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Inertial-based motion capture (IMC) has been suggested to overcome many of the limitations of traditional motion capture
systems. The validity of IMC is, however, suggested to be dependent on the methodologies used to process the raw data
collected by the inertial device. The aim of this technical summary is to provide researchers and developers with a starting point
from which to further develop the current IMC data processing methodologies used to estimate human spatiotemporal and
kinematic measures. The main workflow pertaining to the estimation of spatiotemporal and kinematic measures was presented,
and a general overview of previous methodologies used for each stage of data processing was provided. For the estimation of
spatiotemporal measures, which includes stride length, stride rate, and stance/swing duration, measurement thresholding and
zero-velocity update approaches were discussed as the most common methodologies used to estimate such measures. The
methodologies used for the estimation of joint kinematics were found to be broad, with the combination of Kalman filtering or
complimentary filtering and various sensor to segment alignment techniques including anatomical alignment, static calibration,
and functional calibration methods identified as being most common. The effect of soft tissue artefacts, device placement,
biomechanical modelling methods, and ferromagnetic interference within the environment, on the accuracy and validity of
IMC, was also discussed. Where a range of methods have previously been used to estimate human spatiotemporal and
kinematic measures, further development is required to reduce estimation errors, improve the validity of spatiotemporal and
kinematic estimations, and standardize data processing practices. It is anticipated that this technical summary will reduce the
time researchers and developers require to establish the fundamental methodological components of IMC prior to commencing
further development of IMC methodologies, thus increasing the rate of development and utilisation of IMC.

1. Introduction

Motion capture systems have been used extensively in bio-
mechanics research to capture spatiotemporal measures of
stride length, stride rate, contact time, and swing time and
angular kinematic measures of joint angles. Such measures

are commonly used in disease/condition diagnosis, injury
prevention, and sport performance analysis [1-7]. The most
common technologies used to collect human spatiotemporal
and kinematic measures are three-dimensional (3D) optical,
two-dimensional (2D) video, and electromagnetic based
systems [8]. When motion capture data is collected in


https://orcid.org/0000-0001-9601-9985
https://orcid.org/0000-0001-9851-1068
https://orcid.org/0000-0001-8277-4664

conjunction with data from force platforms, angular kinetics
may also be modelled.

Three-dimensional optical motion capture (OMC) sys-
tems are often considered to be the gold standard method
of motion capture; however, these systems are expensive
and typically confined to a small capture volume within a lab-
oratory environment [9, 10]. For a full body motion analysis,
researchers are required to place up to 50 markers at anatom-
ically specific locations, and a line of sight to each marker
must be maintained by at least two cameras for each data
frame throughout the movement [9]. Maintaining a line of
sight to each marker throughout the movement is a major
challenge when using 3D OMC as markers often become dis-
placed and/or occluded when implements (such as boxes for
manual handling assessments and bats, balls, or barbells for
sporting assessments) are included in the movement analysis
[9]. The displacement and/or occlusion of markers results in
loss of data, increased measurement error, increased tracking
time, and sometimes the inability to analyse a captured
movement.

Two-dimensional (2D) video motion capture is a more
affordable alternative to 3D OMC, requiring one or more
video cameras with sufficient frame rate and video processing
software such as the freely available software Kinovea (http://
Kinovea.org, France) or Tracker (Open Source Physics). A
number of drawbacks exist for 2D video motion capture.
Multiple video cameras may be required for a full motional
analysis. For example, for a running gait motion analysis,
cameras may be required with views of the frontal and sagit-
tal plane to capture joint varus/vulgus rotation and joint flex-
ion/extension, stride length, stance duration, and swing
duration, respectively. The high frame rate required to ensure
accuracy when capturing fast movements (particularly sport-
ing movements) result in large file sizes and extensive pro-
cessing time. Both marker-based and marker-less 2D video
motion capture rely on a line of sight of the participant
throughout the movement and as such see similar occlusion
limitations to 3D OMC [9]. Parallax error caused by the par-
ticipant performing the movement at a nonperpendicular
angle (out of plane) to the camera and perspective error
caused by the participant moving toward or away from the
camera are additional sources of error when using 2D video
motion capture [11, 12].

