients with

active TB. Nevertheless, at both PBMC and BAL levels, the

response to Rv2628 tended to be higher in subjects with LTBI

than in those with active disease, in line with our previous

observations in whole blood [14]. Further studies are needed to

evaluate the diagnostic potential of this result.

Both CD4+ and CD8+ T-cells with double and mono-functional

response profiles to Mtb latency antigens can be detected with

substantial frequency in long-term latently infected individuals

[18]. In the present study only one patient with active TB showed

CD8+ T-cell cytokine production in response to Mtb-specific

stimulation. No CD8+ T-cell specific response was found in LTBI

subjects. However, only few LTBI individuals were evaluated and

they were not long-term infection controllers.

FIgure 1. Increased frequency of Rv2628- and RD1-response in BALC than PBMC in active TB, evaluated by ELISPOT. ELISPOT
evaluation of IFN-c-producing CD4+ T-cells in circulating and BAL lymphocytes in response to Rv2628- and RD1-antigens in active TB and LTBI
subjects. Response to Rv2628- (A) and RD1-antigens (B) in active TB patients; response to Rv2628- (C) and RD1-antigens (D) in LTBI subjects.
Footnote: PBMC: peripheral blood mononuclear cells; BALC: bronchoalveolar lavage cells; SFC: spot-forming cells; IFN: interferon; TB: tuberculosis;
LTBI: latent TB infection. Dotted lines link the results obtained for circulating and local lymphocytes for the same patient.
doi:10.1371/journal.pone.0027539.g001

Figure 2. Magnitude of RD1-response is significantly higher than Rv2628-response in PBMC and BALC, evaluated by ELISPOT.
ELISPOT evaluation of IFN-c-producing CD4+ T-cells in PBMC and BALC in response to Rv2628- and RD1-antigens in LTBI and active TB subjects.
Response to Rv2628- and RD1-antigens in PBMC of active TB and LTBI subjects (A), response to Rv2628- and RD1-antigens in BALC of LTBI and active
TB subjects (B) Footnote: PBMC: peripheral blood mononuclear cells; BALC: bronchoalveolar lavage cells; SFC: spot-forming cells; IFN: interferon; TB:
tuberculosis; LTBI: latent TB infection.
doi:10.1371/journal.pone.0027539.g002
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In this study we found that a large proportion of the

specific T-cells are EM. This result is important in light

of the reports performed in animal models. These reports

show that EM T-cells, following antigen presentation in the

local draining lymph nodes, migrate to the lung [35] and

become involved in local host defense against pathogens

through macrophage activation and neutrophil recruitment

[28,36].

Figure 3. Increased frequency of Rv2628- and RD1-response in BALC than PB in active TB, evaluated by FACS. FACS analysis of the
multiple cytokine producing CD4+ T-cells (IFN-c and/or IL-2) in PB and BALC in response to Rv2628- (A) and RD1-antigens (B) stimulation in active TB
patients. Footnote: PB: whole blood; BALC: bronchoalveolar lavage cells. Dotted lines link the results obtained for circulating and local lymphocytes
for the same patient.
doi:10.1371/journal.pone.0027539.g003

Figure 4. Cytokine profile in response to Mtb-specific antigens in active TB. Polyfunctional cytokine production analysis of Mtb-specific
CD4+ T-cells by FACS. PB and BALC from active TB patients were stimulated overnight with Rv2628- and RD1-antigens. T- cells were classified as single
IFN-c-producing, single IL-2-producing or double IFN-c/IL-2–producing cells in response to Rv2628- (A) and RD1-antigens (B). The results are reported
as relative median in PB compared to BALC samples (A–B). Black triangles: PB; open triangles: BALC. Footnote: PB: peripheral blood; BALC:
bronchoalveolar lavage cells; IFN: interferon; IL: interleukin.
doi:10.1371/journal.pone.0027539.g004
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There are some limitations in this study. We analyzed a

relatively small number of subjects, especially for the LTBI group.