Electromagnetic motion capture requires the participant
to wear a specially designed suit of electromagnetic receiver
sensors which receive electromagnetic waves from a base
station transmitter located within the vicinity of where the
movement is to be performed [8]. The receiver/transmitter
network allows the position and orientation of the body to
which the receiver sensors are attached to be determined
within space [8]. Electromagnetic motion capture systems
do not rely on line of sight measurements and thus do not
encounter the problems of marker displacement and/or
occlusion when implements are included in the motion anal-
ysis [8]. Low sampling rates currently make electromagnetic
motion capture systems unsuitable for fast movements [8].
Motion capture often takes place at laboratory, clinical, or
sporting facilities where equipment in the environment emit
electromagnetic disturbance. Electromagnetic motion cap-
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ture systems are susceptible to electromagnetic interference
from the surrounding environment, causing potentially large
errors in orientation estimations [8].

While each of these traditional motion capture method-
ologies have their own advantages and disadvantages, no
single method is appropriate for all applications. Recent
developments in inertial measurement unit (IMU) and mag-
netic, angular rate, and gravity (MARG) sensor technologies
have resulted in researchers proposing the use of such devices
to overcome many of the limitations of traditional motion
capture systems, particularly when data needs to be collected
outside of a laboratory.

Inertial devices have been used for human motion
capture in the areas of athlete external load monitoring
[13-15], activity classification [16-20], and spatiotemporal
and kinematic analysis [4-6, 21]. The methodology of exter-
nal load monitoring using inertial devices uses the raw out-
put data of the IMU/MARG device (often accelerations)
and thresholding techniques to determine the amount of
exposure an athlete may have to various magnitudes of accel-
eration (external load) over the course of a training session,
game/competition, or other relevant period of time such as
a week, month, or year [15]. Such data is typically used to
provide some insight into athlete performance, training
adaptation, fatigue, and risk of injury [15]. Activity classifica-
tion is used to identify movement patterns such as walking,
running, stair ascent/descent, and lying in various positions
over an extended period of time (hours or days). Machine
learning techniques such as K-nearest neighbour, decision
trees, support vector machine, logistic regression, and dis-
criminant analysis are often used to classify these common
activities of everyday living [17, 22]. Activity classification
can provide clinicians with valuable information about the
decline in health or independence of elderly living at home,
the activity levels of persons living with conditions or dis-
eases, or the detection of falls or accidents [20].

Inertial-based human spatiotemporal and kinematic
analysis requires complex sensor fusion and pose estimation
methodologies to process raw MARG data. Numerous
studies have demonstrated good agreement when comparing
spatiotemporal and kinematic measures derived from IMU
and MARG based motion capture systems with gold stan-
dard 3D OMC systems in clinical, ergonomic, and sporting
applications [4, 23-27]. Similar to traditional motion capture
methods, researchers have suggested the accuracy of IMU
and MARG based motion capture to be dependent on the
algorithms and methodologies used to process the raw data
captured by the device [28, 29].

Previous research and reviews have primarily focussed on
either the overall validity of inertial-based motion capture
(IMC) (excluding methodology considerations) [4, 8, 30, 31],
sensor fusion methodologies [32, 33], or position and orienta-
tion estimation (pose) methodologies [34-38], making it diffi-
cult and time consuming for researchers and developers to
piece together all essential methodological components. Two
reviews have attempted to summarise the methodological
components of IMC; however, these reviews have limited
detail around critical considerations such as sensor fusion,
pose estimation, soft tissue artifacts (STA), sensor placement,
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Ficure 1: Workflow of IMC and where sections of this technical summary lay within the general methodological structure.

biomechanical modelling, and magnetic calibration, which
should be made when developing an IMC solution [39, 40].
The following technical summary is aimed at providing back-
ground and reference on all methodological components
which must be considered when implementing an IMC solu-
tion for a given application (Figure 1). Such a summary will
reduce the time spent by researchers and developers establish-
ing the fundamental methodological components of IMC
prior to further developing current techniques and enhancing
the rate of development and utilisation of IMC.

2. Sensor Fusion

The process of sensor fusion reduces the error inherent in the
orientation estimation obtained from raw MARG data. The
output of the sensor fusion step is used in subsequent steps
of data processing toward the estimation of kinematic and
spatiotemporal measures using IMC.

Inertial measurement units consist of an accelerometer
and gyroscope to measure linear acceleration and angular
rate, respectively. In addition to accelerometers and gyro-
scopes, MARG sensors include a magnetometer to measure
magnetic field strength [41].

Integration of the angular velocity measured by the gyro-
scope provides an orientation estimation of the sensor at each
time point relative to its initial orientation in the local frame.
Integration of the gyroscope bias, which is inherent in the
sensor at manufacture, leads to a slowly drifting (low fre-
quency) cumulative error in the orientation estimation [33].
As the orientation is estimated in the local sensor frame,
additional processing is required to establish a global refer-
ence frame, where a relationship between the orientation of
each device in the network can be established [33]. This sim-

plistic approach of integrating angular rate measures for
device, and body orientation is insufficient for reliable human
motion capture.

Accelerometers measure acceleration caused by gravity
as well as acceleration caused by the motion of a body to
which the sensor is attached. The measurement of accelera-
tion due to gravity enables an estimation of the “up” direc-
tion (pitch and roll) of the sensor in the global reference
frame [33]. The pitch and roll orientation estimation of the
accelerometer may therefore be used to correct the pitch
and roll component of the drift caused by the integration
of the angular rate signal. Acceleration measurements are
however corrupted by high frequency noise caused by move-
ment of the sensor, leading to error in the pitch and roll ori-
entation estimation when the sensor is in a non-quasi-static
state [33].

Magnetometers measure the magnetic field strength of
the Earth, enabling the definition of the Earth’s horizontal
North/East plane (heading or yaw) [33]. Similar to both the
gyroscope and accelerometer, the magnetometer has its
own inherent error in the orientation estimation. Ferro-
magnetic disturbances in the surrounding environment,
causing the signal to be corrupt by high frequency noise,
result in error in the orientation estimation by the magne-
tometer [41, 42].

Sensor fusion algorithms can be used to take advantage of
the orientation estimation obtained by the gyroscope and the
global references obtained by the accelerometer (pitch and
roll) and magnetometer (yaw), while reducing the errors
caused by the high and low frequency noise associated with
each of the measures. The two most common methods of
sensor fusion are the complementary filter [41, 43, 44] and
the Kalman filter [45-47].
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FIGURE 2: Complimentary filter approach example (adapted from Wu et al. [50] and Valenti et al. [48]).

2.1. Sensor Fusion: Complementary Filter. A complementary
filter is used to combine two measurements of a given signal,
one consisting of a high frequency disturbance noise and the
other consisting of a low frequency disturbance noise, pro-
ducing a single signal output measurement [33]. Using filter
coefficients/gains, the reliance on each input and response
time for drift error correction can be manipulated, with
shorter response times coming at the expense of greater
output noise [33].

When applied to MARG data for orientation estimation,
one such approach is to use a two-stage complementary filter
to obtain a combined orientation estimation with a smaller
error component than what could be obtained by using just
a single sensor signal [48]. The application of a two-stage
complementary filter can be briefly described as follows (see

also Figure 2), with detailed derivation of complementary
filter equations presented in Valenti et al. [48]:

(i) Orientation is estimated using accelerometer data

(i1) Accelerometer orientation estimation is corrected
based on a defined threshold adhering to the devia-
tion from a known quantity (e.g., gravity). Correc-
tion is achieved using a gain to characterize the
cut-off frequency of an applied filter

(iii) The corrected accelerometer-based orientation esti-
mation is fused with the low-frequency corrupt
gyroscope-based orientation estimation, producing
a complementary estimation of the device pitch
and roll
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(iv) Magnetometer measures are examined for environ-
mental ferromagnetic disturbances, and orientation
estimation from the magnetometer data is corrected
using a similar approach to the accelerometer-based
orientation correction

(v) The pitch and roll (gravitational) orientation estima-
tion is fused with the magnetometer yaw orientation
estimation to provide a full attitude and heading ori-
entation estimation

Although the accuracy of the orientation estimation
and computational expense of the process can differ
slightly between various complementary filter methodolo-
gies [41, 44], the complementary filter is generally computa-
tionally less expensive than other sensor fusion approaches
[46, 49]. The low computational cost of the complementary
filter enables the use of low power, wearable MARG devices,
where data processing can be undertaken onboard the
MARG device and streamed live for visualisation on external
devices [41]. The smaller size of such wearable MARG
devices may be particularly important for human motion
capture where minimal disturbance to a person’s natural
movement is desired, enhancing the ecological validity of
the analysis. The computational efficiency of the comple-
mentary filter however generally comes at the cost of the abil-
ity to tune the filter for a given application or environment,
often resulting in an overall greater error in orientation esti-
mation with reference to ground truth, when compared to
sensor fusion approaches such as the Kalman filter [32, 46].