Given the appreciable risk associated with bronchoscopy, our

institute only provides this procedure for those individuals with a

high suspicion of active TB and who result negative to AFB smear

in the sputa. Although larger sample sizes with consequently

longer time periods for enrolment would have probably increased

the total number of individuals with LTBI, antigen-specific T-cell

frequencies in BAL samples would likely be low in general [23,24],

and therefore preclude a large scale analysis of cytokine profiles

and T-cell phenotypes in individuals with latent infection.

Moreover, in active TB, both patients with microbiological and

clinical diagnosis were included without distinct subgroup analysis.

However, the results among the two subgroups were comparable

(data not shown) and consequently combined. Despite these

limitations, this study is unique because for the first time it

provides information regarding the response to the antigens of

latency at the site of Mtb infection, and their phenotypic

characterization.

In summary, our results indicate that there is a high frequency

of specific T-cells to both secreted (RD1) and latency-associated

(Rv2628) antigens in the BAL of patients with active TB and that

the majority of IFN-c-only secreting T-specific cells in BALC have

an EM phenotype. In light of the fact that not all lesions in the

human lung are active during the disease [2,4] and that

consequently Mtb infection may be viewed as a continuous

spectrum extending from sterilizing immunity to fulminant TB

[2,4] these data may be important for better understanding the

pathogenesis of TB in the lung.

Materials and Methods

Ethics Statement
This study was approved by the Ethical Committee of our

institution, the L. Spallanzani National Institute of Infectious

diseases (INMI), approval number 70/2005. Informed written

consent, required in order to participate in the study, was

obtained.

Patients
Patients admitted to INMI between 2009 and 2010 because of a

clinical suspicion of TB were considered for enrollment in this

study. According to the institutional protocol (http://www.inmi.

it/protocolli) BAL is indicated for TB suspects if 3 expectorated or

2 induced-sputa result AFB smear negative and no alternative

diagnosis is performed. TB suspects were enrolled in the study if: i)

they underwent BAL as part of the confirmatory procedure for TB

diagnosis, ii) they provided signed informed consent, iii) at least

66106 mononuclear cells from BAL could be recovered, iv) they

tested negative for HIV and were not undergoing treatment with

immunosuppressive drugs.

BAL was performed by instilling a sterile isotonic saline solution

(4 times 30 ml) into an affected lung segment.

Active TB was defined as microbiologically confirmed if the

BAL resulted Mtb culture-positive. Patients who resulted negative

to Mtb culture in BAL were classified as having ‘‘clinical TB’’ when

i) clinical, pathological and radiological findings consistent with

TB were documented; ii) an alternative diagnosis was excluded,

and iii) a full course of anti-TB treatment was started and an

appropriate clinical/radiological response was obtained.

Patients with lung diseases other than TB had a final diagnosis

made based on microbiological and cytological tests, clinical and

radiological signs, and successful treatment.

Blood and BAL Processing
Heparinized PB was collected and processed within 2 hours.

PBMC were isolated by standard methods on Ficoll-Paque Plus

(GE Healthcare Bio-Sciences AB, Uppsala, Sweden) [21]. BALC

were obtained by passing the fluid through a sterile cell strainer

with a pore size of 100 mm (BD Becton, Dickinson and Company,

Milan, Italy) and then washing them with PBS.

QuantiFERON TB-Gold In tube (QFT-IT)
QFT-IT (Cellestis Limited, Carnegie, Victoria, Australia) was

performed. Results were scored as indicated by the manufacturer.

IFN-c ELISPOT
250,000 BALC or PBMC were stimulated with Rv2628 latency

antigen at 10 mg/ml and RD1-antigen at 4 mg/ml or with the

mitogen (positive control) (from the T-SPOT.TB, Oxford

Immunotec Ltd., Abingdon, UK following the manufacturer’s

instructions). Unstimulated sample (negative control) was included.

ELISPOT results for Rv2628- and RD1-stimulations were scored

as positive if more than 7 SFC/well were counted in the stimulated

wells after subtracting the number of SFC in the negative control.