2.2. Sensor Fusion: Kalman Filter. The Kalman filter works on
a prediction and correction process to estimate the state of a
dynamic system from noisy measurements [49]. Various
forms of the Kalman filter have been used for orientation
estimation, with varying levels of complexity and assump-
tions being used in each solution [46, 51-53].

In its most simplistic form and using MARG data, five
steps are typically employed in a Kalman filter-based solution
for each time interval [52]:

(i) The a priori state estimate is obtained from the
accelerometer, gyroscope, and magnetometer output
measures

(ii) The a priori error covariance matrix is established
in an attempt to compensate for sensor bias and
Gaussian measurement noise

(iii) As the measurement model of the accelerometer and
magnetometer is inherently nonlinear, a first order
Taylor Maclaurin expansion of the current state
estimate is performed by computing the Jacobian
matrix

(iv) Using the a priori state estimate, the a priori error
covarjance matrix and a set of measurement valida-
tion tests, an expression for the Kalman gain is
established. The Kalman gain is used to give relative
weight to either the current state estimate or the
measurement

(v) An updated estimate (a posteriori) of the state esti-
mate and error covariance matrix can then be
computed

While these steps are generalisable to most Kalman
filters, Figure 3 depicts, specifically, a block diagram of an
indirect Kalman filter applied to MARG data [54, 55]. For
brevity, state models and Kalman equations have been
excluded from this paper; as such, the reader is directed to
MEMS Industry Group [54] and The MathWorks Inc. [55]
for further derivation of the particular case presented.

Although the Kalman filter is recognised for its greater
tunability for a given application or environment and thus
reduced error in orientation estimation when compared to
the complimentary filter approach [32], the Kalman filter
process is complex and requires high grade IMU and/or
MARG sensors. The combination of high sampling rates
(up to 30kHz) required for the linear regression iterations,
large state vectors, and additional linearisation through an
extended Kalman filter make the Kalman filter based solution
computationally expensive [41]. Where onboard processing
is required for live visualisation of human motion, the phys-
ical size of the equipment required to satisfy these high com-
putational demands may currently inhibit natural movement
of the person wearing the device [41].

3. Pose Estimation

Orientation estimations of each IMU/MARG device
obtained by means of sensor fusion must be further proc-
essed to obtain spatiotemporal and angular kinematic esti-
mations of the human body. To estimate spatiotemporal
and angular kinematic measures of the body, the position
and orientation (pose) of the body/body segment must be
established. Where both raw MARG data and sensor orienta-
tion estimation data (obtained as a result of sensor fusion) are
typically used in this process, some of the processing meth-
odologies used for angular kinematic estimations may also
be required when establishing spatiotemporal estimations
(namely, sensor to segment alignment).

3.1. Angular Kinematics. The placement of an IMU or
MARG device on the segment immediately proximal and
distal to a joint and taking the relative orientation of the
two segments has been commonly proposed as a possible
method of estimating joint angular kinematics [56]. The
challenges associated with the estimation of joint angular
kinematics using this method arise from the complexity of
accurately estimating the device orientation using sensor
fusion methods (as described previously) and the alignment
of the sensor coordinate system to the corresponding seg-
ment coordinate system [57]. This process is commonly
referred to as sensor to segment alignment. The three pri-
mary methods of sensor to segment alignment used in
previous literature are the anatomical alignment, functional
calibration, and static calibration methods. Most recently,
deep learning techniques have also been used for sensor to
segment alignment.
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3.1.1. Anatomical Alignment. The anatomical alignment
method sees the alignment of the local rotational axes
within the IMU/MARG device, with the anatomical axis
of the body segment to which the device is attached
[23, 24, 58, 59]. The relative rotation as estimated by
the proximal and distal sensor for the aligned axes can
then be assumed as the joint angle estimation throughout
a movement. The advantage of the anatomical alignment
method is seen in the use of the local (device) coordinate
system for orientation estimation, thus not requiring any
form of mathematical transformation from a local to a
global coordinate system. The associated error and resul-
tant overall accuracy of the joint angle estimation when
using this method are highly dependent on the proper
alignment of each device axes with the axes of the seg-
ment of interest [36, 59] and therefore may require the
assistance of an experienced anthropometrist or specia-
lised alignment equipment [60].

3.1.2. Functional Calibration. Alignment of the local (device)
coordinate frame with the segment coordinate frame has
been achieved through functional calibration (FUNC)
methods [61-63]. Functional calibration methods typically
use predefined calibration movements and a set of assump-
tions (limiting the degree of freedom of a joint) to establish
the average axis of rotation of a joint. Using the FUNC
method, a MARG device may be arbitrarily placed on the
limbs proximal and distal to a joint, and the orientation of
each device in the global reference frame may be determined
by an appropriate sensor fusion algorithm. With the two
devices secured to the segments of a participant, the partici-
pant is asked to perform an isolated rotation about two single
joint axes. For example, the first rotation may be about the
longitudinal axis (i.e., internal/external rotation at the hip),
while the second rotation may be about the medial/lateral
axis (i.e., flexion/extension at the hip) [62]. Using numerical
methods, the common axis of rotation can be determined,
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with the remaining axis of rotation assumed to be perpendic-
ular to the two axes established from the movements [62].

The primary advantage of the FUNC method is in the
ability to arbitrarily place sensors on each segment, thus
eliminating the requirement of assistance of an experienced
anthropometrist for sensor placement or additional align-
ment devices. Although the FUNC method has been further
developed to be implemented with arbitrary movements
[56], some clients may be unable to perform the required
functional calibration movements [64]. Additionally, the
numerical and optimization methods used to establish a
common axis of rotation between segments are typically
computationally expensive, resulting in the requirement of
devices with greater processing capacity or oft-board process-
ing [56, 65, 66).

3.1.3. Static Calibration. The static calibration (STAT)
method is a somewhat hybrid approach of the anatomical
alignment and FUNC methods. The STAT method requires
a single axis of a “base” MARG device (typically located on
the pelvis) to be aligned with a single axis (typically medial/
lateral) of the segment [34, 67]. The advantage of this method
is once one axis of a single sensor has been aligned with a
segment axis; all MARG devices attached to other segments
can be arbitrarily oriented.

A short, static, neutral calibration pose (five seconds) is
captured to orient each sensor in the global frame using an
appropriate sensor fusion algorithm. The vertical axis of
the base MARG device is then corrected (rotated) to align
with the gravity vector, leaving the remaining unknown
(anterior/posterior) axis to be defined as being perpendicu-
lar to the medial/lateral and vertical axes [67]. This estab-
lishes an initial segment coordinate system in the global
frame which may be used for all other segments, assuming
all other segments were aligned during the calibration
pose.

The arbitrarily aligned axes of the MARG devices
attached to all other segments are then transformed to the
initial segment coordinate system established from the base
MARG using a mathematical transformation. Once the
initial orientation of each segment in the global frame is
known and thus can be tracked throughout a movement, a
joint angle is calculated as the difference in orientation of
two segments in the global frame.

As a somewhat hybrid approach, the STAT method
provides the advantage of arbitrary device placement
(except for the base unit) and relatively short computa-
tional times, when compared to FUNC methods. Similar
to the anatomical alignment method, the STAT method
assumes the accurate alignment of the single axis of the
MARG device with a chosen axis of the base segment.
As this is only a requirement for a single sensor/segment
pair, the time taken by an experienced anthropometrist
or trained person in assisting with the placement of sen-
sors may be reduced. Where misalignment of the base
sensor and/or misalignment of the participant body seg-
ments with a standard anatomical pose during static cali-
bration is encountered, error in the sensor to segment
alignment will occur.

3.1.4. State-of-the-Art Deep Learning. To the author’s knowl-
edge, only one study has used state-of-the-art deep learning
approaches for sensor to segment alignment in human
motion capture [35]. The methodology used a set of both real
and simulation data to train a model to identify the orienta-
tion of a MARG device attached to a body segment and to
align the axes of the device with the anatomical axes of the
corresponding segment. Sensors to segment alignment were
performed for the pelvis and bilateral thigh, shank, and foot.
Three datasets were used to train and test the model, with a
final optimal model established using a combination of these
datasets.

Dataset one consisted of real inertial data collected from
28 participants walking for six minutes in a figure eight pat-
tern with a single inertial device orientation. Dataset two
consisted of a sample of four participants walking back-
and-forth in a 5m line for one minute with nine different
inertial device orientations. Dataset three consisted of simu-
lation data established from a publicly available OMC dataset
of 42 participants performing different walking styles. Iner-
tial devices were mapped to the underlying model of dataset
three using 64 alignment variations [35]. The final optimal
model used datasets one, two, and three to train the model
and a single participant from dataset two and a single partic-
ipant from dataset three (not included in the training dataset)
for testing. A mean alignment error of 15.21° was reported
using the final optimal model, with a mean computational
time for the training of such model of 48 hours [35].