ELISPOT results were scored as i) negative if they did not meet

the definition for a positive result, ii) indeterminate if more than

10 SFC/well in the negative control were counted and iii) anergic

if less than 20 SFC/well were counted in the positive control.

Intra-cellular staining (ICS)
PB (100 ml) and BALC (106) were stimulated overnight at 37uC

in 5% CO2 with recombinant Mtb-specific antigens [37] identified

Figure 5. Phenotype profile in response to Mtb-specific antigens in active TB. Phenotypical T-cell subset distribution of the total cytokine-
producing T-cells in response to Rv2628- (A) or RD1-antigens (B) are reported in PB and BALC samples. Footnote: PB: peripheral blood; BALC:
bronchoalveolar lavage cells; N: naı̈ve; CM: central memory; EM: effector memory; EF: terminally-differentiated effector memory.
doi:10.1371/journal.pone.0027539.g005
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as Rv2628 at 10 mg/ml and RD1 proteins (Lionex, Braunschweig,

Germany) at 4 mg/ml, respectively. Phorbol-12-myristate-13-

acetate (PMA) at 3 nM (SERVA Electrophoresis GmbH, Heidel-

berg, Germany) plus ionomycin at 1.5 mM (SERVA) was used as

positive control. Cells were co-stimulated with anti-CD28 and

anti-CD49d monoclonal antibodies (MoAb) at 2 mg/ml each (BD).

Unstimulated PB and BALC were used to assess non-specific

background cytokine production. Brefeldin A (SERVA) at 50 mg/

ml was added after 1 hour of stimulation.

ICS was performed to measure IFN-c and IL-2 production by

CD4+ or CD8+ T-cells upon in vitro stimulation. PB and BALC

were harvested, washed in PBS containing 1% BSA and 0.1%

sodium azide (NaN3), and then stained with monoclonal

antibodies (MoAb) directly conjugated to fluorochromes: allophy-

cocyanin (APC)-H7-conjugated anti-CD4; peridinin chlorophyll-

protein (PerCP)-Cy5.5-conjugated anti-CD8; phycoerythrin (PE)-

Cy7-conjugated anti-CD45RO, and allophycocyanin (APC)-

conjugated anti-CD62L (all from BD) in an incubation buffer

(PBS-1% BSA-0.1% NaN3) for 30 min at 4uC. Subsequently, PB

and BALC were washed, permeabilized with PBS-1% BSA-0.5%

saponin-0.1% NaN3 and stained for 15 min at RT for intracellular

cytokines with fluorescein isothiocyanate (FITC)-conjugated anti-

IFN-c and anti-IL-2-PE, or isotype-matched control MoAb (all

from BD). Cells were washed, fixed in 2% paraformaldehyde, and

at least 100,000 lymphocytes were acquired using a FACSCanto II

flow cytometer (BD Biosciences), following gating according to

forward and side scatter plots. FACS plots were analyzed using BD

FACSDiva software (version 6.1.1). Frequencies of the different

combinations of IFN-c and/or IL-2 -positive cells following

antigenic stimulation were calculated within the total population of

CD4+ T-cells, and background values (unstimulated sample) were

subtracted. Values corresponding to spontaneous IFN-c and IL-2

production in the absence of in vitro stimulation were subtracted

from the values obtained after antigen stimulation. At least 30,000

CD4+ T cells were analyzed. We established the lowest limit of

detection for performing the analysis at 0.06% in order to have at

least 18 events to analyze. FACS results were considered anergic if

unresponsive to the positive control.

Statistical analysis
Data were analyzed by the GraphPad Prism software, version

4.00 for Windows (GraphPad Software, San Diego, CA, USA).

For continuous measures, medians and IQR were calculated. The

significance of the differences between the two groups was

determined using the non-parametric Mann-Whitney test or the

Willcoxon test, when paired values were compared. Kruskall

Wallis was used to compare medians among the different groups.

For dichotomous measures, chi square was used. Differences were

considered significant at p values #0.05.
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