Based on the results of Zimmermann et al. [35], deep
learning methods appear to require a large set of training
data and a large number of alignment variations to ensure
reduced error and optimal sensor to segment alignment
[35]. Although the development of the method of sensor
to segment alignment using deep learning techniques is
in its relative infancy, further development of the method
may result in sensor to segment alignment using deep
learning becoming common practice for IMC.

In addition to joint kinematic measures, researchers
are often also interested in recording spatiotemporal mea-
sures for full gait analysis. Many of the data processing
methods to achieve spatiotemporal measures using IMC
build on and rely upon the assumption of sensor to seg-
ment alignment.

3.2. Spatiotemporal. While gait event detection such as heel
strike and toe-oft and subsequent spatiotemporal parame-
ters such as swing and stance duration and cadence may
be identified through various relatively simple threshold
approaches using measures of angular rate and linear
acceleration [68], estimation of stride length is typically
more complex [69, 70]. Two approaches for stride length
estimation have primarily been used in previous literature:
the biomechanical modelling [71-73] and strap-down inte-
gration approach [74].

In the biomechanical modelling approach, the lower
limbs are typically modelled by means of a double pendulum
[71-73]. Such modelling approach is, however, restricted to
the analysis of movement in the sagittal plane, limiting the
accuracy of the method for stride length estimation of



persons with irregular gait patterns [74, 75]. Although not
free from its own challenges, the strap-down integration
approach enables multiplanar analysis, and as such, will be
the focal method for spatiotemporal estimation in this
technical summary [74].

Assuming sensor to segment alignment has been imple-
mented on a foot/shoe mounted MARG sensor, double
integration of the raw acceleration measures, after the sub-
traction of acceleration due to gravity, theoretically provides
an estimation of the distance travelled throughout a given
movement duration. Integration of the high frequency noise
within the acceleration measure results in a cubically growing
positional error [74]. The strap-down integration approach,
by means of zero-velocity update (ZUPT), has been generally
accepted as the most robust approach to overcome the prop-
agation of error caused by integration of acceleration data for
position estimation [69]. The ZUPT algorithm has seen mul-
tiple variations [69, 70, 74, 76, 77] and typically relies on the
accurate identification of the stance phase of the gait cycle
(where the foot momentarily experiences zero velocity rela-
tive to the ground) so to “reset” the cubically growing error
caused by the double integration of noisy raw linear acceler-
ation data [69, 74, 78, 79].

Thresholding techniques have been used to identify
phases of a gait cycle, whereby the resultant angular velocity
of the foot is monitored for zero angular rotation about any
axis throughout the stance phase [80]. Although the exact
value of zero angular rate may not be reliably captured in real
life, setting a threshold of, for example, 1 rad/s has been sug-
gested to reliably capture the stance phase during walking
[80]. For running or other higher velocity movements where
the duration of the stance phase is shorter than walking, the
threshold value will likely require adjustment, or the addition
of other measurements to the logic statement may be
required [70, 81]. The use of both foot angular velocity and
orientation data has been demonstrated as a possible method
of identifying instances of heel strike and toe-off during a gait
cycle [68]. Using this method, toe-off may be identified by
searching for the first maximum in angular velocity within
a specified search window spanning peak ankle plantar flex-
ion. Similarly, heel strike may be identified by searching for
the zero angular velocity crossing point within a search win-
dow spanning peak ankle dorsiflexion [68]. Search window
sizes should be set specific to a given movement (e.g., walk-
ing, running, and pathological gait pattern), with the most
appropriate window sizes typically achieved through an
iterative process.

As the sensor orientation is transformed from the sensor
frame to the navigation or global frame, the acceleration due
to gravity can be removed, leaving just the acceleration due to
the motion of the sensor. The remaining motional accelera-
tion can then be integrated to give the estimated velocity of
the sensor. Where the stance phase (zero velocity) has previ-
ously been identified through the identification of heel strike
and toe-off events, the integrated velocity and thus measure-
ment error is “reset” to zero [80]. By resetting the velocity to
zero during each stance phase, the drift error is limited to the
relatively short duration of a stride. The corrected velocity
may then be once again integrated to give position, where
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stride length is the difference in position between two consec-
utive stance phases.

The use of Kalman filtering techniques can improve the
accuracy of the described naive ZUPT approach [70]. Instead
of resetting the velocity to zero where a stance phase is iden-
tified, the Kalman filter uses an error state vector consisting
of biases for acceleration, angular rate, attitude, velocity,
and position to reset velocity and position to an estimated
near-zero value [70, 77].

Although the gait event detection and ZUPT methods
described in this summary are a general overview of methods
used in previous literature, an example of how a selection of
these methods may fit together to estimate gait spatiotempo-
ral parameters is provided in Figure 4. The reader is directed
to Jasiewicz et al. [68] and Fischer et al. [70] for further
implementation details.

4. Additional Considerations

Aside from selecting the most appropriate sensor fusion and
pose estimation processing methodologies for a given appli-
cation, other components of the methodological design such
as device placement, biomechanical modelling methods, and
magnetometer calibration also warrant consideration so to
minimize the propagation of errors and optimize the accu-
racy of an implemented IMC methodology.

4.1. Device Placement. Soft tissue artefacts (STA) are sug-
gested to be a significant source of error when measuring
human kinematics using OMC methods [82]. Soft tissue arte-
facts occur when the skin (and underlying adipose tissue and
muscle) to which the markers/sensors are attached, move rel-
ative to the bone for which the orientation and kinematics of
the body is being estimated [82]. Inertial-based motion cap-
ture is also not exempt from the error caused by STA. Where
OMC methodologies often use rigid clusters of markers [83]
and/or anatomical modelling assumptions [84] to reduce the
effects of STA, research into the reduction of STA effects on
IMC is limited [85, 86]. Frick et al. presented a two-part study
using numerical methods to reduce the effect of STA on
inertial-based joint centre estimations. The method used a
single frame optimization (SFO) algorithm to determine the
location and orientation of the joint centre relative to the sen-
sor at each time frame. Although the method showed good
agreeance with state-of-the-art OMC joint centre estimations
on a mechanical rig, the SFO cost function assumes the joint
centre to be undergoing negligible acceleration, which may
be violated for many applications. The method proposed by
Frick and Rahmatalla [85] demonstrates the potential in
the reduction of STA when using IMC methods; however,
further development is required before the SFO method is
considered a practical solution for more complex applica-
tions [85, 86].

Spatiotemporal parameters such as stride length, stride
time, and contact time have regularly been obtained from a
single IMU/MARG device worn on the pelvis, ankle, or foot
[1, 2, 87, 88]. The validity of these IMU/MARG derived spa-
tiotemporal measures has been suggested to be affected by
the location of the device [89]. When compared to ankle
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!
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FIGURE 4: Zero-velocity update approach example (adapted from Jasiewicz et al. [68] and Fischer et al. [70]).

and pelvis worn IMU/MARG devices, foot mounted IMU/
MARG devices have been found to result in greater validity
of spatiotemporal estimations [87, 88]. Positioning the device
closer to the source of impact (ground) may result in less sig-
nal attenuation from STA and naturally occurring shock
absorption by proximal segments and thus greater accuracy
in gait cycle event detection (such as heel strike, midstance,
and toe-off) [2, 90].

4.2. Biomechanical Modelling. Often considered a gold stan-
dard, OMC typically combines anatomical assumptions and
anatomical marker locations to estimate joint angle kine-
matic measures using modelling techniques (modelled mea-
sures) such as the Plug-in Gait model (Oxford Metrics,
Oxford, UK). Inertial-based motion capture typically relies
on the unmodelled relative orientations of a proximal and
distal sensor to a joint for joint angle estimation [6]. Due to
these differences in modelling assumptions, the modelled
measures obtained from OMC are expected to differ some-
what from the naive relative joint angles commonly obtained
using IMC [6, 91].

Brice et al. [6] compared IMC relative joint angles with
OMC relative angles (unmodelled with reflective markers
attached to the inertial device) and IMC relative joint angles
with OMC modelled measures for the pelvis and torso in the
sagittal, frontal, and transverse plane. Participants performed
three sets of a self-selected slow and two sets of self-selected
fast rotation of the torso relative to the pelvis in each anatom-
ical reference plane. Good agreement was reported between
the IMC relative joint angles and the OMC relative angles
(RMSE%: 1-7%). Less agreement was reported between the
IMC relative joint angles and OMC modelled measures
(RMSE%: 4-57%). Similar results to Brice et al. [6] have been
found by Cottam et al. [91] for pelvis, thorax, and shoulder
joint angles during cricket bowling. No significant differences
were reported between IMC and OMC relative angles; how-

ever, significant differences in shoulder rotation, thorax
lateral flexion, and thorax to pelvis flexion-extension and
lateral flexion were reported between IMC relative joint
angles and OMC modelled joint angles at various stages of
the cricket bowling delivery stride [91].

The results of Brice et al. [6] and Cottam et al. [91] sug-
gest that IMC is capable of accurately measuring pelvis and
torso relative angles during slow and fast multiplanar move-
ments; however, these relative angles may not be representa-
tive of or directly comparable to those of an OMC system
where anatomical modelling is used to estimate joint angles.
It has recently been suggested that the joint kinematics mea-
sured using both OMC and IMC methods may not represent
the true kinematics of the joint due to the underlying
assumptions made when using each method [25, 27, 30]. Fur-
ther development of OMC and IMC modelling techniques
may be required to enable valid comparison between OMC
and IMC joint angle estimations, with development of each
method being further extended to achieve a greater represen-
tation of the true kinematics of the joint.

4.3. Magnetometer Calibration. Although the inclusion of a
magnetometer in an IMC system allows the definition of
the orientation of the MARG device in a global North, East
Down (NED) reference frame, such global orientation esti-
mation may be corrupted by ferromagnetic disturbances
within the environment. Often, the validation of IMC sys-
tems occurs within a laboratory environment where gold
standard systems (such as OMC systems) are situated and
used for comparison. Measurement equipments within a lab-
oratory, as well as structural iron in the flooring, walls, and
ceiling of the building have proven to be a considerable
source of ferromagnetic interference [92]. When using
MARG devices for motion capture within such environ-
ments, a magnetic calibration of each MARG device is rec-
ommended [92].
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'

Hard iron
effect

Define the center of the ellipsoid (V)

Data output

Compute inverse soft-iron matrix (W~!) from
square root of the ellipsoid fit matrix (A)
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FIGURE 5: Magnetic calibration approach example (adapted from Ozyagcilar [42]).

Magnetic calibration procedures reduce the effect of hard
iron effects (fixed bias with respect to the local reference
frame of the sensor) and soft iron effects (variable distortion
dependent on the orientation of the sensor) [42]. In an undis-
turbed environment, the magnetic field strength data of a
magnetometer rotated through a full range of 3D rotation
should form a perfect sphere centred around some origin.
Ferromagnetic disturbances distort this ideal spherical for-
mation of data to the extent of an ellipsoid shape (due to soft
iron effects) and shift the centre of the ellipsoid away from
the origin (due to hard iron effects). To correct for hard
and soft iron effects, a best fit ellipsoid is established using
parameter solving algorithms in an attempt to form a spher-
ical representation of the raw data (Figure 5) [42].

Performing movements > 40cm above ground level,
starting data capture in an area of low ferromagnetic distur-
bance and ensuring sufficient capture time before commenc-
ing the movement to allow the sensor fusion Kalman filter to
compensate for ferromagnetic disturbances have also been
shown to reduce error in orientation estimation caused by
ferromagnetic disturbances [92]. At minimum, researchers
and developers should attempt to correct for yaw estimation
error caused by hard iron effects, and where appropriate
implement, the aforementioned additional strategies based
on the environment in which the IMC system will be used.

4.4. Error Propagation. The error associated with each stage
of data processing propagates toward a total IMC system
error. For example, the combined error in a single body seg-
ment orientation estimation is the sum of the sensor fusion
error, the sensor to segment alignment error, and any addi-

tional error caused by STA or biomechanical modelling
assumptions. Where the goal may be to estimate the relative
orientation between two segments (joint angle), the error in
each body segment orientation estimation is once again com-
bined. Careful implementation and further development of
the data processing and error minimization strategies pre-
sented throughout this technical summary will contribute
to the reduction in total system error and resultant overall
accuracy of IMC systems.

5. Conclusions and Recommendations

Inertial-based motion capture addresses many of the limita-
tions associated with traditional motion capture systems
including marker occlusion and dropout, expensive equip-
ment costs, and the ecological validity of performing move-
ments in a confined laboratory environment. The accuracy
of IMC systems is suggested to be primarily dependent on
the data fusion algorithms and pose estimation methodolo-
gies used to interpret human motion from raw MARG data.
Additionally, the effect of soft tissue artefacts, device place-
ment, biomechanical modelling methods, and ferromagnetic
interference within the environment should be carefully con-
sidered to enhance the accuracy and validity of MARG
derived spatiotemporal and kinematic estimations.
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